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ABSTRACT

This paper has two goals; the first is to generalize results for the existence and nonexistence
of warped product submanifolds of almost Hermitian manifolds, accordingly a self-contained
reference of such submanifolds is offered to save efforts of other researchers, which is the second
goal. At the end of the paper a list of warped products is tabulated whether exist or not. Moreover,
a discrete example of CR-warped product submanifold in Kaehler manifold is constructed. For
further research direction, we addressed a couple of open problems arose from the results of this
paper.
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1. Introduction

Warped products have been playing some important roles in the theory of general relativity as they have
been providing the best mathematical models of our universe for now; that is, the warped product scheme was
successfully applied in general relativity and semi-Riemannian geometry in order to build basic cosmological
models for the universe. For instance, the Robertson-Walker spacetime, the Friedmann cosmological models
and the standard static spacetime are given as warped product manifolds. For more cosmological applications,
warped product manifolds provide excellent setting to model spacetime near black holes or bodies with large
gravitational force. For example, the relativistic model of the Schwarzschild spacetime that describes the outer
space around a massive star or a black hole admits a warped product construction [16].

In an attempt to construct manifolds of negative curvatures, R.L. Bishop and O’Neill [3] introduced the
notion of warped product manifolds as follows: Let N1 and N2 be two Riemannian manifolds with Riemannian
metrics gN1 and gN2 , respectively, and f > 0 a C∞ function on N1. Consider the product manifold N1 ×N2

with its projections π1 : N1 ×N2 7→ N1 and π2 : N1 ×N2 7→ N2. Then, the warped product M̃m = N1 ×f N2 is
the Riemannian manifold N1 ×N2 = (N1 ×N2, g̃) equipped with a Riemannian structure such that g̃ = gN1

+
f2gN2

.
A warped product manifold M̃m = N1 ×f N2 is said to be trivial if the warping function f is constant. For a

nontrivial warped product N1 ×f N2, we denote by D1 and D2 the distributions given by the vectors tangent
to leaves and fibers, respectively. Thus, D1 is obtained from tangent vectors of N1 via the horizontal lift and D2

is obtained by tangent vectors of N2 via the vertical lift.
Since our goal to search about existence and nonexistence of warped product submanifolds in almost

Hermitian manifolds, we hypothesize the following two problems. The first is for single warped products

Problem 1. Prove existence or nonexistence of single warped product submanifolds of almost Hermitian manifolds.

The second problem is for doubly warped products

Problem 2. Prove existence or nonexistence of doubly warped product submanifolds of almost Hermitian manifolds.
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The present paper is organized as follows: After the introduction, we present in Section 2, the preliminaries,
basic definitions and formulas. In Section 3, we provide basic results, which are necessary and useful to the
next section. In Section 4, we generalize theorems for existence and nonexistence warped product submanifolds
for single and doubly warped product submanifolds in almost hermitian manifolds. In Section 5, we discuss
the CR-warped product submaifolds and generic warped products in Kaehler manifolds and construct an
example and a table summarizing the main results of the paper. In the final section, we address two open
problems related to the obtained results in this paper.

2. Preliminaries

At first, let us recall the following important two facts regarding Riemannian submanifolds, [10].

Definition 2.1. Let Mn and M̃m be differentiable manifolds. A differentiable mapping ϕ : Mn −→ M̃m is said
to be an immersion if dϕx : TxM

n → Tϕ(x)M̃
m is injective for all x ∈Mn. If, in addition, ϕ is a homeomorphism

onto ϕ(Mn) ⊂ M̃m, where ϕ(Mn) has the subspace topology induced from M̃m, we say that ϕ is an embedding.
If Mn ⊂ M̃m and the inclusion i : Mn ⊂ M̃m is an embedding, we say that Mn is a submanifold of M̃m.

It can be seen that if ϕ : Mn → M̃m is an immersion, then n ≤ m; the differencem− n is called the codimension
of the immersion ϕ.

