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DIRECTION CURVES OF GENERALIZED BERTRAND CURVES

AND INVOLUTE-EVOLUTE CURVES IN E4

Mehmet ÖNDER
Delibekirli Village, Kırıkhan, 31440 Hatay, TURKEY

Abstract. In this study, we define (1,3)-Bertrand-direction curve and (1,3)-

Bertrand-donor curve in the 4-dimensional Euclidean space E4. We introduce

necessary and sufficient conditions for a special Frenet curve to have a (1,3)-
Bertrand-direction curve. We introduce the relations between Frenet vectors

and curvatures of these direction curves. Furthermore, we investigate whether

(1,3)-evolute-donor curves in E4 exist and show that there is no (1,3)-evolute-
donor curve in E4.

1. Introduction

Associated curves are the most interesting subject of curve theory. Such curves
have a special property between their Frenet apparatus. Bertrand curves are one of
the most famous type of such curve pairs. These curves were first discovered by J.
Bertrand in 1850 [1]. In the 3-dimensional Euclidean space E3, a curve α(s) is called
Bertrand curve if there exists a curve γ different from α with the same principal
normal line as α. Bertrand partner curves are important and fascinating examples
of offset curves used in computer-aided design [13]. The classical characterization
for the Bertrand curve is that a curve α(s) is a Bertrand curve if and only if its
curvature functions κ(s), τ(s) satisfy the condition aκ(s) + bτ(s) = 1, where a, b
are real constant numbers. And, the parametric form of the Bertrand mate of
α(s) is defined by γ(s) = α(s) + λN(s), where λ ̸= 0 is constant and N(s) is unit
principal normal line of α [17]. It is interesting that for n ≥ 4, there exists no
Bertrand curves in this form. This fact was proved by Matsuda and Yorozu [12].
Considering this fact, in the same paper, they have defined a new type of associated
curves called (1,3)-Bertrand curves in E4.

Moreover, another well-known type of associated curve pairs is involute-evolute
curve couple. These curves were first studied by Huygens in his work [8]. Classically,
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an evolute of a given curve is defined as the locus of the centers of curvatures of
the curve, which is the envelope of the normal of reference curve. Fuchs defined
an involute of a given curve as a curve for which all tangents of reference curve
are normal [3]. In the same study, equation of enveloping curve of the family of
normal planes for space curve has been also defined. Gere and Zupnik studied
involute-evolute curves by considering a curve composed of two arcs with common
evolute [6]. Fukunaga and Takahashi defined evolutes and involutes of fronts in
the plane and introduced some properties of these curves [4,5]. Later, Yu, Pei and

Cui considered evolutes of fronts on Euclidean 2-sphere [18]. Özyılmaz and Yılmaz
studied involute-evolute of W -curves in Euclidean 4-space E4 [16]. Li and Sun
studied evolutes of fronts in the Minkowski Plane [9].

Recently, Hanif and Hou have defined generalized involute and evolute curves in
E4[7]. They have obtained necessary and sufficient conditions for a curve to have
a generalized involute or evolute curve. Another study of generalized involute-
evolute curves has been given by Öztürk, Arslan and Bulca [15]. They have given
characterization of involute curves of order k of a given curve in En and also
introduced some results on these type of curves in E3 and E4.

Furthermore, Choi and Kim have defined a new type of associated curves in E3

called principal normal (binormal) direction-curve and principal normal (binormal)
donor-curve [2]. Similarly, Macit and Düldül have defined W -direction curve and
W -donor curve in E3, where W is unit Darboux vector of the reference curve [10].
Later, the author has defined Bertrand direction curves, Mannheim direction curves
and involute-evolute direction curves in E3 and introduced relations between those
curves and some special curves such as helices and slant helices [14].

In this study, first, we define (1,3)-Bertrand-direction curves and introduce the
relations between the Frenet apparatus of these curves. We show that a curve with
non-constant first curvature κ does not have (1,3)-Bertrand-direction curve. Later,
we give that no C∞-special Frenet curve in E4 is an (1,3)-evolute-donor curve.

