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Abstract 

The abundance of the IoT devices surrounding us brings new opportunities and challenges. IoT technology enables remote monitoring 

and control of cyber-physical systems on a global scale. One key aspect of IoT technology is the security which is usually neglected 

by manufacturers. Because of IoT based security breaches, IoT devices need cryptographic functions to provide confidentiality, 

integrity and authentication capabilities in modern applications. However, the limited computational power available in the processors 

used in IoT systems imposes the development and use of hardware peripherals dedicated for performing cryptographic operations. 

One of the most popular cryptographic functions used in the IoT applications is the secure hash algorithms. They are extensively used 

for data integrity and authentication applications. In this work, we have designed, verified, and implemented a hardware IP core of the 

SHA-384 algorithm. In addition, we have also integrated the SHA-384 hardware module with a synthesizable processor as an AXI4 

peripheral to enable in-application testing using custom software. Our design can operate up to 170 MHz and occupies only 982 CLB 

slices and one BRAM on a Xilinx Artix-7 FPGA device. The estimated total power consumption is 223 mW when the module is 

integrated with a minimal configuration Microblaze processor system.   
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Nesnelerin İnterneti Uygulamaları İçin Bir SHA-384 Hızlandırıcısının 

FPGA Donanım Gerçeklemesi 

Öz 

Çevremizdeki IoT cihazlarının bolluğu yeni fırsatları ve zorlukları getiriyor. IoT teknolojisi, siber-fiziksel sistemlerin küresel ölçekte 

uzaktan izlenmesini ve kontrolünü sağlamaktadır. IoT teknolojisinin önemli bir yönü, genellikle üreticiler tarafından ihmal edilen 

güvenliktir. güvenlik ihlalleri nedeniyle IoT cihazları, modern uygulamalarda gizlilik, bütünlük ve kimlik doğrulama yetenekleri 

sağlamak için kriptografik işlevlere ihtiyaç duyar. Bununla birlikte, IoT sistemlerinde kullanılan işlemcilerin sınırlı hesaplama gücü, 

kriptografik işlemleri gerçekleştirmek için adanmış donanım çevre birimlerinin geliştirilmesini ve kullanılmasını zorunlu kılar. IoT 

uygulamalarında kullanılan en popüler kriptografik işlevlerden biri güvenli özet algoritmalarıdır. Veri bütünlüğü ve kimlik doğrulama 

uygulamaları için yaygın olarak kullanılırlar. Bu çalışmada, SHA-384 algoritmasını bir donanım çekirdeği şeklinde tasarladık, 

doğruladık ve gerçekledik. Ek olarak, özel yazılım kullanarak uygulama içi testler yapabilmek için SHA-384 donanım modülünü bir 

AXI4 çevre birimi olarak sentezlenebilir bir işlemci ile entegre ettik. Tasarımımız 170 MHz'e kadar çalışabilmektedir ve bir Xilinx 

Artix-7 FPGA tümleşik devresinde yalnızca 982 CLB dilimi ve bir BRAM kaplamaktadır. Modül minimum konfigürasyonlu 

Microblaze işlemci sistemiyle entegre edildiğinde tahmini olarak toplam 223 mW güç tüketmektedir. 
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1. Introduction 

The rise of the Internet-of-Things (IoT) in the last decade 

has enabled many beneficial applications that yield new 

opportunities and challenges. IoT technology allows remote 

monitoring, control and micro-management of cyber-physical 

systems on a global scale. Future projections predict that the 

number of connected devices will be measured in billions and 

the economic impact of the IoT will be significant as presented 

in Figure 1 [1]. Accordingly, security became a critical aspect of 

the IoT technology. Unfortunately, it is usually overlooked in the 

product development cycle. As a result of the factors such as 

additional development costs, time-to-market push and lack of 

vision, IoT device manufacturers neglect the security 

requirements which creates the Achille’s heel and paves the way 

for potential security breaches and hazards [2]. Considering 

security at the beginning of the design stage can save time and 

mitigate later corrective efforts. Additionally, secure-by-design 

approach can protect IoT companies against financial and 

reputation losses of the unpredictable future.  

 

Figure 1. Global future projection for the deployed IoT devices 

toward 2025 [1]. 

 

Forward-looking security provisions impose the use of 

cryptography due to the raised risks associated with the ever-

increasing connectivity of IoT devices. Cryptographic primitives 

and algorithms provide the methods for confidentiality, data 

integrity and authentication for communicating parties. 