For most local questions of geometry, it is the same to work with either immersions or embeddings. This
comes from the following proposition which shows that every immersion is locally (in a certain sense) an
embedding.

Proposition 2.1. Let ϕ : Mn −→ M̃m, n ≤ m, be an immersion of the differentiable manifold Mn into the differentiable
manifold M̃m. For every point x ∈Mn, there exists a neighborhood u of x such that the restriction ϕ|u→ M̃m is an
embedding.

Now, we turn our attention to the differential geometry of the submanifold theory. First, let Mn be n-
dimensional Riemannian manifold isometrically immersed in an m-dimensional Riemannian manifold M̃m.
Since we are dealing with a local study, then, by Proposition 2.1, we may assume that Mn is embedded in M̃m.
On this infinitesimal scale, Definition 2.1 guarantees thatMn is a Riemannian submanifold of some nearby points
in M̃m with induced Riemannian metric g. Then, Gauss and Weingarten formulas are, respectively, given by

∇̃XY = ∇XY + h(X,Y ) (2.1)

and
∇̃Xζ = −AζX +∇⊥

Xζ (2.2)

for all X,Y ∈ Γ(TMn) and ζ ∈ Γ(T⊥Mn), where ∇̃ and ∇ denote respectively the Levi-Civita and the induced
Levi-Civita connections on M̃m and Mn, and Γ(TMn) is the module of differentiable sections of the vector
bundle TMn. ∇⊥ is the normal connection acting on the normal bundle T⊥Mn.

Here, g denotes the induced Riemannian metric from g̃ on Mn. For simplicity’s sake, the inner products which
are carried by g, g̃ or any other induced Riemannian metric are performed via g. However, most of the inner
products which will be applied in this thesis are equipped with g, other situations are rarely considered.

Here, it is well-known that the second fundamental form h and the shape operator Aζ of Mn are related by

g(AζX,Y ) = g(h(X,Y ), ζ) (2.3)

for all X,Y ∈ Γ(TMn) and ζ ∈ Γ(T⊥Mn), [2], [16].
Geometrically, Mn is called a totally geodesic submanifold in M̃m if h vanishes identically. Particularly, the

relative null space, Nx, of the submanifold Mn in the Riemannian manifold M̃m is defined at a point x ∈Mn by
[5] as

Nx = {X ∈ TxMn : h(X,Y ) = 0 ∀ Y ∈ TxMn}. (2.4)

In a different line of thought, and for any X ∈ Γ(TMn), ζ ∈ Γ(T⊥Mn) and a (1, 1) tensor field ψ on M̃m, we
write

ψX = PX + FX, (2.5)
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and
ψN = tζ + fζ, (2.6)

where PX , tζ are the tangential components and FX , fζ are the normal components of ψX and ψζ,
respectively, [4]. In the sake of following the common terminology, the tensor field ψ is replaced by J in
almost Hermitian manifolds. However, the covariant derivatives of the tensor fields ψ, P and F are respectively
defined as [2]

(∇̃Xψ)Y = ∇̃XψY − ψ∇̃XY, (2.7)

(∇̃XP )Y = ∇̃XPY − P ∇̃XY (2.8)

and
(∇̃XF )Y = ∇⊥

XFY − F ∇̃XY. (2.9)

Likewise, we consider a local field of orthonormal frames {e1, · · · , en, en+1, · · · , em} on M̃m, such that,
restricted to Mn, {e1, · · · , en} are tangent to Mn and {en+1, · · · , em} are normal to Mn. Then, the mean curvature
vector ~H(x) is introduced as [2], [16]

~H(x) =
1

n

n∑
i=1

h(ei, ei), (2.10)

On one hand, we say that Mn is a minimal submanifold of M̃m if ~H = 0. On the other hand, one may deduce
that Mn is totally umbilical in M̃m if and only if h(X,Y ) = g(X,Y ) ~H , for any X, Y ∈ Γ(TMn) [8], where H and
h are the mean curvature vector and the second fundamental form, respectively [7].