2. Preliminaries

Let α : I → E4 be a regular curve, i.e., ∥α′(t)∥ ≠ 0, where I is subset of real
numbers set R and ∥α′(t)∥ denotes the norm of tangent vector α′(t) in the Eu-

clidean 4-space E4. This norm is defined by ∥x∥ =
√

⟨x, x⟩ =
√

x2
1 + x2

2 + x2
3 + x2

4

where ⟨x, x⟩ is the Euclidean inner(dot) product and x = (x1, x2, x3, x4) is a vector
in E4. The curve α(t) is called unit speed if ∥α′(t)∥ = 1. The parameter of a unit
speed curve is represented by s and called arc-length parameter. The curve α(s) is
called special Frenet curve if there exist differentiable functions κ(s), τ(s) and σ(s)
on I and differentiable orthonormal frame field {T,N,B1, B2} along α(s) such that:

i) Following Frenet formulas hold
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T ′ = κN,
N ′ = −κT + τB1,
B′

1 = −τN + σB2,
B′

2 = −σB1.

(1)

ii) The orthonormal frame field {T,N,B1, B2} has positive orientation.
iii) The functions κ(s), τ(s) are positive and the function σ(s) does not vanish.

The unit vector fields T, N, B1 and B2 are called tangent, principal normal, first
binormal and second binormal of α(s) and the functions κ(s), τ(s) and σ(s) are
called first, second and third curvatures of α(s), respectively [11].

If we take T = n1, N = n2, B1 = n3, B2 = n4, the term “special” means that
the vector field ni+1, (1 ≤ i ≤ 3) is inductively defined by the vector fields ni and
ni−1 and the positive functions κ and τ [12]. For this, the Frenet apparatus of a
special Frenet curve have been determined by the following steps:

(1) α′(s) = T (s)
(2) κ(s) = ∥T ′(s)∥ > 0 , N(s) = 1

κ(s)T
′(s).

(3) τ(s) = ∥N ′(s) + κ(s)T (s)∥ > 0, B1(s) =
1

τ(s) (N
′(s) + κ(s)T (s))

(4) B2(s) = ε 1

∥B1
′ (s)+τ(s)N(s)∥

(
B1

′
(s) + τ(s)N(s)

)
, where ε = ±1 is chosen as

the frame {T,N,B1, B2} has positive orientation and σ(s) = ⟨B′
1(s), B2(s)⟩

does not vanish.

All these 4 steps should be checked that the curve α(s) is a special Frenet curve
[11].

The plane spanned by the vectors T, B1 is called the Frenet (0,2)-plane and
the plane spanned by the vectors N, B2 is called the Frenet (1,3)-normal plane of
α[7,12]

Definition 1. ([12]) A C∞-special Frenet curve α : I → E4 is called a (1,3)-
Bertrand curve if there exits another C∞-special Frenet curve β : J → E4 and a
C∞-mapping φ : I → J such that the Frenet (1,3)-normal planes of α and β at the
corresponding points coincide. The parametric representation of β is β (φ(s)) =
α(s) + zN(s) + tB2(s), where z, t are constant real numbers.

Theorem 1. ([12]) If n ≥ 4, then no C∞-special Frenet curve in En is a Bertrand
curve.

Definition 2. ([7]) Let α(s) and γ(s̄) be two regular curves in E4 such that s̄ = f(s)
is the arc-length parameter of γ(s̄). If the Frenet (0,2)-plane of α and Frenet (1,3)-
plane of γ at the corresponding points coincide, then α is called (1,3)-evolute curve
of γ and γ is called (0,2)-involute curve of α. The (0,2)-involute curve γ has the
parametric form γ(s) = α(s) + (c− s)T (s) + kB1(s), where c, k are real constants.
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Let I ⊂ R be an open interval. For a unit speed special Frenet curve α : I → E4,
let define a vector valued function X(s) as follows

X(s) = p(s)T (s) + l(s)N(s) + r(s)B1(s) + n(s)B2(s), (2)

where p, l, r and n are differentiable scalar functions of s. Let X(s) be unit, i.e.,

p2(s) + l2(s) + r2(s) + n2(s) = 1, (3)

holds. Then the definitions of X-donor curve and X-direction curve in E4 are given
as follows.

