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Abstract. Let R be a ring. A right R-module A is said to be C-flat if the
kernel of any epimorphism B → A is C-pure in B, i.e. the induced map

Hom(C,B) → Hom(C,A) is surjective for any cyclic right R-module C. Pro-

jective modules are C-flat and C-flat modules are weakly-flat and neat-flat. In
this article, it is discussed the connections between C-flat, weakly-flat, neat-

flat and singly flat modules. It is shown that C-flat modules coincide with

singly-projective modules over arbitrary rings. Next, several characterizations
of certain classes of rings and modules via C-purity are considered. We prove

that every C-flat module is injective if and only if R is a QF ring. Moreover,

we show that R is a CF ring if and only if every FP-injective right R-module
is C-flat.

1. Introduction

Throughout, R will denote an associative ring with identity, and modules will
be unital R-modules unless otherwise stated.

There are many submodule structures, but the most commonly studied struc-
tures are closed submodule and pure submodule, due to their important role played
in Module and Ring Theory. A submodule B of a right R-module A is called closed
(in A) provided B has no proper essential extension in A. Let ε : 0 → B → A →
C → 0 be an exact sequence of right R-modules. ε is called (Cohn) pure exact if,
every finitely presented right R-module F is projective with respect to ε (see [22]).
The sequence ε is called C-pure (resp. neat) if every cyclic (resp. simple) right
R-module is projective with respect to ε (see [19, 16], respectively). C-pure (resp.
neat) and pure are in general inequivalent, none implies the other. In general, C-
pure submodules are closed and closed submodules are neat, and the converses are
true if R is a right CPS ring, i.e. every cyclic right R-module is a direct sum of a
projective module and a semisimple module (see [9]).

Recently, there is a significant interest in some classes of modules that are defined
via closed submodules, neat submodules and C-pure submodules (see [1, 4, 6, 23]).
A right R-module A is called weakly-flat [23](resp. neat-flat [4]) if the kernel of any
epimorphism B → A is closed (resp. neat) in B.
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In this article, motivated by the weakly-flat and neat-flat modules, we continue
the study and investigation of modules A, for which any short exact sequence ending
with A is C-pure. Namely, a right R-module A is said to be C-flat if the kernel of any
epimorphism B → A is C-pure in B, i.e. the induced map Hom(C,B)→ Hom(C,A)
is surjective for any cyclic right R-module C ([11]). Projective modules are C-flat
and C-flat modules are weakly-flat and neat-flat. It is discussed the connections
between C-flat, weakly-flat and neat-flat modules. In [3], a right R-module A is
called singly-projective if for any cyclic right R-module C, every homomorphism
f : C → A factors through a finitely generated free right R-module F . It is shown
that C-flat modules coincide with singly-projective modules over arbitrary rings.
Next, several characterizations of certain classes of rings and modules via C-purity
are considered. We prove that every C-flat module is injective if and only if R is a
QF ring. Moreover, we show that R is a CF ring if and only if every FP-injective
right R-module is C-flat.

2. C-flat modules

Let ε : 0 → B
f−→ A

g−→ C → 0 be an exact sequence of right R-modules. ε
is called C-pure exact if, f(B) is a C-pure submodule of A (see [19]). In this case,
f and g are called C-pure monomorphism and C-pure epimorphism, respectively.
By definition, the class of C-pure exact sequences is projectively generated by the
class of cyclic right R-modules. Hence C-pure exact sequences form a proper class
in the sense of Bushbaum, (see [11, Proposition 1.7]).

Proposition 1. The following are equivalent for a right R-module A.

(1) A is C-flat.
(2) Every exact sequence 0→ C → B → A→ 0 is C-pure.
(3) There exists a C-pure exact sequence 0 → C → P → A → 0 with P

projective.
(4) There exists a C-pure exact sequence 0→ C → F → A→ 0 with F C-flat.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) are clear.

(4) ⇒ (1) Let 0 → C → B
g−→ A → 0 be any short exact sequence. We claim

that g is a C-pure epimorphism, i.e., Ker(g) is a C-pure submodule of B. By

(4), there exists a C-pure exact sequence 0 → C → F
h−→ A → 0 with F C-flat.

