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Abstract. A computational model is developed to predict the states of stress

and deformation in partially plastic, orthotropic, variable thickness, nonisother-
mal, stationary annular disks under external pressure. Assuming a state of

plane stress and using basic equations of mechanics of a disk, Maxwell relation,

Hill’s quadratic yield condition, and a Swift type nonlinear hardening law, a
single governing differential equation describing the elastic and partially plastic

response of an orthotropic, variable thickness, nonisothermal disk is obtained.

The solution of this nonlinear second order differential equation subject to free
and pressurized boundary conditions is achieved by a shooting method. In this

article, we move towards the governing equation by going through basic equa-

tions that lead to it and present its solution procedure and some interesting
results.

1. Introduction

Because of the importance of basic structures like disks, cylinders, tubes, spheri-
cal shells and plates in various branches of engineering, research on the prediction of
stress and deformation in these structures is unending [3, 12, 13, 15]. In this regard,
the analysis of the mechanical response of rotating or stationary, uniform or vari-
able thickness disks under a variety of loading conditions and comprising different
materials have been extensively studied [1, 2, 5, 6, 7, 8, 9, 14, 16, 10, 18]. However,
there appear only a few investigations [4, 10] in the literature on disks made of
orthotropic material. A thin disk of this type has different material properties in
the radial and circumferential directions. The mechanical structure of materials
like wood or glass-reinforced plastics is orthotropic.
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The objective of the present work is to construct a computational model in or-
der to predict the mechanical response of partially plastic, orthotropic, annular
and stationary disks subjected to external pressure. Thickness variability and the
existence of a radial temperature gradient are also taken into account. A thin disk,
hence a state of plane stress is assumed in the formulation. Using the equation
of equilibrium, strain-displacement relations, Hooke’s law for orthotropic material,
Maxwell relation, Hill’s quadratic yield criterion, and a Swift type nonlinear harden-
ing law, a single governing differential equation describing the elastic and partially
plastic response of an orthotropic disk is obtained. The numerical solution of this
differential equation is obtained by a nonlinear Shooting technique. The resulting
IVP system is integrated using Runge-Kutta-Fehlberg fourth-fifth order method to
achieve high order accuracy. Newton-Raphson iterations are performed until the
boundary conditions are met.

An interesting deformation behavior is observed for disks of small inner radii.
Plastic deformation commences at the inner surface and propagates into the disk
with increasing pressures. As the pressure further increases, another plastic region
appears at the outer surface while the inner plastic region is propagating in the
radial direction. Thereafter, the disk consists of three regions: two plastic regions
and an elastic region in between. Both plastic regions propagate to cover the
elastic region as the pressure increases. Later, the inner elastic region completely
disappears and the two plastic regions coincide and hence the disk becomes fully
plastic. This behavior is not observed for disks with greater inner radii. The plastic
region that commences at the inner surface propagates in the radial direction until
it reaches the outer surface so that the disk becomes fully plastic. In this work,
both cases are studied and the results are presented in graphical forms.

2. Formulation and Solution

2.1. Basic Equations. Dimensionless and normalized variables are used to list
the dimensionless forms of the equations for convenience. Thin disk and thus a
state of plane stress is presumed. The equation of motion

(2.1)
d

dr
(hrσr) − hσθ + hΩ2r2 = 0,

the compatibility relation

(2.2)
d

dr
(rεθ) − εr = 0,

and the Maxwell relations for an orthotropic disk

(2.3)
υθr
Eθ

=
υrθ
Er

,

form the basis [3, 12, 13, 15]. In these equations r is the dimensionless radial
coordinate (r = 1 at the edge), h = h(r) the dimensionless disk thickness (h = 1
at the center), σr and σθ the dimensionless stress components (σ = 1 at the yield
limit), Ω the dimensionless rotation speed, εr and εθ the normalized total strain
components, υrθ and υθr the Poisson’s ratio in r− and θ− directions, and Er and
Eθ the modulus of elasticity in r− and θ− directions. A two-parametric parabolic
type thickness profile of the form

h = 1 − nrk,
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with n and k being the parameters, is used in this work to describe the variation
of disk thickness along the radial direction.

Introducing the ratio

(2.4) R1 =
Er
Eθ

,

the Maxwell relation becomes

(2.5) υrθ = R1υθr.