Definition 3. Let α be a special Frenet curve in E4 and X(s) be a unit vector
valued function as given in (2). The integral curve γ : I → E4 of X(s) is called an
X-direction curve of α. The curve α having γ as an X-direction curve is called the
X-donor curve of γ in E4.

3. (1,3)-Bertrand-Direction Curves in E4

In this section, we define (1,3)-Bertrand-direction curves and (1,3)-Bertrand-
donor curves for special Frenet curves and introduce necessary and sufficient con-
ditions for these curve pairs.

Definition 4. Let α = α(s) be a special Frenet curve in E4 with arc-length pa-
rameter s and X(s) be a unit vector field as given in (2). Let special Frenet curve
β(s̄) : I → E4 be an X-direction curve of α. The Frenet frames and curvatures of α
and β be denoted by {T,N,B1, B2}, κ, τ , σ and

{
T̄ , N̄ , B̄1, B̄2

}
, κ̄, τ̄ , σ̄, respec-

tively, and let any Frenet vector of α does not coincide with any Frenet vector of β.
If β is a (1,3)-Bertrand partner curve of α, then β is called (1,3)-Bertrand-direction
curve of α and α is said to be (1,3)-Bertrand-donor curve of β.

From Definition 4, it is clear that at the corresponding points of the curves, the
planes spanned by {N,B2} and

{
N̄ , B̄2

}
coincide. Then, we have,

sp {N,B2} = sp
{
N̄ , B̄2

}
, sp {T,B1} = sp

{
T̄ , B̄1

}
, (4)

Moreover, since β is an integral curve of X(s), we have dβ
ds = X(s). Also, since

X(s) is unit, the arc-length parameter s̄ of β is obtained as

s̄ =

∫ s

0

∥∥∥∥dβds
∥∥∥∥ ds = ∫ s

0

ds = s (5)

i.e., arc-length parameters of (1,3)-Bertrand-direction curves α and β are same.
Thus, hereafter we will use prime for both curves to show the derivative with
respect to s.

Theorem 2. The special Frenet curve α : I → E4 is a (1,3)-Bertrand-donor curve
if and only if there exist non-zero constants r, µ, λ, p such that

p2 + r2 = 1, λ2 + µ2 = 1, (6)
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pκ− rτ =
λ

µ
rσ, (7)

(p2 − λ2)κ− prτ ̸= 0. (8)

Proof. Let X(s) = p(s)T (s) + l(s)N(s) + r(s)B1(s) + n(s)B2(s) be a unit vector
valued function and the special Frenet curve β : I → E4 be integral curve of X(s)
and also be a (1,3)-Bertrand-direction curve of α, where p(s), l(s), r(s) and n(s)
are smooth scalar functions of arc-length parameter s. Then, we have

T̄ (s) = p(s)T (s) + l(s)N(s) + r(s)B1(s) + n(s)B2(s). (9)

From (4), it follows T̄⊥sp {N,B2}. Then, multiplying (9) with N and B2, we have
l(s) = 0, n(s) = 0, respectively, and (9) becomes

T̄ (s) = p(s)T (s) + r(s)B1(s), (10)

and from (10), it follows p2(s)+r2(s) = 1, since T̄ is unit. Differentiating (10) with
respect to s and using Frenet formulas (1), we get

κ̄N̄ = p′T + (pκ− rτ)N + r′B1 + rσB2. (11)

Multiplying (11) with T and B1 and considering (4), we get p′ = 0, r′ = 0,
respectively, i.e., p and r are constants. If p or r is zero, then Frenet vectors of α
and β coincide. It follows that p and r are non-zero constants. Then, from (10),
we get p2 + r2 = 1 and we have first equality in (6).