Considering the pullback of g and h, we obtain a commutative diagram with exact
rows

0 //C //D
β //

α

��

F //

h
��

0

0 //C //B
g //A //0

Since F is C-flat, β is a C-pure epimorphism. Also, since h is C-pure epimor-
phism, gα = hβ is again C-pure epimorphism. This means that g is a C-pure
epimorphism by [11, Proposition 1.7], and this completes the proof.

�

Remark 2.1. (1) If an R-module A is C-flat then A is torsion-free by [11, Proposition
4.3] but not conversely. If R is a commutative integral domain, then every torsion-
free module is C-flat by [11, Proposition 4.4].
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(2) Obviously, projective modules are C-flat. But the converse is not true in
general. Let R = k[X,Y ] be a polynomial ring in two variables X,Y over a field
k. Here the ideal (X,Y ) of R is torsion-free, and so is C-flat by (1) since R is
a commutative integral domain. But it is not flat as R-module by [2, Chapter I,
Exercise 2.3], and so is not projective.

(3) C-flat and flat are in general inequivalent and none implies the other by [11,
Remarks 4.6 and 4.7].

(4) Note that a cyclic right R-module is C-flat if and only if it is projective. Thus
R is a semisimple Artinian ring if and only if every right R-module is C-flat.

The following observation is easy to show by Proposition 1 and useful for the
further characterization of C-flat modules.

Lemma 2.2. Let R be a ring. An R-module A is singly projective if and only if A
is C-flat.

Let A be a finitely presented right R-module. Then there exists a short exact
sequence 0 → G → F → A → 0 with F and G finitely generated free. If we
apply the functor HomR(−, R) to this exact sequence, we obtain the sequence
0 → A∗ → F ∗ → G∗ → Tr(A) → 0 where Tr(A) is the cokernel of the dual
map F ∗ → G∗. Note that Tr(A) is a finitely presented left R-module. The left
R-module Tr(A) is called an Auslander-Bridger Transpose of the right R-module
A (see [20, §5]). Over a right Noetherian ring, every cyclic right R-module C and
its transpose Tr(C) are finitely presented.

Proposition 2. Let R be a right Noetherian ring and A a right R-module. Then
A is C-flat if and only if Tor1(A, Tr(C)) = 0 for each cyclic right R-module C.

Proof. Let 0 → G → F → A → 0 be an exact sequence with F projective. If we
assume that A is C-flat right R-module, then 0 → Hom(C,G) → Hom(C,F ) →
Hom(C,A)→ 0 is exact for any cyclic right R-module C. Since R is right Noether-
ian, C is finitely presented, and so 0→ G⊗Tr(C)→ F ⊗Tr(C) is left exact by [20,

Theorem 8.3]. Hence TorR1 (A, Tr(C)) = 0. Conversely, suppose TorR1 (A, Tr(C)) =
0 for each cyclic right R-module C. Thus 0 → G ⊗ Tr(C) → F ⊗ Tr(C) is left
exact, and so 0 → Hom(C,G) → Hom(C,F ) → Hom(C,A) → 0 is exact again by
[20, Theorem 8.3]. This means that A is C-flat by Proposition 1. �

Recall that a right R-module A is called singly injective if Ext1R(F/K,A) = 0 for
any cyclic submodule K of any finitely generated free right R-module F . A right
R-module A is called singly flat if Tor1R(A,F/K) = 0 for any cyclic submodule K
of any finitely generated free right R-module F (see [14]).

Proposition 3. Let R be a right Noetherian ring and A a left R-module. A is
singly injective if and only if Ext1R(Tr(C), A) = 0 for any cyclic right R-module C.

