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Abstract. In this paper, skew ABC matrix and its energy are introduced

for digraphs. Firstly, some fundamental spectral features of the skew ABC
matrix of digraphs are established. Then some upper and lower bounds are

presented for the skew ABC energy of digraphs. Further extremal digraphs
are determined attaining these bounds.

1. Introduction and Preliminaries

Let G be a simple connected graph with vertex set V (G) = {v1, v2, ..., vn} and
edge set E(G). An edge joining vertices vi and vj is denoted by vivj ∈ E (G) and
degree of a vertex vi is denoted by di. The atom-bond connectivity index ABC of
G is introduced by Estrada et al. [6] as

ABC (G) =
∑

vivj∈E(G)

√
di + dj − 2

didj
,

which is a significant predictive index in the studies about the heat of formation
in alkanes (see [8]- [6]), for further information about mathematical and chemical
applications about atom-bond connectivity index, also see ( [9]- [11]- [13]- [15]-
[27]). The concept of graph energy is defined as sum of the absolute values of the
eigenvalues of a graph by Gutman [16]. The energy of a graph has been widely
studied by many mathematicians and chemists, as it has close links with chemistry
(see [17]). So, several kinds of graph energy are introduced and examined such as
Laplacian energy, Randić energy, distance energy, Zagreb energy, etc.

Estrada [7] defined the generalized ABC matrix Sα (G) =
(
sαij
)
of order n, where

the (i, j)− th entry is
(

di+dj−2
didj

)α
, if vivj ∈ E (G) and 0, otherwise. If α = 1

2 , the
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generalized ABC matrix is called as ABC matrix of a graph and will be denoted by
Ω(G). Let ςi be the eigenvalues of Ω(G) (also called ABC eigenvalues of G). ABC

energy of a graph is defined by EΩ(G) =

n∑
i=1

|ςi|. As Ω(G) is a real symmetric

matrix, the ABC eigenvalues of G are real numbers. Recently, some bounds have
presented for the ABC eigenvalues and ABC energy of graphs by Chen [5] and
Ghorbani et al. [12].

Let G⃗ be a digraph with vertex set V (G⃗) = {v1, v2, ..., vn} and arc set Γ(G⃗). An
arc from vi to vj is denoted by vi → vj . Throughout this paper, all the digraphs are
simple and do not have loops and if there is an arc from vi to vj , then there is not

an arc from vj to vi. Hence, a digraph G⃗ without orientation gives the underlying
graph G is simple.

Graph energy concept is extended to digraphs in [22]. Then the skew Laplacian
energy of a digraph is defined by Adiga et al. [3] and new definitions are proposed
for the skew Laplacian energy (see [2]- [4]). The skew energy of a digraph is defined

by Adiga et al. [1] as ES
(
G⃗
)
=

n∑
i=1

|λi| , where λi are the eigenvalues of the skew

adjacency matrix S(G⃗) of order n. Let S(G⃗)=(sij), where the (i, j) − th entry is
1, if vi → vj ; −1, if vj → vi and 0, otherwise. Since λi (1 ≤ i ≤ n) are purely

imaginary numbers, the singular values of S(G⃗) equal to the absolute values of λi.
For recent studies about kinds of skew energy, also see the survey in [21] and the
references therein.

The Randić index is introduced as ”branching index” by R (G) =
∑

uv∈E(G)

1√
dudv

in [24]. The general Randić index of a graph is defined by Rγ (G) =
∑

uv∈E(G)

(dudv)
γ

in [20]. R−1 is called as modified second Zagreb index. The skew Randić energy of
a digraph is introduced by Gu et al. [14] and some bounds are presented for this
energy kind. Inspired by the studies of the skew energy kinds of graphs, we will
introduce skew ABC matrix of a digraph and its energy.