However, the computational requirements of cryptographic 

algorithms still pose a problem for the cost-sensitive lightweight 

IoT systems. The low-cost processors used in such systems 

usually have confined computational power and performance of 

the cryptographic algorithms implemented in software is 

mediocre. Moreover, cryptographic software will consume the 

limited codespace that is mainly reserved for the IoT application 

of interest. Conventional approach is to use dedicated 

cryptographic hardware peripherals to aid the microprocessor in 

performing information security related tasks. This not only 

offloads the CPU but also provide additional security at the 

hardware level.  

In IoT network communication, hash based message 

authentication codes (HMACs) are used for message 

authentication and/or integrity checking [3]. Although block 

ciphers can be used, hash functions are more preferred in 

practice, as they are easier to compute and flexible enough to be 

used globally without any export restrictions [3]. Thus, 

cryptographic strength of the HMAC depends heavily on the 

underlying hash function's cryptographic strength, the size of its 

hash output, and the size and randomness quality of the key 

used. The use of hash-based message authentication codes has 

been standardized and adopted to many popular communication 

protocols [4]. Today, hash-based message authentication codes 

are widely used within the SSH, TLS and IPSEC protocols. 

Consequently, it is always necessary to compute the hashes of 

the data to be transmitted or received in an IoT device and this 

can create a computational performance bottleneck for the local 

processor. Any cryptographic hash function, such as SHA-1, 

SHA-2 or SHA-3 can be used in the calculation of a hash-based 

message authentication code [5]. Secure hash functions are free 

of collisions and the generated outputs are unique and 

unparalleled for every single data input. Authentication and 

integrity are two of the essences needed to build secure network 

systems, and SHA algorithms provide both. SHA2 replaced 

SHA1 after the success of an attack and it has been further 

superceded by SHA3 as an upgrade [6,7]. However, SHA2 still 

remains to be the most widely deployed and used secure hash 

function. The SSL/TLS certificates today use 384-bit SHA2 

(SHA-384) digests to ensure security for internet communi-

cation. 

In this work, we present the hardware design of SHA-384 

algorithm as an IP core that can be wrapped as a peripheral and 

integrated with a processor that targets lightweight and cost-

sensitive IoT applications. Our key contribution is the 

development of a small-footprint SHA-384 hardware module 

that provides high performance in a small footprint. The paper is 

organized as follows: In Section 2, we briefly introduce the 

SHA-384 algorithm and its process flow. Section 3 provides the 

details of platform used for the development of the IP core along 

with functional verification and hardware in the loop validation 

of the proposed design. Section 4 discusses the evaluation results 

and marks future directions.  

2. SHA-384 Secure Hash Algorithm 

Overview 

Workflow of the SHA-384 algorithm is based on operations 

such as message padding, parsing and one way hash functions as 

presented in Figure 2. The listed steps below briefly explain how 

SHA-384 algorithm performs pre-processing, and how the hash 

value is calculated by using the padding, parsing and 

compressing functions according to [5]: 

1. Padding the message (To make sure that the padded 

message is a multiple of 1024 bits). 

2. Parsing the message (The massage and its padding are 

parsed into N 1024-bit blocks). 

3. Setting the initial hash value (Consists of eight 64-bit 

words in hexadecimal format). 

An overview of the algorithmic flow of the SHA-384 is 

shown in Figure 2. At the beginning, the message is divided into 

N-blocks, each of which is comprised of 1024 bits. The initial 

hash value (H0) is assigned at first, before any operation. After 

the initialization process the successive hash values are 

computed sequentially, one block at a time, such that every 

calculated hash value is transferred to the next block. The final 

hash code of the message is determined after the computation of 

the N-th message block and set as the final output [5].  
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Figure 2. Algorithmic process flow of the SHA-384. 

3. Hardware Implementation of the SHA-

384 Secure Hash Algorithm  

3.1. Design of the SHA-384 Secure Hash Algorithm 

IP Core 

The reconfigurability and parallelization features of the field 

programmable gate arrays (FPGAs) render them as convenient 

platforms for hardware prototyping of algorithms. We used an 

FPGA development board that has a Xilinx Artix 7 family device 

(XC7A35T-1CPG236C) to design and implement the SHA-384 

secure hash algorithm IP core. SHA-384 is primarily based on 

scarmbling the input with some predefined constants, then 

computing the hash values through corresponding special 

functions dedicated for each step, and finally, after the 

acquisition of all inputs, the yielding hash values are used to 

calculate the SHA-384 final output digest value. The top level 

interface of the SHA-384 module is shown in Figure 3. The 

design accepts message data in 64-bit blocks and also outputs 

the final hash value in six consecutive 64-bits of data, so six 64-

bit or twelve 32-bit registers are needed to keep the 384-bit final 

hash value on the host. 

 

 

We developed and verified the hardware model of the SHA-

384 using Verilog HDL in Xilinx Vivado integrated design 

environment. The module remains in idle mode by default after 

the power-on event and FPGA loads the configuration bitstream. 