The ratio R1 is called as the elastic orthotropy parameter. Total strains εr and εθ
are calculated by superposition of elastic, εej , plastic, εpj , and thermal parts, εTj , as

[15]

(2.6) εj = εej + εpj + εTj .

Elastic strains are obtained by a combination of the generalized Hooke’s Law and
the Maxwell relations as

εer = σr − νσθ,

εeθ = R1σθ − νσr,(2.7)

where ν = υrθ. The thermal strain is given by

(2.8) εTj = α∆T,

where α is the normalized coefficient of thermal expansion and ∆T = ∆T (r) the
temperature gradient in the radial direction. The total strain-displacement relations
are also important and given by

(2.9) εr =
du

dr
, εθ =

u

r
,

where u represents the dimensionless radial displacement. The one u(r) = rεθ is
generally used to determine the radial displacement.

On the other hand, Hill’s quadratic yield condition for an orthotropic disk is
given by [11]

(2.10) σY =

√
σ2
r −

2R2

1 +R2
σrσθ + σ2

θ ,

in which σY is the yield stress and R2 is another parameter called as the plastic
orthotropy parameter. Note that when R2 = 1 Hill’s criterion reduces to well-
known von Mises criterion. Note also that disk undergoes plastic deformation when
σY > 1. The plastic counterparts of total strains are determined using R2 as [11]

(2.11) εpr =
εEQ
σY

[
σr −

R2

1 +R2
σθ

]
,

(2.12) εpθ =
εEQ
σY

[
σθ −

R2

1 +R2
σr

]
,

where εEQ represents the equivalent plastic strain. Using a Swift type generalized
hardening law, equivalent plastic strain is related to the yield stress according to
[7]

(2.13) εEQ =
1

H
(σmY − 1),

where H and m represent two dimensionless hardening parameters.
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2.2. The Governing Differential Equation. To derive the governing differential
equation, first the total strains are written as

(2.14) εr = σr − νσθ + εpr + α∆T,

(2.15) εθ = R1σθ − νσr + εpθ + α∆T,

and then substituted into the compatibility equation. After some algebra the result
is

(2.16)
1

R1

dεpθ
dr

+
dσθ
dr

= −
εpr − εpθ
rR1

+
(1 + ν)σr
rR1

− (ν +R1)σθ
rR1

+
ν

R1

dσr
dr

− α

R1

dT

dr
.

This is the general equation that governs both elastic and plastic regions. In the
elastic region the plastic strains vanish and this equation reduces to

(2.17)
dσθ
dr

=
(1 + ν)σr
rR1

− (ν +R1)σθ
rR1

+
ν

R1

dσr
dr

− α

R1

dT

dr
.

2.3. Numerical Solution Procedure. A stress function of the form

(2.18) Y (r) = h r σr,

is now introduced. Using this definition and the equation of motion, Eq. (2.1),
we then express the stresses and their derivatives in terms of the stress function.
These equations are

(2.19) σr =
Y

h r
,

(2.20) σθ = r2Ω2 +
1

h

dY

dr

(2.21)
dσr
dr

= − Y

h r

[
1

r
+

1

h

dh

dr

]
+

1

h r

dY

dr
,

and

(2.22)
dσθ
dr

= 2rΩ2 − 1

h2
dh

dr

dY

dr
+

1

h

d2Y

dr2

Note that, only the derivative of σθ contains the second order derivative of Y and
in view of Eq. (2.12) the derivative of εpθ contains the derivative of σθ. Hence,
the coefficient of dσθ/dr in the governing equation, Eq. (2.16), should be collected
by some algebra. Toward this aim, we first determine the derivative of σY . This
derivative can be put into the form

(2.23)
dσY
dr

= N1
dσr
dr

+N2
dσθ
dr

,

in which

(2.24) N1 =
(1 +R2)σr −R2σθ

(1 +R2)σY
, and N2 =

σθ +R2(σθ − σr)

(1 +R2)σY
.