Skew ABC matrix of a simple digraph G⃗ is Ωs=Ωs

(
G⃗
)
=(bij) of order n and we

define the (i, j)− th entry of Ωs as

bij =


(

di+dj−2
didj

) 1
2

if vi → vj

−
(

di+dj−2
didj

) 1
2

if vj → vi

0 otherwise,

where di and dj are the degrees of the corresponding vertices in the underlying graph
G. The skew ABC matrix of a simple digraph can be considered as a weighted skew

adjacency matrix with
(

di+dj−2
didj

) 1
2

weights.
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Let {ϑ1, ϑ2, ..., ϑn} be eigenvalues of the skew ABC matrix of G⃗, namely be

skew ABC eigenvalues. Since Ωs

(
G⃗
)
is a skew symmetric matrix, the skew ABC

eigenvalues are purely imaginary numbers. We can define skew ABC energy of a
digraph as

EΩs

(
G⃗
)
=

n∑
j=1

|ϑj | .

This paper is only concerned with the mathematical aspects of the skew ABC
energy of digraphs. The rest of the paper is composed of two sections. In the next
section, the spectral features of the skew ABC matrix of digraphs are presented.
In the last section, some upper and lower bounds are obtained for the skew energy
and the extremal digraphs are determined attaining these bounds.

2. Skew ABC Eigenvalues

In this section we consider some fundamental spectral properties of the skew
ABC matrix of digraphs.

Proposition 1. Let G⃗ be a digraph of order n with no isolated vertices. If ϕ
(
G⃗;ϑ

)
=

det(ϑIn−ΩS) = c0ϑ
n+ c1ϑ

n−1+ ...+ cn is the characteristic polynomial of Ωs

(
G⃗
)
,

then
(i) c0 = 1, c1 = 0,
(ii) c2 = n− 2R−1 (G),
(iii) cj = 0, for all odd j.

Proof. (i) Let tr(.) stands for trace of a matrix. Obviously we have c0 = 1 and

c1 =

n∑
j=1

ϑj = tr (Ωs) = 0.

(ii) c2 equals to the sum of the determinants of all 2 × 2 principal submatrices

of Ωs

(
G⃗
)
, thus

c2 =
∑
j<k

det

(
0 bjk
bkj 0

)
=
∑
j<k

−bjkbkj =
∑
j<k

(bjk)
2
=

∑
vjvk∈E(G)

dj + dk − 2

djdk

=
∑

vjvk∈E(G)

dj + dk
djdk

− 2
∑

vjvk∈E(G)

1

djdk

= n− 2R−1 (G) ,

where R−1 (G) =
∑

uv∈E(G)

1

dudv
.

(iii) Let j be odd. cj equals to the sum of the determinants of all j × j principal

submatrices of Ωs

(
G⃗
)
is 0 as a principal submatrix of a skew symmetric matrix is

skew symmetric. □
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Proposition 2. Let G⃗ be a digraph of order n(≥ 3) with no isolated vertices and

{iϑ1, iϑ2, ..., iϑn} be the skew ABC eigenvalues of G⃗ such that ϑ1 ≥ ϑ2 ≥ ... ≥ ϑn.
Then

(i) ϑj = −ϑn+1−j for all 1 ≤ j ≤ n. If n is even, then ϑn
2
≥ 0 and if n is odd,

then ϑn+1
2

= 0.

(ii)

n∑
j=1

|ϑj |2 = 2 (n− 2R−1 (G)) .

Proof. (i) The proof is clear.
(ii) Obviously we have

n∑
j=1

(iϑj)
2
= tr((Ωs)

2
) =

n∑
j=1

n∑
k=1

bjkbkj = −
n∑

j=1

n∑
k=1

(bjk)
2
= −2 (n− 2R−1 (G)) ,

which completes the proof. □

From Proposition 1 and Proposition 2, we also have

∑
1≤i<j≤n

ϑiϑj =
1

2

( n∑
i=1

ϑi

)2

−
n∑

i=1

ϑ2
i

 = 2R−1 (G)− n.