The module starts operating after applying a logic high to the 

start/stop input. The 1024-bit message is loaded into the module 

in 16 clock cycles and hash computation starts right after. When 

the computation of the hash value is complete, and 384-bit 

computed hash value is output sequentially in six clock cycles 

by 64-bit words and the digest_ready flag output is held at logic 

high during this period. This signal can be used as an interrupt 

generator for the host system. 

3.2. Functional Verification of the SHA-384 Secure 

Hash Algorithm IP Core 

We performed functional verification of our design using 

the Vivado ISim HDL simulator. A testbench module is designed 

to drive the SHA-384 module and apply the test vectors. The 

functional verification simulation results are provided in Figure 

4. The input presented in the simulation is “6162636461626364” 

corresponds to the hexadecimal value of the “abcdabcd”. The 

input message has been sent twice to the SHA-384 IP core, 

which means that the message passed to it is actually 

“abcdabcdabcdabcd”. After the message input has been received, 

the calculation of the hash is performed and the final digest 

value is presented by the DataOut signal. The final calculated 

digest output for the input message is equal to the expected value 

calculated using the software model of the SHA-384 algorithm.  

3.3. Hardware Implementation of the SHA-384 

Secure Hash Algorithm IP Core 

The hardware module designed in Verilog HDL is 

synthesized and implemented for the target FPGA device 

(XC7A35T-1CPG236C) and the hardware resource utilization of 

the module is reported in Table 1 along with other studies in the 

literature. SHA-384 design can operate up to a maximum clock 

frequency of 170 MHz at the cost of 982 configurable logic 

block slices (CLBs) as shown in Table 1. Our design performs 

better in terms of both maximum clock frequency and hardware 

resource utilization when compared to the similar work in the 

literature. 

Figure 3. Hardware interface of the proposed SHA-384 module. 

 

Figure 4. Functional verification of the designed SHA-384 module.
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Table 1. FPGA Hardware Resource Utilization for SHA-384 module 

Metric Our Design [7] [8] [9] 

Max clock frequency 

(MHz) 
170 74 120.83 128.584 

BRAM 1 N/A N/A N/A 

CLB Slices 982 1966 4240 4289 

 
Figure 5. SHA-384 module integrated with the Microblaze RISC processor. 

Table 2. FPGA Hardware Resource Utilization for the Microblaze Processor System 

Clock Frequency (MHz) Power (mW) BRAM CLB Slices LUT FlipFlop DSP 

100 223 mW 9 1538 5855 6152 1 

 

The SHA-384 module has been integrated with a 

Microblaze synthesizable softcore processor. The use of a 

processor enables software control, and provides a convenient 

way to transfer data between the FPGA and PC in test scenarios. 

A customized AXI IP core that wraps the SHA-384 module and 

enables a communication interface with the Microblaze’s AXI4 

bus has been created. As MicroBlaze has many options for 

configuration, it had to be optimized by choosing the right 

specifications to generate a minimum footprint processor. Thus, 

a cacheless Microblaze core with a local memory of 32-KBytes 

has been chosen as the base hardware platform. The system 

clock at which the processor operates is configured as 100 MHz 

to reduce clocking hardware overhead. In addition, other IP 

cores such as the clocking and reset module and AXI4 bridge 

required for the proper operation of Microblaze processor have 

been added as shown in Figure 5. We used a UART-Lite IP core 

configured at 115200 bps to allow serial communication with a 

personal computer using the RS-232 protocol. Table 2 reports 

the hardware implementation results of the synthesized 

Microblaze based system with the SHA-384 module, and the 

total estimated power dissipation is 223 mW. 

 

 

 

We have used the software development kit (SDK) provided 

by Xilinx to develop a test program using C. Developed software 

used SDK generated drivers for communicating with the 

synthesized Microblaze hardware system. We have successfully 

verified the correct operation of the integrated SHA-384 

hardware peripheral in application. 

4. Conclusion 

In this study, we have designed a hardware IP core of SHA-

384 secure hash algorithm in Verilog HDL for use in IoT 

applications such as HMAC generation. We functionally verified 

the correct operation of the design using HDL simulations. We 

have synthesized and implemeted the design on a Xilinx Artix-7 

FPGA device. Our design is better in terms of area and speed 

when compared to the other designs in the literature. Designed 

SHA-384 hardware module can operate up to 170 MHz clock 

speed and consumes only 982 CLB slices on a Xilinx Artix-7 

FPGA device. In addition, we have integrated the designed IP 

core with a Microblaze synthesizable processor for use in-

application testing by custom software. Estimated total power 

consumption was reported to be 223mW. The compact footprint 

of the proposed design makes it very suitable for integration 

with processors used in IoT applications.  
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