Let M̃2m be a real C∞ manifold endowed with an almost complex structure J , i.e. J is a tensor field of type
(1,1) such that, at every point x ∈ M̃2m we have J2 = −I . Then, the pair (M̃2m, J) is called an almost complex
manifold (see, for example [2], [12]). In addition, if the almost complex manifold (M̃2m, J) is furnished with a
compatible Riemannian metric g̃, i.e., g̃(JX, JY ) = g̃(X,Y ) for any X, Y ∈ Γ(TM̃2m), then (M̃2m, J, g̃) is called
an almost Hermitian manifold.

It is known that the vanishing of the Nijenhuis tensor on almost Hermitian manifolds gives rise to a particular
special class of almost Hermitian manifolds called Hermitian manifolds. The Hermitian manifold (M̃2m, J, g̃)

allows one to endow M̃2m with an alternating 2-form w given by

w(X,Y ) = g̃(X, JY )

for any X, Y ∈ Γ(TM̃2m). This 2-form is called the associated Kaehler form. Thus, g̃ now is called a Kaehler
metric. In particular, (M̃2m, J, g̃) becomes a Kaehler manifold if w is closed, i.e., dw = 0. Equivalently, we say that
a Hermitian manifold (M̃2m, J, g̃) is a Kaehlerian manifold if and only if the complex structure J is parallel
with respect to ∇̃, i.e., whenever the following condition is preserved

(∇̃XJ)Y = 0 (2.11)

for any X, Y ∈ Γ(TM̃2m).
In a natural way, it is possible to weaken the condition in (2.11) by

(∇̃XJ)Y + (∇̃Y J)X = 0 (2.12)

for each X, Y ∈ Γ(TM̃2m). Every almost Hermitian manifold satisfying (2.12) is called nearly Kaehler manifold
[2].

In [1], Bejancu initiated the study of the CR-submanifolds of almost Hermitian manifolds by generalizing
complex (holomorphic) and totally real submanifolds. A submanifold Mn of an almost Hermitian manifold
M̃2m is said to be a CR-submanifold if there exists on Mn a differentiable holomorphic distribution DT whose
orthogonal complementary distribution D⊥ is totally real i.e., JDT ⊆ TMn and JD⊥ ⊆ T⊥Mn.

Denote by µ the maximal J-invariant subbundle of the normal bundle T⊥Mn. Then it is well-known that the
normal bundle T⊥Mn admits the following decomposition

T⊥Mn = JD⊥ ⊕ µ. (2.13)

On a Kaehler manifold M̃2m, the warped product NT ×f N⊥ is called a CR-warped product, if the
submanifolds NT and N⊥ are integral manifolds of DT and D⊥, respectively.

363 www.iejgeo.com

http://www.iej.geo.com


Existence of Warped Product Submanifolds of Almost Hermitian Manifolds

3. Basic Lemmas

To relate the calculus of N1 ×N2 to that of its factors the crucial notion of lifting is introduced as follows. If
f ∈ F(N1), the lift of f toN1 ×N2 is f̃ = f ◦ π1 ∈ F(N1 ×N2). IfXp ∈ Tp(N1) and q ∈ N2, then the liftX(p,q) ofXp

to (p, q) is the unique vector in T(p,q)(N1) such that dπ1(X(p,q)) = Xp. IfX ∈ Γ(TN1) the lift ofX toN1 ×N2 is the
vector field X whose value at each (p, q) is the lift of Xp to (p, q). The set of all such horizontal lifts X is denoted
by L(N1). Functions, tangent vectors and vector fields on N2 are lifted to N1 ×N2 in the same way using the
projection π2. Note that L(N1) and symmetrically the vertical lifts L(N2) are vector subspaces of Γ

(
T (N1 ×N2)

)
,

[16].
We recall the following two general results for warped products [16].