Sp
(
Ωs

(
G⃗
))

denotes the skew ABC spectrum of G⃗ which is a multiset consist of

eigenvalues (with multiplicities) of Ωs

(
G⃗
)
. Also, Sp (Ω (G)) is the ABC spectrum

of the underlying graph G.

Example 1. Let C⃗4 be a directed cycle of order 4 with the arc set {(1, 2) , (2, 3) , (3, 4) ,
(4, 1)}. The skew ABC spectrum of G⃗ is Sp

(
Ωs

(
C⃗4

))
=
{
− 1

2 i
√
2,− 1

2

√
2, 1

2 i
√
2, 1

2

√
2
}

and the skew ABC energy of C⃗4 is EΩs

(
C⃗4

)
= 2

√
2. Consider the underlying

graph C4. The ABC spectrum of C4 is Sp (Ω (C4)) =
{
−
√
2, 0(2),

√
2}. Hence,

EΩs

(
C⃗4

)
= EΩ (C4) .

Example 2. Let K⃗p,q (p, q ̸= 1) be a complete bipartite digraph in which the vertex
set is a disjoint union A ∪ B with |A| = p and |B| = q. Consider the elementary
orientation that is, orienting all the edges from A to B and writing the elements of

A firstly, form the matrix Ωs

(
K⃗p,q

)
=

(
0p βJp×q

−βJq×p 0q

)
, where β =

√
p+q−2

pq

and Jn is the order n matrix with all entries are 1.

det(ϑIp+q − Ωs

(
K⃗p,q

)
) = det

(
ϑIp −βJp×q

βJq×p ϑIq

)
.

Since ϑIp is nonsingular, then

det(ϑIp+q − Ωs

(
K⃗p,q

)
) = det (ϑIp) det

(
ϑIq + βJq×p (ϑIp)

−1
βJp×q

)
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= det (ϑIp) det

(
ϑIq + βJq×p

1

ϑ
IpβJp×q

)
,

(see [23]). Recall Jq×pJp×q = pJq, thus

det(ϑIp+q − Ωs

(
K⃗p,q

)
) = ϑp det

(
ϑIq +

β2

ϑ
pJq

)
= ϑp−q det

(
ϑ2Iq + β2pJq

)
.

β2pJq has eigenvalues β2pq of multiplicity 1 and 0 of multiplicity q − 1, since

Sp (Jq) =
{
q, 0(q−1)

}
. Then

ϕ
(
Ωs

(
K⃗p,q

)
;ϑ
)
= ϑp+q−2

(
ϑ2 + β2pq

)
,

and Ωs

(
K⃗p,q

)
has eigenvalues −β

√
pqi, β

√
pqi and 0 of multiplicity p+ q − 2, i.e.,√

p+ q − 2i, −
√
p+ q − 2i and 0 of multiplicity p+ q − 2, hence

EΩs

(
K⃗p,q

)
= 2
√
p+ q − 2,

and Sp
(
Ωs

(
K⃗p,q

))
=
{
−
√
p+ q − 2i, 0(n−2),

√
p+ q − 2i

}
. It is seen that there

is an orientation such that Sp
(
Ωs

(
K⃗p,q

))
= iSp(Ω(Kp,q)). Orienting all the edges

from B to A and writing the elements of B firstly, form the matrix Ωs

(
K⃗p,q

)
=(

0q βJq×p

−βJp×q 0p

)
. Obviously, carrying out the process above gives the same

skew ABC eigenvalues.

The relationship between the skew spectrum of a digraph and spectrum of its
underlying graph is firstly analyzed in [25]. By Example 2, it is concluded that

there is an orientation such that Sp
(
Ωs

(
K⃗p,q

))
= iSp (Ω (Kp,q)) . An analogous

relation that can be seen in Theorem 1, exists between the skew ABC spectrum
and ABC spectrum.

Lemma 1 ( [25]). If A =

(
0 Y
Y T 0

)
and B =

(
0 Y

−Y T 0

)
are two real

matrices, then Sp(B) = iSp(A).

