

MAKÜ FEBED ISSN Online: 1309-2243 http://febed.mehmetakif.edu.tr

Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3 (1): 18-21 (2012)

Araştırma Makalesi / Research Paper

Remarks on General Principally Injective Rings

Hasan Öğünmez

Afyon Kocatepe University, Faculty of Arts and Sciences, Department of Mathematics, Ahmet Necdet Sezer Campus, Afyonkarahisar, Turkey

> Received (Geliş Tarihi): 01.07.2011, Accepted (Kabul Tarihi): 29.03.2012 ☑ Yazışmalardan Sorumlu Yazar (Corresponding author): hogunmez@aku.edu.tr ☑ +90 272 228 13 12 / 256 🖨 +90 272 228 12 35

ABSTRACT

In [3], Chen and Li proved that every left CS and left p-injective ring is a QF-ring. In this study, we show that a right Noetherian, left CS and left GP-injective ring is right Artinian. We also prove that, if every singular simple right *R* -module is GP-injective, then $J(R) \cap Z_r = 0$. This gives a partially answer to a question of Ming [5].

2000 Mathematics Subject Classification: 16L30, 16L60, 16P20

Key Words: CS-rings, GP-injective rings

ÖZET

GENELLEŞTİRİLMİŞ TEMEL İNJEKTİF HALKALAR ÜZERİNE

[3] de, Chen ve Li her sol CS ve sol p-injektif halkanın bir QF-halka olduğunu ispatladı. Bu çalışmada, sağ Noetherian, sol CS ve sol GP-injektif halkanın sağ Artinian olduğunu gösterdik. Daha sonra, her singüler basit sağ R -modüle GP-injektif ise $J(R) \cap Z_r = 0$ olduğunu ispatladık. Bu [5] de Ming'in sorusuna kısmen de olsa bir cevaptır.

Anahtar Kelimeler: CS-halkalar, GP-injektif halkalar, Noetherian, Artinian

1. INTRODUCTION

Throughout this paper, we assume that R is an associative ring (not necessarily commutative) with unity and M_R (resp., $_RM$) is unital right (resp. left) R-module. The notions, " \leq "will denote a submodule " \leq_e "

an essential submodule and $l_R(X)$ (resp., $r_R(X)$) the left (resp. right) annihilator of a subset X of R, respectively. We also write "J", " Z_R " (" Z_l ") and " S_R " (" S_l ") for the Jacobson radical, the right (left) singular ideal and the right (left) socle of R, respectively. The texts by Anderson and Fuller [1] and [6] are the general references for notions of rings and modules not defined in this work.

A module M is called principally injective (*p*-injective for short) if every R-homomorphism from a principal right ideal aR to M extends to one from R_R to M, i.e., is given by left multiplication by an element of M. This is equivalent to saying that $l_M r_R(a) = Ma$ for all $a \in R$. R is called right P-injective ring, if R_R is a pinjective module. A ring R is said to be general right principally injective (briefly right GP-injective) if, for any $0 \neq a \in R$, there exists a positive integer n = n(a)such that $a^n \neq 0$ and any right *R* -homomorphism from $a^n R$ to R extends to an endomorphism of R (see [10]). A module M is called *extending* (or CS) if, for all $N \leq M$, there exists a direct summand $N' \leq_d M$ such that $N \leq_{e} N'$ and a ring R is called *right* (*resp.*, *left*) CS if R_R (resp., $_R R$) is CS (see [6]). Examples of extending modules are injective modules, guasi-injective modules and uniform modules. The notions of p-injective rings, CS rings and GP-injective rings have been the

focus of a number of research papers. A right R-module M_R is called *mininjective* if, for each simple right ideal K of R, every R-morphism $\alpha: K \to M$ extends to R; equivalently if $\alpha: m$ is left multiplication by some element m of M. Hence the ring R is right mininjective if R_R is mininjective [8]. By [8, Lemma1.1], R is right mininjective if and only if, for $a \in R$, $l_r(a) = Ra$ where Ra is simple right ideal of

R. A ring *R* is called right *simple injective* if for some *R*-homomorphism γ with $\gamma(I)$ simple extends to *R*. So we have the following strict hierarchy.

 $\{right self injective\} \subset \{right simple injective\} \subset \{right mininjective\}$

A ring R is called a *right generalized V-ring* if every singular simple right R -module is injective.

In this paper, by using a method due to Chen and Li [3], we obtain that if R is a right Noetherian, left CS and left GP-injective ring, then R is right Artinian. We also prove that a right CF, right GP-injective and semi regular ring is a QF-ring.

2. RESULTS

Lemma 2.1. Let R be a right Noetherian, left GPinjective and left finite dimensional ring. Then R is right Artinian.