Proposition 3.1. On M̃m = N1 ×f N2, if X, Y ∈ L(N1) and Z, W ∈ L(N2), then

(i) ∇̃XY ∈ L(N1) is the lift of ∇̃XY on N1.
(ii) ∇̃XZ = ∇̃ZX = (Xf/f)Z.

(iii) (∇̃ZW )⊥ = hN2
(Z,W ) = −

(
gN2

(Z,W )/f
)
∇(f).

(iv) (∇̃ZW )T ∈ L(N2) is the lift of ∇N2

Z W on N2,

where gN2 , hN2 and ∇N2 are, respectively, the induced Riemannian metric on N2, the second fundamental form of N2 as
a submanifold of M̃m and the induced Levi-Civita connection on N2.

It is obvious that, the above proposition leads to the following geometric conclusion.

Corollary 3.1. The leaves N1 × q of a warped product are totally geodesic; the fibers p×N2 are totally umbilical.

Clearly, the totally geodesy of the leaves follows from (i), while (iii) implies that the fibers are totally
umbilical in M̃m. It is significant to say that, this corollary is one of the key ingredients of this work. Since
all our considered submanifolds are warped products.

Here, it is well-known that the second fundamental form σ and the shape operator Aξ of Mn are related by

g(AξX,Y ) = g(σ(X,Y ), ξ) (3.1)

for all X,Y ∈ Γ(TMn) and ξ ∈ Γ(T⊥Mn) (for instance, see [2], [16]).

4. Existence and Nonexistence of Warped Product Submanifolds in Almost Hermitian
Manifolds

This section has two significant purposes. The first one is to provide special case solutions for Problems 1
and 2, that is to see whether a warped product exists or not in almost Hermitian manifolds. In the existence
case, we prove some preparatory characteristic results which are necessary for subsequent sections, and this is
the second purpose. Some new examples are given to assert the existence of some important warped product
manifolds.

For a submanifold Mn in an almost Hermitian manifold M̃2m let PXY denote the tangential component and
QXY the normal one of (∇̃XJ)Y in M̃2m, where X, Y ∈ Γ(TMn).

In order to make it a self-contained reference of warped product submanifolds for immersibility and
nonimmersibility problems, we hypothesize most of our statements in the current and the next section for
almost Hermitian manifolds, and for warped product submanifolds of type NT ×f N2, where NT and N are
holomorphic and Riemannian submanifolds. Meaning that, a lot of particular case results are included in the
theorems of the next section.

We begin by considering a warped product submanifold in almost Hermitian manifolds such that one of the
factors is holomorphic.

Theorem 4.1. Every warped product submanifold Mn = N ×f NT in almost Hermitian manifolds M̃2m possesses the
following

(i) g(PXZ,W ) = 0;

The operators ⊥, T and ∇(f) refer to the normal projection, the tangential projection and the gradient of f , respectively.
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(ii) g(PZX, JZ)− g(PJZX,Z) = −2(X ln f)||Z||2,

for every vector fieldsX ∈ Γ(TN) andZ, W ∈ Γ(TNT ) such thatN andNT are Riemannian and invariant submanifolds
of M̃2m, respectively.

Proof. Taking X and Z as in hypothesis, it is clear that

(∇̃XJ)Z = ∇̃XJZ − J∇̃XZ.

Since Z ∈ Γ(TNT ), Proposition 3.1 (ii) implies that ∇XJZ = J∇XZ = (X ln f)JZ. Thus, making use of (2.1),
we get

(∇̃XJ)Z = h(X, JZ)− Jh(X,Z).

Taking the inner product with W , we get (i). For the second part, and by taking advantage of (2.1), (2.2) and
Proposition 3.1 (ii), we can write

(∇̃ZJ)X + (∇̃XJ)Z = (PX ln f)Z + h(PX,Z)−AFXZ

+∇⊥
ZFX − (X ln f)JZ − 2Jh(X,Z) + h(X, JZ).