Now, (11) becomes

κ̄N̄ = (pκ− rτ)N + rσB2, (12)

which gives

κ̄ =
√
(pκ− rτ)2 + (rσ)2. (13)

Let define

λ =
pκ− rτ√

(pκ− rτ)2 + (rσ)2
, µ =

rσ√
(pκ− rτ)2 + (rσ)2

. (14)

Then, (12) becomes

N̄ = λN + µB2, λ2 + µ2 = 1. (15)

By Definition 4, any Frenet vector of α does not coincide with any Frenet vector of
β. Thus, we have that λ ̸= 0, µ ̸= 0. Differentiating the first equation in (15) with
respect to s and considering Frenet formulas (1), it follows

− κ̄T̄ + τ̄ B̄1 = −λκT + λ′N + (λτ − µσ)B1 + µ′B2. (16)

Multiplying (16) with N and B2, we get λ′ = 0, µ′ = 0, respectively, i.e., λ, µ are
real non-zero constants. So, we have λ2 + µ2 = 1, which is the second equality in
(6).

Moreover, from (13) and (14), we have

κ̄ =
pκ− rτ

λ
=

rσ

µ
. (17)
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Then, (17) gives us pκ− rτ = λ
µrσ and we obtain (7).

Now, writing (10) and (17) in (16), it follows

λτ̄B̄1 =
(
(p2 − λ2)κ− prτ

)
T +

(
prκ+ (λ2 − r2)τ − λµσ

)
B1. (18)

From (7), we have

σ =
µ(pκ− rτ)

λr
. (19)

Writing (19) in (18) and using (6), equality (18) becomes

τ̄ B̄1 = A
(
T − p

r
B1

)
, (20)

where A = (p2−λ2)κ−prτ
λ . Since B̄1 ̸= 0, we get A ̸= 0, i.e., (p2 − λ2)κ − prτ ̸= 0.

Then we have (8).
Conversely, assume that relations (6), (7) and (8) hold for some non-zero con-

stants r, µ, λ, p and α be a special Frenet curve with Frenet frame {T,N,B1, B2}
and curvatures κ, τ , σ. Let define a vector valued function

X(s) = pT (s) + rB1(s), (21)

and let β : I → E4 be an integral curve of X(s). We will show that β is a (1,3)-
Bertrand-direction curve of α. Differentiating (21) with respect to s gives

κ̄N̄ = (pκ− rτ)N + rσB2. (22)

Writing (7) in (22), it follows

κ̄N̄ = rσ

(
λ

µ
N +B2

)
. (23)

From (23), it follows,

κ̄ = ε1
rσ

µ
, (24)

where ε1 = ±1 such that κ̄ > 0. Writing (24) in (23) gives

N̄ = ε1 (λN + µB2) . (25)

Differentiating (25) with respect to s gives

N̄ ′ = ε1 (−λκT + (λτ − µσ)B1) . (26)

Using (21), (24) and (26), we have

N̄ ′ + κ̄T̄ =
ε1
µ

(
(prσ − λµκ)T + (r2σ + λµτ − µ2σ)B1

)
. (27)

Writing (7) in (27) and using (6), (27) becomes

N̄ ′ + κ̄T̄ = ε1
(p2 − λ2)κ− prτ

λ

(
T − p

r
B1

)
. (28)

From (28) and (8), we have

τ̄ =
∥∥N̄ ′ + κ̄T̄

∥∥ = ε2
(p2 − λ2)κ− prτ

λr
̸= 0, (29)
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where ε2 = ±1 such that τ̄ > 0. Then,

B̄1 =
1

τ̄

(
N̄ ′ + κ̄T̄

)
=

ε1
ε2

(rT − pB1) . (30)

Considering (21), (25) and (30), we can define the unit vector B̄2 as

B̄2 =
1

ε2
(µN − λB2) ,

that is

B̄2 =
1

ε2
√
(pκ− rτ)2 + (rσ)2

(rσN − (pκ− rτ)B2) , (31)

and we have det(T̄ , N̄ , B̄1, B̄2) = 1. Using (30) and (31), it follows

σ̄ =
〈
B̄′

1, B̄2

〉
= ε1 (µ(rκ+ pτ) + pλσ) . (32)