Proof. By [2, Theorem 4.6], every left GP-injective and left finite dimensional ring is semilocal. Note that in [2, Theorem 4.6], the reader is referred to [7, Theorem 3.3]. Now, because *R* is right Noetherian, there exists $n \ge 1$ such that $l(J^n) = l(J^{n+1}) = \cdots$. We claim that J is nilpotent. If not, there exists a maximal element r(a) in $\{r(b): bJ^n \neq 0\}$. Assume nonempty set that $J^{n+1} \neq 0$ and we get a contradiction. Since $l(J^n) = l(J^{2n})$, we have $J^{2n} \neq 0$. This implies that there exists an element $x \in J^n$ such that $axJ^n \neq 0$. Because of GP-injectivity of R, $l(J) \leq_{R} R$ and so $l(J^n) \leq_{e^R} R$ since $l(J) \leq l(J^n)$. Therefore there exists an element $y \in J^n$ such that $0 \neq yax \in l(J^n)$, and so $r(a) \le r(ya)$. This is a contradiction of the maximality of r(a). Hence J is nilpotent by Hopkin's Theorem [1], so R is a right Artinian ring.

In [3], Chen and Li proved that every right Noetherian, left CS and left p-injective ring is QF.

Theorem 2.2. If R is a right Noetherian, left CS and left GP-injective ring, then R is right Artinian.

Proof. Let R be a right Noetherian, left CS and left GP-injective ring. By [3, Theorem 2.11], R is a left finite dimensional ring. Hence R is a right Artinian ring by Lemma 2.1.

Hence one may ask the following question.

Question: Let R be a right Noetherian, left CS and left GP-injective ring. Is R left Artinian?

If the answer is true, then R is a QF-ring by [9, Theorem 3.4] because Soc (Re) is simple for any local idempotent $e \in R$.

Recall that a ring R said to be *right Kasch ring* if every simple right R-module embeds in R and R said to be a *semiregular ring* if R/J is von Neumann regular and idempotents can be lifted modulo J.

Theorem 2.3. [9, Theorem 3.31] Suppose that R is a semilocal, left and right mininjective ring with ACC on right annihilators in which $S_r \leq_e R_R$. Then R is a QF-ring.

Theorem 2.4. Let *R* be a left GP-injective, left CS-ring with $S_l \leq_e R_R$ and right mininjective ring with ACC on right annihilators in which $S_r \leq_e R_R$. Then *R* is QF-ring.

Proof. Let *e* be any primitive idempotent of *R*. It is easy to see that *Re* is uniform. This follows that *Soc*(*Re*) is simple and so *R* is left mininjective ring by [8]. Since *R* is a left GP-injective ring, we have $J(R) = Z(_RR)$. By [9, Lemma 8.1], *R* is a right Kasch ring and so *R* is semiperfect by [9, Theorem 4.10]. By [9, Theorem 3.24] and [2, Theorem 2.3], *R* is a left Kasch ring with $S_r = S_l$. Therefore $S_r \leq_e R_R$ by [2, Theorem 2.3]. Hence *R* is a QF-ring by Theorem 2.3.

Remark: A ring *R* said to be a *CF-ring* if every cyclic right *R* -module embeds in *R*. In [3], they shown that; (1) If *R* is right CF, semiregular and $J \leq Z_r$, then *R* is a right Artinian ring.

(2) A right CF, semiregular and right p-injective ring is QF.

Lemma 2.5. Let R be a left Kasch and right CF-ring. Then R is a right Kasch, right Artinian (and so right Noetherian) and semilocal ring with $J = Z_R$.

Proof. See [4, Theorem 2.6].

Theorem 2.6. Assume that R is a right CF-ring. Then R is a QF-ring if the following are satisfied:

(1) R is semiregular and right GP-injective ring or;

(2) R is left Kasch ring or;

(3) *R* is semiregular and right mininjective ring with $S_r \leq_e R_R$

Proof. (1) and (3) If R is a right GP-injective and semiregular ring with $S_r \leq_e R_R$, then $J = Z_R$. By Remark, R is right Artinian. Because of right mininjectivity of R, we have R is a QF-ring by Theorem 2.3.

(2) It follows from Lemma 2.5 and Theorem 2.2.

Theorem 2.7. Assume that R is a right CF-ring and right mininjective ring. Then the following are equivalent:

- (1) *R* is *QF*
- (2) S_{l} is finitely generated as left R -module
- (3) R is semilocal

Proof. (1)⇒ (2) Clear.