Theorem 1. G is a bipartite graph if and only if there is an orientation such that

Sp
(
Ωs

(
G⃗
))

= iSp(Ω(G)).

Proof. If G is bipartite, then by suitable labelling the vertices, the ABC matrix

of G takes the form Ω(G) =

(
0 Y
Y T 0

)
. Let G⃗ be an orientation such that the

skew ABC matrix is of the form Ωs

(
G⃗
)
=

(
0 Y

−Y T 0

)
. By Lemma 1, the proof

is obvious.



SKEW ABC ENERGY OF DIGRAPHS 439

Conversely, assume that Sp
(
Ωs

(
G⃗
))

=iSp(Ω(G)) for some orientation. As Ωs

(
G⃗
)

is a real skew symmetric matrix, Sp
(
Ωs

(
G⃗
))

has only pure imaginary eigenvalues,

thus the skew ABC eigenvalues are symmetric with respect to the real axis. Hence,

Sp
(
Ωs

(
G⃗
))

= −iSp(Ω(G)) is symmetric about the imaginary axis. So, G is bipar-

tite. □

3. Bounds for the Skew ABC Energy

In this section, we intend to obtain bounds for the skew ABC energy of digraphs
by using the mathematical inequalities and properties of the skew ABC eigenvalues
and examine the equality case of these bounds. In recent studies, many bounds are
presented for R−1 (G) . Using these bounds, one can also obtain different bounds
for the skew ABC energy of digraphs by combining the bounds will be presented in
this section. Now, we consider the bounds for R−1 (G) in [19] and [26]. Throughout
this section, it is assumed that {iϑ1, iϑ2, ..., iϑn} be the skew ABC eigenvalues of

G⃗ with ϑ1≥ ϑ2 ≥ ... ≥ ϑn. Moreover Kn denotes the complete graph of order n
and G =

(
n
2

)
K2 stands for the vertex-disjoint union of n

2 copies of K2.

Theorem 2 ( [26]). If G is a graph of order n(≥ 2) with no isolated vertices with
maximum vertex degree ∆ and minimum vertex degree δ, then

n

2∆
≤ R−1 (G) ≤ n

2δ
, (1)

with equality if and only if G is regular.

Theorem 3 ( [19]). If G is a graph of order n with no isolated vertices, then

n

2 (n− 1)
≤ R−1 (G) ≤

⌊n
2

⌋
. (2)

Equality in lower bound holds if and only if G = Kn. Equality in upper bound holds
if and only if either (i) G =

(
n
2

)
K2 when n is even or (ii) G = K1,2∪ n−3

2 K2 when
n is odd.

Initially, we can give the following upper bound involving R−1 (G) and n for the
skew ABC energy of digraphs.

Theorem 4. If G⃗ is a digraph of order n(≥ 3) with no isolated vertices, then

EΩs

(
G⃗
)
≤
√
2n (n− 2R−1 (G)). (3)

with equality if |ϑi| = |ϑj | for all 1 ≤ i ̸= j ≤ n.

Proof. Applying Cauchy-Schwarz inequality and using Proposition 2 yields

EΩs

(
G⃗
)

=

n∑
i=1

|ϑi| ≤

√√√√ n∑
i=1

|ϑi|2
√
n (4)
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=
√

2n (n− 2R−1 (G)).

Equality case is obvious from the equality in (4). □

Using the lower bound of (1) in (3), we can obtain a new upper bound in terms
of n and ∆ as follows.

Corollary 1. If G⃗ is a digraph of order n(≥ 3) and ∆(≥ 1) is the maximum vertex
degree of the underlying graph G, then

EΩs

(
G⃗
)
≤ n

√
2

(
1− 1

∆

)
, (5)

with equality if and only if n is even and G⃗ =
(
n
2

)
K⃗2.