Taking the inner product with JZ in the above equation gives

g(PZX + PXZ, JZ) = −g(h(Z, JZ), FX)− (X ln f)||Z||2.

If we substitute JZ for Z in the above equation, then we have

−g(PJZX + PXJZ,Z) = g(h(Z, JZ), FX)− (X ln f)||Z||2.

By these two equations, we get

g(PZX + PXZ, JZ)− g(PJZX + PXJZ,Z) = −2(X ln f)||Z||2.

Finally, we may apply statement (i) in the above equation to get (ii).

In particular, if we assume the ambient manifold M̃2m to be either Kaehler or nearly Kaehler in the theorem
above, the nonexistence of proper warped products of the type N ×f NT immediately follows. Using (2.12) in
statement (ii) gives

g(PXZ, JZ)− g(PXJZ,Z) = 2(X ln f)||Z||2,

if one applies statement (i) on the left hand side of the above equation, he automatically gets X ln f = 0,
for every X ∈ Γ(TN). Obviously, this conclusion is true for Kaehler manifolds also. Hence, we can state the
following

Corollary 4.1. Warped product submanifolds with holomorphic second factor are Riemannian products, in both Kaehler
and nearly Kaehler manifolds.

It is worth pointing out that, the previous corollary generalizes many nonexistence results in this field, (see,
for example [6], [11] and [17]).

By reversing the two factors of the warped product in Theorem 4.1, we present the following corresponding
theorem for doubly warped product submanifolds.

Theorem 4.2. Let Mn =f2 NT ×f1 N be a doubly warped product submanifold in an almost Hermitian manifold M̃2m.
Then,

g(PXZ, JX)− g(PJXZ,X) = −2(Z ln f2)||X||2,

for vector fields X ∈ Γ(TNT ) and Z ∈ Γ(TN), where N and NT are Riemannian and invariant submanifolds of M̃2m,
respectively.

Proof. Taking X and Z as in hypothesis. By (??), (2.1) and (2.2), it is straightforward to carry out the following
calculations

(∇̃XJ)Z = (X ln f1)PZ + (PZ ln f2)X + h(X,PZ)−AFZX

+∇⊥
XFZ − (X ln f1)JZ − (Z ln f2)JX − Jh(X,Z).
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If we take the inner product with JX in the above equation, then

g(PXZ, JX) = −g(h(X, JX), FZ)− (Z ln f2)||X||2.

By replacing JX with X in the above equation we deduce that

−g(PJXZ,X) = g(h(X, JX), FZ)− (Z ln f2)||X||2.

Thus, the assertion follows from the above two equations.

The following corollary can be directly obtained from (2.11) and Theorem 4.2.

Corollary 4.2. A doubly warped product submanifold with holomorphic first factor is trivial in Kaehler manifolds.

Combining Corollaries 4.1 and 4.2 together, one can directly get the next prominent result.

Corollary 4.3. In Kaehler manifolds, there is no proper doubly warped product submanifold such that one of its factors
is holomorphic.

For doubly warped product submanifolds with one of the factors holomorphic, we have already had a
negative answer from the preceding corollary. However, the situation is not the same with (singly) warped
product submanifolds of holomorphic first factor, and thus we present one of the basic characteristic theorems
for subsequent chapters.

Theorem 4.3. Let Mn = NT ×f N be a warped product in an almost Hermitian manifold M̃2m. Then, the following
hold:

(i) g(PXZ, Y ) = −g(h(X,Y ), FZ);

(ii) g(PZX,Z) = (JX ln f)||Z||2 + g(h(X,Z), FZ);

(iii) g(PZX,Y ) = 0;

(iv) g(PZX,W ) + g(PWX,Z) = 2(JX ln f)g(Z,W )
+ g(h(X,Z), FW ) + g(h(X,W ), FZ);

(v) g(PZX − PXZ,W )− g(PWX,Z) = 2(X ln f)g(Z,PW );

(vi) g(PXZ,W ) + g(PXW,Z) = 0;

(vii) g(QXX, Jζ) + g(QJXJX, Jζ) = −g(h(X,X), ζ)− g(h(JX, JX), ζ),

for any vector fields X, Y ∈ Γ(TNT ), Z, W ∈ Γ(TN) and ζ ∈ Γ(ν).

