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THERMOELASTIC RESPONSE OF A LONG TUBE SUBJECTED

TO PERIODIC HEATING

YASEMIN KAYA AND AHMET N. ERASLAN

(Communicated by Murat TOSUN)

Abstract. Thermoelastic behavior of a long tube subjected to periodic heat-
ing is investigated analytically. The temperature distribution in the tube under

a periodic boundary condition is obtained by the solution of the heat conduc-

tion equation and the application of Duhamel’s theorem afterwards. Based on
plane strain condition, the thermoelastic solution of the tube is derived. This

article outlines the complete solution procedure and presents some important

results of relevance to engineering.

1. introduction

Cylindrical structures subjected to thermal loads are widely used in engineering
applications. When the temperature gradient is high enough, stresses build up in
the structure and, this results in the deformation of the body. A detailed under-
standing of these stresses is an important issue of engineering design to predict the
failures and improve the reliability of the mechanical structures [17, 3, 4].

Elastic and plastic analysis of long cylinders and tubes under thermal or both
mechanical and thermal loads have been extensively studied in the last decade.
Orcan and Eraslan examined a uniform heat generating tube with temperature
dependent material properties [14]. This study was then extended to the tran-
sient solution of the thermoelastic-plastic deformation of a heat generating tube by
Eraslan and Orcan [8]. In a later work the authors also investigated the effect of
various parameters on the critical heat transfer coefficient for the heat generating
tube with convective boundary condition [9]. Eraslan and Argeso developed a com-
putational model to estimate the stresses in plane strain axisymmetric structures
in polar coordinates [6] and later extended this study to include the cylinders and
tubes with temperature dependent physical properties [7, 1]. However, in spite of
the importance and relevance of periodic heat loads and generation, very little work
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has been done on the analysis of stress and strain distributions in such structures.
Jahanian extended the study of thick walled cylinder subjected to rapid heating
and cooling to a cyclic thermal and mechanical loads [11, 10]. Mack and Plöchl
presented a semi-analytical solution to the stress distribution in a rotating shrink fit
with solid shaft subjected to a temperature cycle [12]. Segall developed a close-form
axisymmetric solution to a thick-walled tube under an arbitrary thermal loading
[16]. Radu et al. developed a set of analytical solutions for sinusoidal transient
temperature field and the associated elastic thermal stress distributions in a hollow
circular cylinder [15]. Arslan et al. studied the elastic-plastic stress distributions
in a rotating solid shaft with stress free surfaces subject to a temperature cycle [2].

In the present work, the thermoelastic response of a long tube subjected to
periodic heating on the inner surface is studied by analytical means. In this regard,
the present investigation may be considered as the extension of the elastic part of
the solution of Arslan et al. [2]. Though, the tube geometry adds considerable
mathematical difficulties into the solution.

The heating of the tube is realized by the linearly increasing temperature from
its inner surface. When the inner surface reaches a certain temperature, it is kept
at that temperature for some time, and then lowered with the same rate to the
initial temperature. The outer surface of the tube is assumed to be isolated. The
temperature distribution in the tube is obtained by the application of Duhamel’s
theorem. The thermoelastic behavior of the tube is modeled by considering free
inner and radially constrained outer surfaces. The generalized plane strain assump-
tion is adopted in the formulation. The results of this solution are compared to
those of a numerical solution based on a combination of collocation and shooting
methods.

2. Formulation of the Problem

2.1. Temperature Distribution. A long tube of inner and outer radii a and
b, respectively, is taken into account. The unsteady heat conduction equation in
cylindrical coordinates reads

(2.1)
∂2T

∂r2
+

1

r

∂T

∂r
=

1

κ

∂T

∂t
in a < r < b, t > 0,

where T represents the temperature in the tube, r the radial coordinate, κ the
thermal diffusivity, and t the time. As the tube is initially at a zero reference
temperature and possesses heated inner and isolated outer surfaces the initial and
boundary conditions take the forms

T (r, 0) = 0 for a < r < b,(2.2)

T (a, t) = f(t),(2.3)

k
∂T

∂r
(b, t) = 0 for t > 0,(2.4)

where f(t) represents time dependent surface temperature, and k the thermal con-
ductivity. The inner surface temperature f(t) is given by the following equations.
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(2.5) f(t) =


(Tm/tt)t for 0 < t ≤ tt
Tm for tt < t ≤ tt + tc

Tm − (Tm/tt)(t− tt − tc) for tt + tc < t ≤ 2tt + tc
0 for t > 2tt + tc

Furthermore, the shape of f(t) is depicted in Fig. 1, in which the meanings of the
symbols Tm, tt, and tc can be deduced.