The derivative of εpθ is then determined as

(2.25)
dεpθ
dr

=

[
N1N4N5 −N3R2σY

H(1 +R2)σ2
Y

]
dσr
dr

+

[
N2N4N5 +N3(1 +R2)σY

H(1 +R2)σ2
Y

]
dσθ
dr

.
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where

N3 = σmY − 1

N4 = N3 −mσmY(2.26)

N5 = R2σr − (1 +R2)σθ

Hence, after collecting of the coefficient of dσθ/dr, the governing differential equa-
tion, Eq.(2.16), simplifies to

(2.27) N6
dσθ
dr

= −
εpr − εpθ
rR1

+
(1 + ν)σr
rR1

− (ν +R1)σθ
rR1

+N7
dσr
dr

− α

R1

dT

dr
,

where

(2.28) N6 = 1 +
N2N4N5 +N3(1 +R2)σY

R1H(1 +R2)σ2
Y

,

and

(2.29) N7 =
ν

R1
− N1N4N5 −N3R2σY

R1H(1 +R2)σ2
Y

,

Note that in the elastic counterpart of this equation N6 = 1, εpr = εpθ = 0, and
N7 = ν/R1. Like the stresses and their derivatives, the plastic strains in Eq. (2.27)
can be expressed in terms of Y and dY/dr. If all these expressions are substituted
into Eq. (2.27), the governing equation can be put into the form

(2.30)
d2Y

dr2
= F

(
r, Y,

dY

dr

)
,

which implies a two point boundary value problem. Analytical solution of Eq.
(2.30) is not possible as it is quite nonlinear. However, it’s efficient and highly
accurate numerical solution can be realized by shooting method. This technique is
described next.

If we let φ1 = Y , and φ2 = dY/dr the nonlinear boundary value problem de-
scribed by Eq. (2.30) is transformed into an initial value problem (IVP) of the
form

dφ1
dr

= φ2,

dφ2
dr

= F (r, φ1, φ2).(2.31)

This IVP problem requires initial conditions for its solution. For an annular disk
subjected to external pressure the boundary conditions are σr(a) = 0, and σr(1) =
−P , where a is the dimensionless inner radius and P the dimensionless external
pressure. Therefrom, we obtain the conditions φ1(a) = Y (a) = 0 and φ1(1) =
Y (1) = −h(1)P . However, the initial condition φ2(a) is not known. This condition
is determined by shooting method combined with Newton-Raphson iterations. If
the unknown condition φ2(a) is denoted by X, then the nonlinear equation to be
solved by Newton-Raphson method takes the form

(2.32) G(X) = φ1(1) + h(1)P = 0,

which is derived by imposing the boundary condition φ1(1) = −h(1)P . The it-
erations begin with the initial estimate X(0) and at each iteration the IVP is in-
tegrated three times with the conditions φ2(a) = X(k−1) to compute G1, with
φ2(a) = X(k−1) + ∆X to compute G2 and finally with φ2(a) = X(k−1) − ∆X to
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compute G3, where ∆X is a small increment like ∆X ≈ 10−3. A better approxi-
mation to φ2(a) is then determined from

(2.33) φ2(a) = X(k) = X(k−1) − G1

G′
,

and by central difference

(2.34) G′ =
G2 −G3

2∆X
.

The IVP system is solved in a < r ≤ 1 by Runge-Kutta-Fehlberg Fourth-Fifth order
integration method with tight tolerances to obtain accurate results. In this way,
when the iterations converge the boundary condition φ1(1) = −h(1)P is satisfied
to at least 8-significant digits.

3. Results of the Computations

In the following ν = υrθ = 0.3. In order to visualize the effects of orthotropy
parameters R1 and R2, computations are performed for a disk of inner radius
a = 0.3, thickness parameters n = 0.4 and k = 1.2 and hardening parameters
m = 1.2 and H = 0.25. Keeping R2 constant at a value R2 = 0.85, the propagation
of elastic-plastic border is computed for two different values of R1 and plotted in
Fig. 1. For the disk of R1 = 1.15, plastic deformation commences at the inner
face at the elastic limit PE = 0.588700. The plastic region formed here propagates
into the disk as the pressure is increased. When the pressure reaches the value
PI = 0.949741, another plastic region forms at the outer surface. Thereafter,
the disk is composed of three regions: inner plastic, elastic and outer plastic. As
the pressure further increases, both plastic regions move into the disk and replace
the elastic region. At the pressure value PFP = 0.987943, both plastic regions
coincide at a radial position r = 0.7593 and, as a result, the disk becomes fully
plastic. As seen in Fig. 1 for the disk of R1 = 0.85, these stages take place at the
critical values PE = 0.632735, PI = 0.907899 and PFP = 0.978869. The differences
in the deformation behavior between the disks of R1 = 1.15 and R1 = 0.85 are
obvious in Fig. 1. For the same disk, the effect of plastic orthotropy parameter
R2 is investigated by keeping R1 constant at a value of 0.85. The results of the
computations for R2 = 0.85 and R2 = 1.15 are plotted in Fig. 2. The differences
in the partially plastic response of the disks and the critical values of the pressure
can be followed therein.