Proof. For X and Z as above, we have

(∇̃XJ)Z = ∇̃XJZ − J∇̃XZ. (4.1)

Equivalently,
(∇̃XJ)Z = ∇̃XPZ + ∇̃XFZ − J∇̃XZ. (4.2)

Taking the inner product with Y in the above equation gives (i) immediately. Now, by reversing the roles of X
and Z in (4.1), it follows

(∇̃ZJ)X = ∇̃ZJX − J∇̃ZX. (4.3)

Taking the inner product with Z in the above equation implies (ii). Subtracting the equation above from (4.2),
taking into consideration that h is a symmetric form and ∇XZ = ∇ZX , we immediately get

(∇̃XJ)Z − (∇̃ZJ)X = ∇̃XPZ + ∇̃XFZ − ∇̃ZJX.

Taking the inner product with JY in the above equation yields

g(PXZ, JY )− g(PZX, JY ) = −g(h(X, JY ), FZ).
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Replacing JY by Y in the above equation, gives

g(PZX,Y )− g(PXZ, Y ) = g(h(X,Y ), FZ).

Applying statement (i) in the above equation proves statement (iii).
Taking the inner product with W in (4.3), we will obtain

g(PZX,W ) = (JX ln f)g(Z,W ) + (X ln f)g(Z,PW ) + g(h(X,Z), FW ). (4.4)

By interchanging the rules of Z and W in the above equation, and due to the fact that g(Z,PW ) is skew-
symmetric with respect to Z and W , the following holds

g(PWX,Z) = (JX ln f)g(Z,W )− (X ln f)g(Z,PW ) + g(h(X,W ), FZ). (4.5)

If we add (4.4) and (4.5) together, then (iv) follows. While by subtracting (4.5) from (4.4) we immediately reach

g(PZX,W )− g(PWX,Z) = 2(X ln f)g(Z,PW ) + g(h(X,Z), FW )− g(h(X,W ), FZ). (4.6)

Moreover, one can take the inner product in (4.2) with W to obtain

g(PXZ,W ) = g(h(X,Z), FW )− g(h(X,W ), FZ). (4.7)

Hence, if we subtract (4.7) from (4.6), we get (v). On the other hand, by using the polarization identity of Z
and W in (v), we obtain

g(PWX − PXW,Z)− g(PZX,W ) = −2(X ln f)g(Z,PW ).

By using statement (v) and the above equation, statement (vi) follows directly.
For (vii), notice that

(∇̃XJ)X = ∇̃XJX − J∇̃XX.

First, we take the inner product in the above equation with Jζ to get

g(QXX,Jζ) = g(h(JX,X), Jζ)− g(h(X,X), ζ).

After that, we replace JX by X in the above equation to derive

g(QJXJX, Jζ) = −g(h(JX,X), Jζ)− g(h(JX, JX), ζ).

Hence (vii) can be obtained by adding the above two equations. This completes the proof.

In [1], Bejancu initiated the study of the CR-submanifolds of almost Hermitian manifolds by generalizing
invariant (holomorphic) and anti-invariant (totally real) submanifolds. He called a submanifold Mn of an
almost Hermitian manifold M̃2m a CR-submanifold if there exists on Mn a differentiable holomorphic
distribution DT whose orthogonal complementary distribution D⊥ is totally real. In other words, Mn is said
to be a CR-submanifold if it is endowed with a pair of orthogonal complementary distributions (DT , D⊥),
satisfying the following conditions:

(i) TMn = DT ⊕D⊥

(ii) DT is a holomorphic distribution, i.e., JDT ⊆ TMn

(iii) D⊥ is a totally real distribution, i.e., JD⊥ ⊆ T⊥Mn.