Proof. Let 0→ A→ E(A)→ E(A)/A→ 0 be an exact sequence. If we assume that
A is singly injective left R-module, then 0→ C⊗A→ C⊗E(A)→ C⊗E(A)/A→
0 is exact by [7, Lemma 2.1 and Proposition 2.2]. So Hom(Tr(C), E(A)) →
Hom(Tr(C), E(A)/A) is epic by [20, Theorem 8.3], whence Ext1R(Tr(C), A) = 0.
Conversely, if we assume that Ext1R(Tr(C), A) = 0 for each cyclic right R-module
C, then Hom(Tr(C), E(A)) → Hom(Tr(C), E(A)/A) is epic. So 0 → C ⊗ A →
C ⊗ E(A) is left exact by [20, Theorem 8.3], whence A is singly injective by [7,
Lemma 2.1 and Corollary 2.6]. �
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Corollary 1. Let R be a right Noetherian ring. Then the following are true:

(1) A is C-flat right R-module if and only if A+ is singly injective.
(2) A is singly-injective left R-module if and only if A+ is C-flat.
(3) A is C-flat right R-module if and only if A is singly flat.
(4) A is C-flat right R-module if and only if A++ is C-flat.

Proof. (1) For any cyclic right R-module C, Tr(C) is finitely presented. Thus the
result follows by the standard isomorphism Ext1R(Tr(C), A+) ∼= Tor1(A, Tr(C))+

and Propositions 2 and 3.
(2) Let A be a left R-module and C a cyclic right R-module. Then we have

Tor1(A+, T r(C)) ∼= Ext1R(Tr(C), A)+ by [18, Theorem 9.51]. Hence the result
follows also by Propositions 2 and 3.

(3) follows by (1) and [14, Lemma 2.4].
(4) follows by (1) and (2). �

Recall that a ring R is said to be left hereditary (respectively, left semihered-
itary, left PP) if every left ideal (respectively, finitely generated left ideal, prin-
cipal left ideal) of R is projective. A right R-module A is called FP-injective if
Ext1R(F/K,A) = 0 for any finitely generated submodule K of any finitely gener-
ated free right R-module F (see [13]).

Corollary 2. The following are equivalent for a right Noetherian ring R.

(1) Every singly injective left R-module is FP-injective.
(2) Every C-flat right R-module is flat.

Moreover, if R is a commutative PP ring, then the above conditions are
equivalent to:

(3) R is hereditary.

Proof. (1)⇔ (2) follows by Corollary 1 and [14, Corollary 2.11].
(1) ⇔ (3) follows by [7, Theorem 3.9] and by the fact that Noetherian semi-

hereditary rings are hereditary. �

In [12], a ring R is called right CPS if every cyclic right R-module is a direct
sum of a projective module and a semisimple module.

Remark 2.3. (1) Following [9], C-pure submodules are closed, but not conversely.
(2) Since closed submodules are neat by [21], C-pure submodules are neat.
(3) A ring R is right CPS ring if and only if neat submodules are C-pure. In

particular, if R is a right CPS ring, then closed submodules are also C-pure (see
[9]).

Since C-pure submodules are closed and closed submodules are neat, we have
the following implications in our concepts:

C-flat ⇒ weakly flat ⇒ neat-flat.
Recall that a ring R is said to be a right C-ring if Soc(R/I) 6= 0 for every essential

right ideal I of R. Right CPS rings, left perfect rings and right semiartinian rings
are well known examples of right C-rings ([5, 10.10]). Together with Remark 2.3(3)
and [4, Proposition 2.9], we obtain the following.

Corollary 3. Let R be a right CPS ring and A be a right R-module. The following
statements are equivalent:

(1) A is C-flat.
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(2) A is weakly-flat.
(3) A is neat-flat.
(4) Soc(A) = A.Soc(RR).

A right R-module M is called CS if every closed submodule of M is a direct
summand of M and a ring R called right CS if RR is CS. A ring R is called right
Σ-CS (respectively, right finitely Σ-CS) if every (respectively, finite) direct sum of
copies of RR is CS (the reader might consult [8]).

Proposition 4. If every neat-flat right R-modules is C-flat, then R is a right CS
and right C-ring.