If we assume that σ̄ = 0, then we have µ(rκ + pτ) = −pλσ. Multiplying that
with r, we get µ(r2κ+ prτ) = −prλσ. Since r2 = 1− p2, the last equality becomes
µ (−p(pκ− rτ) + κ) = −prλσ. Using (7), it follows µκ = 0, which is a contradiction
since µ ̸= 0 and α is a special Frenet curve. Then, σ̄ ̸= 0, i.e., β is a special
Frenet curve. Moreover, since r, µ, λ, p are non-zero constants, from the equalities
(21), (25), (30) and (31), it follows that no Frenet vectors of α and β coincide.
Furthermore, since we obtain sp {N,B2} = sp

{
N̄ , B̄2

}
, we have that β is (1,3)-

Bertrand-direction curve of α.
□

Moreover, since α is a (1,3)-Bertrand curve, by Definition 1, its (1,3)-Bertrand
partner curve β has the parametric form β(s) = α(s) + zN(s) + tB2(s) where z, t
are constant real numbers. Differentiating that with respect to s and using the
equality T̄ = pT + rB1, we have pT + rB1 = (1− zκ)T + (zτ − tσ)B1 which gives
that κz = 1−p. If z = 0, we get p = 1. But this is a contradiction since p2+r2 = 1
and r ̸= 0. Then, κ = (1 − p)/z is a non-zero positive constant and we have the
followings.

Corollary 1. No C∞-special Frenet curve in E4 with non-constant first curvature
κ is a (1,3)-Bertrand-donor curve.

Corollary 2. If the special Frenet curve α : I → E4 is a (1,3)-Bertrand-donor
curve, then there exists a linear relation c1τ + c2σ = κ where c1, c2, κ ̸= 0 are
constants and κ, τ , σ are Frenet curvatures of α.

Corollary 3. Let β be (1,3)-Bertrand-direction curve of α. Then the relations
between Frenet apparatus are given as follows

T̄ = pT + rB1, N̄ = ε1 (λN + µB2) , B̄1 =
ε1
ε2

(rT − pB1) , B̄2 =
1

ε2
(µN − λB2) ,

(33)
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κ̄ = ε1
rσ

µ
> 0, τ̄ = ε2

(p2 − λ2)κ− prτ

λr
> 0, σ̄ = ε1 (µ(rκ+ pτ) + pλσ) , (34)

where r, µ, λ, p are non-zero real constants and ε1 = ±1, ε2 = ±1.

Since we have p2 + r2 = 1, λ2 + µ2 = 1, from (33) we also have,

T = pT̄+
ε1
ε2

rB̄1, N = ε1λN̄+ε2µB̄2, B1 = rT̄− ε1
ε2

pB̄1, B2 = ε1µN̄−ε2λB̄2. (35)

Example 1. Let consider unit speed special Frenet curve α(s) given by

α(s) =
1√
2

[
1

2
sin 2s, −1

2
cos 2s,

1

3
sin 3s, −1

3
cos 3s

]
. (36)

The Frenet vectors of α(s) are obtained as

T (s) =
1√
2
(cos 2s, sin 2s, cos 3s, sin 3s) , (37)

N(s) =
1√
13

(−2 sin 2s, 2 cos 2s, −3 sin 3s, 3 cos 3s) , (38)

B1(s) =
1√
2
(cos 2s, sin 2s, − cos 3s, − sin 3s) , (39)

B2(s) =
1√
13

(−3 sin 2s, 3 cos 2s, 2 sin 3s, −2 cos 3s) , (40)

respectively. Then the curvatures are

κ =

√
26

2
, τ =

5
√
26

26
, σ =

6
√
26

13
. (41)

For real constants

r =
1

3
, p =

2
√
2

3
, λ =

5 + 26
√
2√(

5 + 26
√
2
)2

+ 144

, µ =
12√(

5 + 26
√
2
)2

+ 144

, (42)

the conditions (6), (7) and (8) hold. Then α(s) is a (1,3)-Bertrand-donor curve.
From (33), (1,3)-Bertrand-direction curve β of α(s) is obtained as