Denote by ν the maximal J-invariant subbundle of the normal bundle T⊥Mn. Then it is well-known that the
normal bundle T⊥Mn admits the following decomposition

T⊥Mn = FD⊥ ⊕ ν. (4.8)

In Kaehler manifolds M̃2m, the warped product NT ×f N⊥ is called a CR-warped product submanifold, if
the submanifolds NT and N⊥ are integral manifolds of DT and D⊥, respectively. The following prominent
nonexistence fact generalizes many nonexistence results in Kaehler manifolds, (see, for example [11] and [17]).
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Corollary 4.4. In Kaehler manifolds, there is no warped product of type NT ×f N other than CR-warped products.

Proof. We want to show that N is a totally real submanifold when the first factor is holomorphic. Equivalently,
it suffices to prove that PZ = 0 for every Z ∈ Γ(TN). Evidently, using (2.11) in Theorem 4.3 (v), we deduce that
X ln f = 0 or g(PZ,W ) = 0, for arbitrary vector fields Z and W tangent to the second factor. This implies either
NT ×f N is a Riemannian product or PZ = 0 for every Z ∈ Γ(TN). Hence if the second factor is not totally real
submanifold, then NT ×f N is trivial.

In Kaehler manifolds, a characterization theorem for the CR-warped product submanifold of the type
NT ×f N⊥ is proved in [6]. Here, we construct a concrete example asserting the existence of such warped
product submanifold.

Example 4.1. Let R6 be equipped with the canonical complex structure J , with its Cartesian coordinates
(x1, · · · , x6). Then a 3-dimensional submanifold M3 of R6 is given by

x1 = t cos θ, x2 = s cos θ, x5 = t sin θ, x6 = s sin θ, x3 = x4 = 0.

It is clear that M3 is well-defined with a tangent bundle TM3 spanned by Z1, Z2 and Z3, such that

Z1 = cos θ
∂

∂x1
+ sin θ

∂

∂x5
, Z2 = cos θ

∂

∂x2
+ sin θ

∂

∂x6
,

Z3 = −t sin θ
∂

∂x1
− s sin θ

∂

∂x2
+ t cos θ

∂

∂x5
+ s cos θ

∂

∂x6
.

Therefore, DT = span {Z1, Z2}, and D⊥ = span {Z3} are holomorphic and totally real distributions,
respectively. Thus, M3 is a CR-submanifold of R6. Since it is not difficult to see that DT is integrable, then
we can denote the integral manifolds of DT and D⊥ respectively by NT and N⊥. Based on the above tangent
bundle, the metric tensor g of M3 is expressed by

g = 2dt2 + 2ds2 + (t2 + s2)dθ2

= gNT
+ (t2 + s2)gN⊥ .

Obviously, g is a warped metric tensor on M3. Consequently, M3 is a CR-warped product submanifold of type
NT ×f N⊥ in R6, with warping function f =

√
t2 + s2. By means of Gauss formula, we obtain that

h(Z1, Z1) = h(Z2, Z2) = 0.

This means that M is a DT -minimal warped product in R6.

The following result describes locally a relation of the coefficients of the second fundamental form.

Corollary 4.5. Let Mn = NT ×f N be a warped product submanifold in Kaehler or in nearly Kaehler manifolds M̃2m.
Then, we have

n2∑
A,B=1
A 6=B

g(h(X, eA), FeB) = 0,

where e1, · · · , en2
form a local orthonormal frame fields of Γ(TN), and X is any vector field tangent to the first factor.

Proof. Using (2.11) or (2.12) with parts (ii) and (v) of Theorem 4.3 gives

−2(JX ln f)g(Z,W ) = g(h(X,Z), FW ) + g(h(X,W ), FZ),

for X ∈ Γ(TNT ) and Z, W ∈ Γ(TN). Take any two distinct orthogonal unit vectors, say ev and eu, from the
above frame. Let Z = ev and W = eu in the above equation. Then g(h(X, ev), Feu) = −g(h(X, eu), F ev), which
gives the result.