Similar computations are carried out for a disk of inner radius a = 0.5. The
parameters used are the same, i.e. n = 0.4, k = 1.2, m = 1.2 and H = 0.25. The
effect of elastic orthotropy parameter R1 on the propagation of the elastic-plastic
border radius can be seen in Fig. 3. The plastic orthotropy parameter in this
figure is R2 = 0.85. The deformation behavior of this disk is somewhat different
in nature than that of a = 0.3 as depicted in Figs. 1 and 2. As seen in Fig. 3,
the plastic region that commences at the inner surface propagates in the radial
direction until it reaches the outer surface so that the disk becomes fully plastic.
It is also observed in this figure that as R1 increases, the elastic limit PE decreases
but the fully plastic limit PFP increases. The effect of R2 on the propagation of
elastic-plastic border radius is shown in Fig. 4 for R1 = 0.85. Both disks yield
at the inner surface when P = PE = 0.466570 and the plastic region formed here
moves in the radial direction with increasing pressures following different paths.



A COMPUTATIONAL MODEL FOR PARTIALLY-PLASTIC STRESS ANALYSIS 7

The one with R2 = 0.85 becomes fully plastic at PFP = 0.673109, while the other
corresponding to R2 = 1.15 becomes fully plastic at PFP = 0.700345. The effect of
R2 appears to be an increase in the fully plastic limit.

Taking P = 0.96, the stresses and displacement in a disk of a = 0.3, n = 0.4,
k = 1.2, m = 1.2, H = 0.25 and R2 = 0.85 are computed and plotted in Fig. 5. The
solid lines in the figure correspond to R1 = 1.15 and the dashed lines to R1 = 0.85.
Both disks consist of three regions: inner plastic, elastic and outer plastic. As shown
in Fig. 5, the disk with R1 = 1.15 consists of a plastic region in 0.3 ≤ r ≤ 0.5814, an
elastic region in 0.5814 ≤ r ≤ 0.9675 and another plastic region in 0.9675 ≤ r ≤ 1.0.
When R1 = 0.85, these regions position at 0.3 ≤ r ≤ 0.5358, 0.5358 ≤ r ≤ 0.8528
and 0.8528 ≤ r ≤ 1.0. Although the stresses are not much affected by the variation
of R1, the effect on the displacement is obvious.
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Figure 1. Propagation of elastic-plastic border radius for differ-
ent R1 values. The parameters used are R2 = 0.85, n = 0.4,
k = 1.2, m = 1.2 and H = 0.25.
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Figure 2. Propagation of elastic-plastic border radius for differ-
ent R2 values. The parameters used are R1 = 0.85, n = 0.4,
k = 1.2, m = 1.2 and H = 0.25.
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Figure 3. Propagation of elastic-plastic border radius for differ-
ent R1 values. The parameters used are R2 = 0.85, n = 0.4,
k = 1.2, m = 1.2 and H = 0.25.



A COMPUTATIONAL MODEL FOR PARTIALLY-PLASTIC STRESS ANALYSIS 11

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.5 0.6 0.7 0.8 0.9 1.0

p
re
ss
u
re

radial coordinate

ܴଶ ൌ 0.85

ܴଶ ൌ 1.15

ாܲ ൌ 0.466570

ிܲ௉ ൌ 0.673109

ிܲ௉ ൌ 0.700345

Figure 4. Propagation of elastic-plastic border radius for differ-
ent R2 values. The parameters used are R1 = 0.85, n = 0.4,
k = 1.2, m = 1.2 and H = 0.25.
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Figure 5. Stresses and displacement in an orthotropic disk for
different R1 values. The parameters used are R2 = 0.85, n = 0.4,
k = 1.2, m = 1.2 and H = 0.25.
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