Figure 1. Periodic boundary condition applied to the inner sur-
face of the tube.

In terms of the dimensionless variables: temperature: θ = T/Tm, radial coor-
dinate: r = r/b, time: τ = κt/b2, and inner radius a = a/b, the heat conduction
problem is rewritten as

(2.6)
∂2θ

∂r2
+

1

r

∂θ

∂r
=
∂θ

∂τ
in a < r < 1, τ > 0,

θ(r, 0) = 0 for a < r < 1,(2.7)

θ(a, τ) = f(τ) = τ/τt,(2.8)

∂θ

∂r
(1, τ) = 0 for τ > 0,(2.9)

where the overbars for r and a are not used for simplicity.

In order to treat periodic boundary condition Duhamel’s theorem should be used.
For this purpose an auxiliary problem is selected first. Here, it is chosen as

(2.10)
∂2Φ

∂r2
+
∂Φ

∂r
=
∂Φ

∂τ
,
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with the following initial and boundary conditions

Φ(r, 0) = 0 for a < r < 1,(2.11)

Φ(a, τ) = 1,(2.12)

∂Φ

∂r
(1, τ) = 0 for τ > 0.(2.13)

The solution of this auxiliary problem is given by Carslaw and Jaeger [5] as :

(2.14) Φ(r, τ) = 1 + π

∞∑
n=1

e−λ
2
nτ
C0(r, λn)

F (λn)
P (λn)

where

C0(r, λn) = J0(rλn)Y0(aλn)− Y0(rλn)J0(aλn),

F (λn) = J0(aλn)2 − J1(λn)2,(2.15)

P (λn) = J1(λn)2,

λn are the positive roots of the following eigenvalue equation,

(2.16) λ [J0(aλ)Y1(λ)− Y0(aλ)J1(λ)] = 0.

According to Duhamel’s theorem, the solution of the original heat conduction prob-
lem is obtained by the integration of the solution of the auxiliary equation as

(2.17) θ(r, τ) =

∫ τ

γ=0

f(γ)
∂Φ(r, τ − γ)

∂τ
dγ,

where

(2.18) Φ(r, τ − γ) = 1 + π

∞∑
n=1

e−λ
2
n(τ−γ)C0(r, λn)

F (λn)
P (λn),

(2.19)
∂Φ(r, τ − γ)

∂τ
= π

∞∑
n=1

(−λ2n)e−λ
2
n(τ−γ)C0(r, λn)

F (λn)
P (λn),

and

(2.20) f(γ) =
γ

τt
.

Substituting Eqs. (2.19) and (2.20) into Eq.(2.17) and performing the integration,
we obtain

(2.21) θ(r, τ) = − π
τt
τ

∞∑
n=1

C0(r, λn)

F (λn)
P (λn) +

π

τt

∞∑
n=1

(1− e−λ
2
nτ )

C0(r, λn)

λ2nF (λn)
P (λn).

Note that

(2.22)

∫ τ

γ=0

γeλ
2γdγ =

1

λ4

[
1− eλ

2τ + λ2τeλ
2τ
]
.

For τ = 0, the solution of the auxiliary problem Eq.(2.14) should be equal to the
initial temperature Φ(r, 0) = 0; thus
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0 = 1 + π

∞∑
n=1

C0(r, λn)

F (λn)
P (λn)

which gives the closed-form expression for the first series on the right hand side of
Eq. (2.21) as

(2.23) π

∞∑
n=1

C0(r, λn)

F (λn)
P (λn) = −1

Substituting Eq. (2.23) into Eq.(2.21) ,the final solution becomes

(2.24) θ(r, τ) =
τ

τt
+
π

τt

∞∑
n=1

(1− e−λ
2
nτ )

C0(r, λn)

λ2nF (λn)
P (λn).

2.2. Thermoelastic Solution. In this part, the stress and strain distributions
in the tube are determined under thermal load. In addition to the nondimen-
sional variables in the temperature distribution calculations, in this part, the di-
mensionless normal stress is σj = σj/σ0, normalized strain εj = εjG/σ0, dimension-
less radial displacement uj = ujG/(σ0b), and dimensionless heat load parameter
q = αTmG/σ0, where σ0, G, ν, and α denote the yield limit, the modulus of rigidity,
the Poisson’s ratio, and the thermal expansion coefficient, respectively. We do not
use the overbars as before.