Proof. The hypothesis implies that every neat-flat right R-module weakly-flat, and
so R is a C-ring by [4, Proposition 2.7]. Let I be a closed right ideal of R. Then
I is neat in R, and so R/I is neat-flat by [4, Lemma 2.1]. Thus by the hypothesis,
R/I is C-flat and also 0 → I → R → R/I → 0 is C-pure. Since R/I is projective
with respect to C-pure exact sequences, the exact sequence 0→ I → R→ R/I → 0
splits. Thus I is a direct summand of R, that is R is a right CS ring. �

Recall by [17] that a ring R is a right SC-ring if every cyclic singular right R-
module is semisimple. By Remark 2.3(3) and [4, Proposition 2.9], we obtain the
following.

Corollary 4. Let R be a right SC-ring. The following are equivalent:

(1) R is right CPS.
(2) Every neat-flat right R-module is C-flat.
(3) Every weakly-flat right R-module is C-flat.

Proof. (1)⇒ (2) This follows directly by Corollary 3. (2)⇒ (3) is clear.
(3) ⇒ (1) Let I be a closed right ideal of R. Then R/I is weakly-flat. Thus by

the hypothesis, R/I is C-flat and also 0 → I → R → R/I → 0 is C-pure. Similar
to the proof of Proposition 4, R is a right CS ring. Thus R is a right CPS ring by
the fact that R is a right SC-ring (see [12, Corollary 4.4]). �

Remark 2.4. IfR is a right Σ-CS ring, then every C-flat rightR-module is projective
by [4, Theorem 2.10.]. The converse is also true if R is a right CPS-ring by Corollary
3 and [4, Theorem 2.10].

Proposition 5. If R is right finitely Σ-CS, then every finitely generated C-flat
right R-module is projective.

Proof. Let A be a finitely generated C-flat right R-module and consider the short
exact sequence ε : 0 → K → F → A → 0 with F finitely generated free. By
Proposition 1, ε is C-pure, and so is closed. This means that ε splits by the
hypothesis. Thus A is projective. �

A ringR is called right CF if every cyclic rightR-module embeds in a free module.
R is said to be a left AFG ring in case the left annihilator of every nonempty subset
of R is a finitely generated left ideal, equivalently every right R-module has a singly
projective preenvelope (see [15]).

Proposition 6. Let R be a ring. The following are equivalent:

(1) R is right CF.
(2) Every FP-injective right R-module is C-flat.
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(3) Every injective right R-module is C-flat.
Moreover, if R is left AFG, then the above conditions are equivalent to:

(4) Every right R-module has a monic C-flat preenvelope.

Proof. (1) ⇒ (2) Let E be an FP-injective right R-module and C a cyclic right
R-module. Since R is a CF ring, C can be embedded in a finitely generated free
right R-module F . Consider the inclusion map i : C ↪→ F and a homomorphism
f : C → E. As E is FP-injective, there exists a homomorphism g : F → E such
that gi = f . Thus E is C-flat by Lemma 2.2 and [15, Lemma 2.1].

(2)⇒ (3) Since injective modules are FP-injective, it is clear.
(3)⇔ (4)⇒ (1) Follows by Lemma 2.2 and [15, Lemma 3.6]. �

Recall that R is said to be a QF -ring if R is left Noetherian and left self-injective,
or equivalently every injective (resp. projective) right R-module is projective (resp.
injective) (see [10]). In the following result, we give a new characterization of a QF
ring.

Proposition 7. Let R be a ring. The following are equivalent:

(1) R is a QF ring.
(2) R is a right CF ring and every C-flat right R-module is projective.
(3) Every C-flat right R-module is injective.

Proof. (1) ⇒ (2) It is clear that R is a right CF and right Σ-CS ring. Thus (2)
follows by Remark 2.4.

(2)⇒ (1) is clear by Proposition 6.
(1) ⇒ (3) Let A be a C-flat right R-module. Since R is QF , R is right Σ-CS,

and so A is projective by Remark 2.4. Being R is QF implies that A is injective.
(3)⇒ (1) Clear since projective right modules are C-flat. �

3. Conclusion

In this paper, we continue the study and investigation of C-flat modules and
we discuss the connections between C-flat, weakly-flat, neat-flat and singly flat
modules. Then we investigate basic properties of the C-flat modules and some
characterizations of CF and QF rings. We show that C-flat modules coincide with
singly-projective modules over arbitrary rings. This work provides a new approach
to singly projective modules in terms of C-pure submodules.
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