It is reasonable to include the following key result at the end of this section, which plays fascinating roles in
subsequent chapters.

Proposition 4.1. Let Mn = NT ×f N be isometrically immersed in nearly Kaehler manifolds. Then, the following are
fulfilled:
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(i) g(h(X,Y ), FZ) = 0;

(ii) g(h(X,Z), FZ) = −(JX ln f)||Z||2;

(iii) g(h(X,X), ζ) + g(h(JX, JX), ζ) = 0;

(iv) g(h(X,Z), FW ) = 1
3 (X ln f)g(PZ,W )− (JX ln f)g(Z,W ),

where the vector fields X, Y are tangent to the first factor, Z and W are tangent to the second factor and ζ is tangent to
the normal subbundle ν.
Proof. In virtue of (2.12), the first statement follows directly by using parts (i) and (iii) of Theorem 4.3. The
second statement is obtained from Theorem4.3 (vi), (ii). The third statement is clear from Theorem 4.3 (vii)
and (2.12). For the last statement, we substitute Z +W instead of Z in statement (ii) above, hence we get

g(h(X,Z), FW ) + g(h(X,W ), FZ) = −2(JX ln f)g(Z,W ), (4.9)

for X, Z and W as in the statement above.
Now, making use of (2.1), (2.2), (3.1), (2.12) and Proposition 3.1 (ii), we carry out the following calculations

g(h(X,Z), FW ) = g(h(X,Z), JW ) = −g(Jh(X,Z),W ) = g(J(∇XZ − ∇̃XZ),W )

= (X ln f)g(PZ,W )− g(J∇̃XZ,W )

= (X ln f)g(PZ,W ) + g((∇̃XJ)Z,W )− g(∇̃XJZ,W )

= (X ln f)g(PZ,W )− g((∇̃ZJ)X,W )− g(∇̃XPZ,W )− g(∇̃XFZ,W )

= (X ln f)g(PZ,W ) + g(J∇̃ZX)− g(∇̃ZJX,W )− (X ln f)g(PZ,W ) + g(AFZX,W )

= g(J∇ZX,W ) + g(Jh(X,Z),W )− (JX ln f)g(Z,W ) + g(h(X,W ), FZ)

= (X ln f)g(PZ,W )− g(h(X,Z), FW )− (JX ln f)g(Z,W ) + g(h(X,W ), FZ).

This gives
2g(h(X,Z), FW )− g(h(X,W ), FZ) = (X ln f)g(PZ,W )− (JX ln f)g(Z,W ). (4.10)

Thus, combining (4.9) and (4.10) together gives statement (iv) directly, which completes the proof.

In what follows we summarize the immersibility and nonimmersibility cases of Kaehler and nearly Kaehler
manifolds according to the preceding results.

Warped Product Submanifold Kaehler Nearly Kaehler

N⊥ ×f NT X X
NT ×f N⊥ X X
Nθ ×f NT X X
NT ×f Nθ X ?
N ×f NT X X
NT ×f N X ?
N⊥ ×f Nθ X ?
Nθ ×f N⊥ X X

Table 1. Existence and nonexistence of proper warped product submanifolds in Kaehler and nearly Kaehler
manifolds.

5. Research problems based on The Results of Previous Sections

Due to the results of this paper, we hypothesize a pair of open problems.
Firstly,

Problem 3. Can we prove the existence or the nonexistence of semi-slant warped product submanifolds of the type
NT ×f Nθ in nearly Kaehler manifold as an ambient manifold.

Secondly, we ask:

Problem 4. Can we prove the existence or the nonexistence of generic warped product submanifolds of the typeNT ×f N
in nearly Kaehler manifold as an ambient manifold.
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