β(s) = 1
3
√
2

(
2
√
2+1
2 sin 2s+ c1, − 2

√
2+1
2 cos 2s+ c2,

+ 2
√
2−1
3 sin 3s+ c3, − 2

√
2−1
3 cos 3s+ c4

) (43)

where ci; (1 ≤ i ≤ 4) are integration constants.
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4. Generalized Involute-Evolute-Direction Curves in E4

In this section, we will consider a new type of curve pairs. In ref. [7], the authors
defined (1,3)-evolute curve and (0,2)-involute curve in E4 as given in Definition
2. Now, we will show that similar definitions for (1,3)-evolute curve and (0,2)-
involute curve in E4 as direction curves don’t exist, i.e., there are no (0,2)-involute-
direction curves and (1,3)-evolute-donor curves. For this purpose, let assume the
converse, i.e., suppose that (0,2)-involute-direction curves and (1,3)-evolute-donor
curves exist. Let α = α(s) be a special Frenet curve in E4 with arc-length parameter
s and X(s) be a unit vector field in the form Eq. (2). Let the special Frenet curve
γ(s̄) : I → E4 be an X-direction curve of α. The Frenet vectors and curvatures
of α and γ be denoted by {T,N,B1, B2}, κ, τ , σ and

{
T̄ , N̄ , B̄1, B̄2

}
, κ̄, τ̄ , σ̄,

respectively and let any Frenet vector of α does not coincide with any Frenet vector
of γ. By the assumption, let γ be a (0,2)-involute curve of α. Since also γ is
direction curve of α let we call γ as (0,2)-involute-direction curve of α and α as
(1,3)-evolute-donor curve of γ. Then, the Frenet planes spanned by {T,B1} and{
N̄ , B̄2

}
coincide and we have,

sp {T,B1} = sp
{
N̄ , B̄2

}
, sp {N,B2} = sp

{
T̄ , B̄1

}
. (44)

Similar to the (1,3)-Bertrand-direction curves, since γ is an integral curve of X(s)

and X(s) is unit, for the arc-length parameter s̄ of γ we have s̄ =
∫ s

0

∥∥∥dγ
ds

∥∥∥ ds =∫ s

0
ds = s. Then, hereafter the prime will show the derivative with respect to s.

Theorem 3. No C∞-special Frenet curve in E4 is a (1,3)-evolute-donor curve.

Proof. First, we will show that if such curves exist, then the special Frenet curve α :
I → E4 is a (1,3)-evolute-donor curve if and only if there exist non-zero constants
b, d , x1, x2 such that

b2 + d2 = 1, x2
1 + x2

2 = 1, (45)

dσ − bτ =
x2

x1
bκ. (46)

(d2 − x2
2)κ− x1x2τ ̸= 0. (47)

For this purpose, let define a unit vector valued function X(s) as X(s) =
a(s)T (s) + b(s)N(s) + c(s)B1(s) + d(s)B2(s) where a(s), b(s), c(s) and d(s) are
differentiable scalar functions of arc-length parameter s. Let the special Frenet
curve γ : I → E4 be integral curve of X(s) and also be (0,2)-involute-direction
curve of α(s). Then, we have

T̄ (s) = a(s)T (s) + b(s)N(s) + c(s)B1(s) + d(s)B2(s). (48)

By assumption, T̄⊥sp {T,B1}. Then, taking the inner product of (48) with T and
B1, we have a(s) = 0, c(s) = 0, respectively, and (48) becomes

T̄ (s) = b(s)N + d(s)B2, b2(s) + d2(s) = 1. (49)
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Now, differentiating the first equation in (49) with respect to s, it follows

κ̄N̄ = −bκT + b′N + (bτ − dσ)B1 + d′B2. (50)

Taking the inner product of (50) with N and B2 and considering (44), we get b′ =
0, d′ = 0, respectively, i.e., b, d are non-zero constants. Also, we have b2 + d2 = 1,
the first equality in (45).