Proof. From (1) and (3), clearly we get EΩs

(
G⃗
)
≤
√

2n
(
n− n

∆

)
, so the proof is

obvious. We will focus on the equality case. Equality holds in (5) if and only if
equality holds in (4), namely |ϑi| = |ϑj | for all 1 ≤ i ̸= j ≤ n and G is regular. Thus

ϑ1=ϑ2 = ... = ϑn = 0 that is, Ωs

(
G⃗
)
= 0 and we have n is even and G⃗ =

(
n
2

)
K⃗2,

for an arbitrary orientation. □

The following bound presents a relationship between the skew ABC energy of a
digraph and ABC energy of complete graph Kn.

Corollary 2. If G⃗ is a digraph of order n(≥ 3) with no isolated vertices, then

EΩs

(
G⃗
)
≤
(

n

2
√
n− 1

)
EΩ (Kn) . (6)

Proof. If G = Kn, then Kn has two distinct ABC eigenvalues such that
√
2n− 4

of multiplicity 1 and −
√
2n−4
n−1 of multiplicity n− 1 (see Proposition 3.1, [5]). Then

EΩ (Kn) = 2
√
2n− 4. Using this fact with (2) and (3)

EΩs

(
G⃗
)

≤
√

2n (n− 2R−1 (G))

≤

√
2n

(
n2 − 2n

n− 1

)
=

n√
n− 1

√
2n− 4

=

(
n

2
√
n− 1

)
EΩ (Kn)

yields the result. □

The following theorem presents a new upper and lower bound in terms of det
(
Ωs

(
G⃗
))

,

R−1 (G) and n.
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Theorem 5. If G⃗ is a digraph of order n(≥ 3) with no isolated vertices and

p =det
(
Ωs

(
G⃗
))

, then√
2 (n− 2R−1 (G)) + n (n− 1) p

2
n ≤ EΩs

(
G⃗
)
≤
√
2 (n− 1) (n− 2R−1 (G)) + np

2
n ,

(7)

with equality if and only if n is even and G⃗ =
(
n
2

)
K⃗2.

Proof. Recall the arithmetic-geometric mean inequality in [18], where x1, x2, ..., xn

are non-negative numbers and

n

 1

n

n∑
j=1

xj −

 n∏
j=1

xj

 1
n

 ≤ n

n∑
j=1

xj −

 n∑
j=1

√
xj

2

(8)

≤ n (n− 1)

 1

n

n∑
j=1

xj −

 n∏
j=1

xj

 1
n

 ,

with equality if and only if x1 = x2 = ... = xn. Choosing xj = |ϑj |2 in (8) yields

nK ≤ n
n∑

j=1

|ϑj |2 −

(
n∑

j=1

|ϑj |

)2

≤ n (n− 1)K,

where K = 1
n

n∑
j=1

|ϑj |2 −

(
n∏

j=1

|ϑj |2
) 1

n

. Hence

nK ≤ 2n (n− 2R−1 (G))−
(
EΩs

(
G⃗
))2

≤ n (n− 1)K. (9)

From Proposition 2, we haveK = 1
n [2 (n− 2R−1 (G))]−p

2
n , where p = det

(
Ωs

(
G⃗
))

.

From the left hand side of (9), we obtain(
EΩs

(
G⃗
))2

≤ 2 (n− 1) (n− 2R−1 (G)) + np
2
n ,

i.e.,

EΩs

(
G⃗
)
≤
√

2 (n− 1) (n− 2R−1 (G)) + np
2
n .

From the right hand side of (9)

2n (n− 2R−1 (G))− n (n− 1)K ≤
(
EΩs

(
G⃗
))2

.

As n (n− 1)K = 2 (n− 1) (n− 2R−1 (G))− n (n− 1) p
2
n , we have

EΩs

(
G⃗
)

≥
√
2 (n− 2R−1 (G)) + n (n− 1) p

2
n .
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Note that if n is odd, then p = 0. Consequently, we have√
2 (n− 2R−1 (G)) ≤ EΩs

(
G⃗
)
≤
√

2 (n− 1) (n− 2R−1 (G)).