 $\begin{array}{l} (2) \Rightarrow (3) \text{ By assumption, } R \text{ is a left p-injective and right} \\ \text{Kasch ring, and so } S_l = S_r. \text{ It is enough to show that} \\ J = J(S_l) \text{ and } R/J \text{ is semisimple. Let } x \in J(S_l). \\ \text{For maximal left ideal } I \text{ of } R \text{ and simple left ideal } A \text{ of } R, \text{ we consider the isomorphism } f: R/I \rightarrow A. \\ \text{Clearly, } f(R/I)x = f((R/I)x) = 0, \text{ that is } Ax = 0. \\ \text{This implies that } (R/I)x = 0 \text{ and so } x \in I. \\ \text{The other side is obvious. Hence } J = J(S_l). \\ \text{Now, since } S_l \text{ is finitely generated as left } R \text{ -module, we } \\ \text{write } S_l = Rx_1 \oplus Rx_2 \oplus \cdots \oplus Rx_n, \text{ where each } Rx_i \\ \text{ is a simple left ideal of } R. \\ \text{Note that} \end{array}$

$$J = r(S_l) = \bigcap_{i=1}^n r(x_i)$$

and

$$g: R/J = R/r(S_i) = R/\bigcap_{i=1}^n r(x_i) \to R/\bigoplus_{i=1}^n r(x_i)$$

is a monomorphism. Therefore R/J is semisimple.

 $(3) \Rightarrow (1)$ If R is a semilocal, right mininjective and right CF-ring, then R is quasi-Frobenius by [9, Theorem 8.11].

Lemma 2.8. Assume that R is a right simple injective ring, $M \neq \bigoplus_n R$ and $M_R \neq R_R$. If M is a finitely generated right R-module then M is semisimple.

Proof. Let $M = m_1R + m_2R + \dots + m_nR$ be a finitely generated R-module and F be a free R-module. Then we have the epimorphism $g: F \cong \bigoplus_n R \to M \cong \bigoplus_n R/Ker(f)$ defined by $(x_i) = \sum_{i=1}^n m_i(x_i)$ where $f: F \to M$ is an

epimorphism. Since R is a right simple injective ring, there exists $h: \bigoplus_n R \to \bigoplus_n a_i R$. Then $\bigoplus_n a_i R$ is semisimple and $Ker(h) \subseteq Ker(g)$. Since $\bigoplus_n a_i R$ is semisimple and $\alpha: \bigoplus_n a_i R \to M$ is an epimorphism, we can say that M is semisimple.

Theorem 2.9. Assume that R is a right (left) self-

injective ring, $M \neq \bigoplus_n R$ and $M_R \neq R_R$. Then,

(1) Every finitely generated right (left) R -module is a right (left) Artinian and right (left) Noetherian module of finite length.

(2) Every finitely generated right R -module is injective and projective.

Proof. (1) By Lemma 2.8.

(2) Let R be a right self-injective ring and M be a finitely generated R-module. By Lemma 2.8, M is semisimple. This implies that every submodule of M is a direct summand.

Corollary 2.10. Assume that *R* is a right perfect and two sided self injective ring such that $Soc(eR) \neq 0$ for every local idempotent *e* of *R*. Let, $M \neq \bigoplus_n R$ and $M_R \neq R_R$. Then is a QF-ring.

Proof. By [9, Theorem 6.16], R is right and left Kasch ring. By Theorems 6.19 and 6.20 in [9], the ring R is finitely cogenerated. Now, by Theorem 2.9, R is left Artinian. This implies that R is a QF-ring.

3. REFERENCES

- Anderson, F.W., Fuller, K.R. (1992). Rings and Categories of Modules. Springer-Verlag, New York.
- Chen, J., Ding, N. (1999). On general principally injective rings. Comm. Algebra 27(5): 2097-2116.
- Chen, J., Li, W. (2004). On artiness of right CF-rings. Comm. Algebra 32: 4485-4434.
- Leghwel, Harmancı, A. (2005). CSSES modules and CSSES rings. G. U. J. Science 18(3) :381-390.
- Ming, R.Y.C. (2003) On injectivity and p-injectivity. B. Korean Math. Soc. 40: 223-234.
- Mohamed, S.H., Muller, B.J. (1990). Continuous and discrete modules. London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge.
- Nicholson, W.K., Yousif, M.F. (1995). Principally injective rings. J. Algebra 174: 77-93.
- Nicholson, W.K., Yousif, M.F. (1997). Mininjective rings. J. Algebra 187: 548-578.
- Nicholson, W.K., Yousif, M.F. (2003). Quasi-Frobenius Rings. Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge.
- Page, S.S., Zhou, Y. (1998). Generalizations of principally injective rings. J. Algebra 206: 706-721.