Now, (50) becomes

κ̄N̄ = −bκT + (bτ − dσ)B1. (51)

From (51), it follows

κ̄ =
√
(bκ)2 + (bτ − dσ)2. (52)

Let define

x1 =
−bκ√

(bκ)2 + (bτ − dσ)2
, x2 =

bτ − dσ√
(bκ)2 + (bτ − dσ)2

. (53)

Then, (51) becomes

N̄ = x1T + x2B1, x2
1 + x2

2 = 1. (54)

Since, any Frenet vector of α does not coincide with any Frenet vector of γ, we have
x1 ̸= 0, x2 ̸= 0. Differentiating the first equation in (54) with respect to s, we get

− κ̄T̄ + τ̄ B̄1 = x′
1T + (x1κ− x2τ)N + x′

2B1 + x2σB2. (55)

Taking the inner product of (55) with T and B1, we get x′
1 = 0, x′

2 = 0, respec-
tively, i.e., x1, x2 are non-zero real constants. Then, from (54), we have the second
equality in (45).

Moreover, from (52) and (53), it follows

x1κ̄ = −bκ, x2κ̄ = bτ − dσ, (56)

which gives us dσ − bτ = x2

x1
bκ, we get (46).

Now, writing (49) and (56) in (55) gives

τ̄ B̄1 =
(d2 − x2

2)κ− x1x2τ

x1
N +

−bdκ+ x1x2σ

x1
B2. (57)

From (46), we get

σx1d = x1bτ + x2bκ. (58)

Writing (58) in (57) and using (46), we have,

τ̄ B̄1 = ζ

(
N − b

d
B2

)
, (59)

where

ζ =
(d2 − x2

2)κ− x1x2τ

x1
. (60)

Since B̄1 ̸= 0, it should be (d2 − x2
2)κ− x1x2τ ̸= 0. Then we have (47).
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Conversely, assume that relations (45), (46) and (47) hold for some non-zero con-
stants b, d, x1, x2 and α be a special Frenet curve with Frenet frame {T,N,B1, B2}
and curvatures κ, τ , σ. Let define a vector valued function

X(s) = bN(s) + dB2(s), (61)

and let γ : I → E4 be an integral curve of X(s). We will show that γ is a (0,2)-
involute-direction curve of α. Since T̄ (s) = X(s), differentiating (61) with respect
to s gives

κ̄N̄ = −bκT + (bτ − dσ)B1. (62)

Writing (46) in (62), we have

κ̄N̄ = −bκ

(
T +

x2

x1
B1

)
. (63)

From (63), it follows

κ̄ = ξ1
bκ

x1
, (64)

where ξ1 = ±1 such that κ̄ > 0. Writing (64) in (63) gives

N̄ = −ξ1 (x1T + x2B1) . (65)

By differentiating (65) with respect to s, we get

N̄ ′ = −ξ1 ((x1κ− x2τ)N + x2σB2) . (66)

Using (61), (64) and (66), we have

N̄ ′ + κ̄T̄ =
ξ1
x1

(
(x1x2τ + (x2

2 − d2)κ)N + (bdκ− x1x2σ)B2

)
. (67)

Writing (46) in (67) and using (45), (67) becomes

N̄ ′ + κ̄T̄ = ξ1
(x2

2 − d2)κ+ x1x2τ

x1

(
N − b

d
B2

)
. (68)

From (68) and (47), we have

τ̄ =
∥∥N̄ ′ + κ̄T̄

∥∥ = ξ2
(x2

2 − d2)κ+ x1x2τ

x1d
̸= 0, (69)

where ξ2 = ±1 such that τ̄ > 0. Then, we get

B̄1 =
1

τ̄

(
N̄ ′ + κ̄T̄

)
=

ξ1
ξ2

(dN − bB2) . (70)

Considering (61), (65) and (70), we can define a unit vector

B̄2 =
1

ξ2
(−x2T + x1B1) , (71)

and the necessary condition det(T̄ , N̄ , B̄1, B̄2) = 1 for the Frenet frame holds. Using
(70) and (71), we obtain