The equality holds in (7) if and only if |ϑ1|2 = |ϑ2|2 = ... = |ϑn|2 . Thus ϑ1=ϑ2 =

... = ϑn = 0. So, Ωs

(→
G
)
= 0 and we have n is even and

→
G =

(
n
2

)
K⃗2 for an arbitrary

orientation. □

Lemma 2 ( [10]). If x1, x2, ..., xn ≥ 0 and r1, r2, ..., rn ≥ 0 such that
n∑

j=1

rj = 1,

then
n∑

j=1

xjrj −
n∏

j=1

x
rj
j ≥ nr

 1

n

n∑
j=1

xj −
n∏

j=1

x
1
n
j

 , (10)

where r = min {r1, r2, ..., rn} . Equality holds if and only if x1 = x2 = ... = xn.

Finally, we give a new lower bound involving det
(
Ωs

(−→
G
))

, |ϑ1| and n.

Theorem 6. If G⃗ is a digraph of order n(≥ 3) with no isolated vertices and

p =det
(
Ωs

(
G⃗
))

, then

EΩs

(
G⃗
)
≥ |ϑ1|+ 2 (n− 1)

[
p

2n−1
2n(n−1)

|ϑ1|
1

2(n−1)

− 1

2
p

1
n

]
(11)

with equality if and only if n is even and G⃗ =
(
n
2

)
K⃗2.

Proof. Setting xj = |ϑj | for j = 1, 2, ..., n, r1 = 1
2n , rj = 2n−1

2n(n−1) for j = 2, ..., n

and r = 1
2n in (10), we obtain |ϑ1|

2n
+

2n− 1

2n (n− 1)

n∑
j=2

|ϑj |

− |ϑ1|
1
2n

n∏
j=2

|ϑj |
2n−1

2n(n−1)

≥ n
1

2n

 1

n

n∑
j=1

|ϑj | −
n∏

j=1

|ϑj |
1
n


=

1

2n
EΩs

(
G⃗
)
− 1

2
p

1
n .

Note that |ϑ1|
1
2n

n∏
j=2

|ϑj |
2n−1

2n(n−1) = |ϑ1|−
1

2(n−1)

n∏
j=1

|ϑj |
2n−1

2n(n−1) = p
2n−1

2n(n−1)

|ϑ1|
1

2(n−1)
and

n∑
j=2

|ϑj | = EΩs

(
G⃗
)
− |ϑ1| , thus

[
1

2n
− 2n− 1

2n (n− 1)

]
|ϑ1|+

[
2n− 1

2n (n− 1)
− 1

2n

]
EΩs

(
G⃗
)
≥ p

2n−1
2n(n−1)

|ϑ1|
1

2(n−1)

− 1

2
p

1
n ,
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then

− 1

2 (n− 1)
|ϑ1|+

1

2 (n− 1)
EΩs

(
G⃗
)
≥ p

2n−1
2n(n−1)

|ϑ1|
1

2(n−1)

− 1

2
p

1
n .

Hence, we have

EΩs

(
G⃗
)
≥ |ϑ1|+ 2 (n− 1)

[
p

2n−1
2n(n−1)

|ϑ1|
1

2(n−1)

− 1

2
p

1
n

]
.

If n is odd, then EΩs

(
G⃗
)
≥ |ϑ1| . The equality holds in (11) if and only if |ϑ1| =

|ϑ2|=...=|ϑn|, then ϑ1=ϑ2 = ... = ϑn = 0. So, we have p = 0 and Ωs

(
G⃗
)
= 0, that

is, n is even and G⃗ =
(
n
2

)
K⃗2 for an arbitrary orientation. □

Conclusion

In recent studies, the ABC matrix and ABC energy of graphs have introduced.
This paper expands these concepts to skew ABC matrix and skew ABC energy of
digraphs. The skew ABC matrix of a digraph is defined and its spectral features
are established. Further, some upper and lower bounds for the skew ABC energy
of digraphs are presented with extremal digraphs attaining these bounds.
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