σ̄ =
〈
B̄′

1, B̄2

〉
= ξ1 (dx2κ+ x1(dτ + bσ)) . (72)
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If we assume that σ̄ = 0, then we have x1(dτ + bσ) = −dx2κ. Multiplying that
with b, we get x1(bdτ + b2σ) = −bdx2κ. Since b2 = 1 − d2, the last equality
becomes x1 (−d(dσ − bτ) + σ) = −bdx2κ. Using (46), it follows x1σ = 0, which is
a contradiction since x1 ̸= 0 and α is a special Frenet curve. Then, σ̄ ̸= 0, i.e., γ is a
special Frenet curve. Consequently, since b, d, x1, x2 are non-zero constants, from
(61), (65), (70) and (71), we get sp {T,B1} = sp

{
N̄ , B̄2

}
and no Frenet vectors of

α and γ coincide. So, we have that γ is (0,2)-involute-direction curve of α.
Furthermore, from Definition 2, the parametric form of γ is γ(s) = α(s) + (c −

s)T (s) + kB1(s) where c, k are real constants. Differentiating that with respect to
s and using the equality T̄ = bN + dB2, we have

bN + dB2 = ((c− s)κ− kτ)N + kσB2

which gives that

κ(c− s) = b+ kτ , kσ = d. (73)

From (45)-(47) and (73), we have that if the special Frenet curve α : I → E4 is a
(1,3)-evolute-donor curve then there exists a linear relation

c3κ+ c4τ = σ (74)

where c3, c4, σ are non-zero constants and κ, τ , σ are Frenet curvatures of α. From
(74), we have that if κ (or respectively τ) is constant, then τ (or respectively
κ) must be constant. But considering (73), it follows if the first curvature κ (or
respectively τ) is constant, then τ (or respectively κ) is always non-constant which
is a contradiction and that finishes the proof. □

5. Conclusions

There is no Bertrand curves in E4 given by the classical definition that Bertrand
curves have common principal normal lines. Then, a new type of Bertrand curves
have been introduced in [12] and called (1,3)-Bertrand curves. We considered this
definition with integral curves and define (1,3)-Bertrand-direction curves and (1,3)-
Bertrand-donor curves. Necessary and sufficient conditions for a curve to be a (1,3)-
Bertrand-donor curve have been introduced. Moreover, we investigated whether
(1,3)-evolute-donor curves in E4 exist and show that there is no (1,3)-evolute-donor
curve in E4.
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[2] Choi, J.H., Kim, Y.H., Associated curves of a Frenet curve and their ap-

plications, Applied Mathematics and Computation, 218 (2012), 9116-9124.

https://doi.org/10.1016/j.amc.2012.02.064
[3] Fuchs, D., Evolutes and involutes of spatial curves, American Mathematical Monthly, 120(3)

(2013), 217-231. https://doi.org/10.4169/amer.math.monthly.120.03.217

[4] Fukunaga, T., Takahashi, M., Evolutes and involutes of frontals in the euclidean plane, Demon-
stratio Mathematica, 48(2) (2015), 147-166. https://doi.org/10.1515/dema-2015-0015

[5] Fukunaga, T., Takahashi, M., Involutes of fronts in the Euclidean plane, Beitrage zur

Algebra und Geometrie/Contributions to Algebra and Geometry, 57(3) (2016), 637-653.
https://doi.org/10.1007/s13366-015-0275-1

[6] Gere, B.H., Zupnik, D., On the construction of curves of constant width, Studies in Applied

Mathematics, 22(1-4) (1943), 31-36.
[7] Hanif, M., Hou, Z.H., Generalized involute and evolute curve-couple in Euclidean space, Int.

J. Open Problems Compt. Math., 11(2) (2018), 28-39.
[8] Huygens, C., Horologium oscillatorium sive de motu pendulorum ad horologia aptato, Demon-

strationes Geometricae, 1673.

[9] Li, Y., Sun, G.Y., Evolutes of fronts in the Minkowski Plane, Mathematical Methods in the
Applied Science, 42(16) 2018, 5416-5426. https://doi.org/10.1002/mma.5402
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[15] Öztürk, G., Arslan, K., Bulca, B., A Characterization of involutes and evolutes of a given

curve in En. Kyungpook Math. J., 58 (2018), 117-135.
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