The equation of motion in the radial direction

(2.25) (rσr)
′ − σθ = 0,

the strain-displacement relations or geometric relations

(2.26) εr = u′, εθ =
u

r
,

Generalized Hooke’s law for cylindrical coordinates

εr =
1

2(1 + ν)
[σr − ν(σθ + σz)] + qθ(r, τ),(2.27)

εθ =
1

2(1 + ν)
[σθ − ν(σr + σz)] + qθ(r, τ),(2.28)

εz =
1

2(1 + ν)
[σz − ν(σr + σθ)] + qθ(r, τ).(2.29)

are the basic equations of the system. Solving Eq.(2.29) for the axial stress based
on generalized plane strain condition εz = ε0 we obtain

(2.30) σz = ν(σr + σθ) + 2(1 + ν) [ε0 − qθ(r, τ)] .

By using geometric relations, and Hooke’s law, elastic stresses are written in terms
of radial displacement as
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σr =
2

r(1− 2ν)
[νu+ (1− ν)ru′ + (ε0ν − (1 + ν))qθ(r, τ)],(2.31)

σθ =
2

r(1− 2ν)
[(1− ν)u+ νru′ + (ε0ν − (1 + ν))qθ(r, τ)].(2.32)

Substituting the stresses into the equation of motion Eq.(2.25), the nonhomoge-
neous Cauchy-Euler equation is obtained

(2.33) r2
d2u

dr2
+ r

du

dr
− u =

r2q(1 + ν)

1− ν
θ′(r, τ).

Homogeneous solution of Eq.(2.33) is

(2.34) uh(r) =
C1

r
+ C2r,

where C1 , C2 are arbitrary integration constants. Particular solution is obtained
by the method of variation of parameters as

(2.35) up(r) = Y1(r)U1(r) + Y2(r)U2(r)

The fundamental solutions Y1 and Y2 are Y1(r) = 1/r, Y2(r) = r and,

(2.36) U1(r) = −
∫
Y2(r)F (r)

W (r)
dr and, U2(r) =

∫
Y1(r)F (r)

W (r)
dr,

where the Wronskian is W (r) = 2/r , and F (r) is the non-homogeneous part of the
Eq.(2.33)

(2.37) F (r) =
q(1 + ν)

1− ν
θ′(r, τ).

Hence

(2.38) U1(r) = −q(1 + ν)

2(1− ν)

∫
r2θ′(r, τ)dr , U2(r) =

q(1 + ν)

2(1− ν)
θ(r, τ).

Therefrom, the particular solution is obtained as

(2.39) up(r) =
q(1 + ν)

2(1− ν)
θ(r, τ)− q(1 + ν)

2r(1− ν)

∫
r2θ′(r, τ)dr.

As ∫
r2θ′(r, τ)dr = r2θ(r, τ)− 2

∫
rθ(r, τ)dr,

by integrations by parts, the final form of the particular solution becomes

(2.40) up(r) =
q(1 + ν)

r(1− ν)

∫ r

a

ξθ(ξ, τ)dξ.

By summing up the homogeneous and particular solutions, the general solution to
the radial displacement takes the form

(2.41) u =
C1

r
+ C2r +

q(1 + ν)

r(1− ν)

∫ r

a

ξθ(ξ, τ)dξ.

The radial and circumferential stresses are then expressed as
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σr = −2C1

r2
+

2

1− 2ν
(C2 + νε0)− 2q(1 + ν)

(1− ν)r2

∫ r

a

ξθ(ξ, τ)dξ(2.42)

σθ =
2C1

r2
+

2

1− 2ν
(C2 + νε0)− 2q(1 + ν)

(1− ν)r2

(
r2θ(r, τ)−

∫ r

a

ξθ(ξ, τ)dξ

)
.(2.43)

If we substitute σr and σθ into σz ,Eq.(2.30), the axial stress is also derived in the
form

(2.44) σz =
2

1− 2ν
(2νC2 + (1− ν)ε0)− 2q(1 + ν)

1− ν
θ(r, τ).

To complete the solution the unknowns: C1, C2, and ε0 are to be calculated. Free
inner and radially constrained outer surfaces imply the conditions

σr = 0 , at r = a,(2.45)

u = 0 , at r = 1.(2.46)

Since the tube is allowed to expand freely in the axial direction we have the addi-
tional condition

(2.47) Fz = 2π

∫ 1

a

rσzdr = 0,

in which Fz is the axial force. The third condition is then obtained from Fz = 0 as

−2q(1 + ν)

(1− ν)

∫ 1

a

rθ(r, τ)dr −
(
a2 − 1

)
1− 2ν

[(1− ν)ε0 + 2νC2] = 0.

The unknowns are obtained by means of these three conditions as

C1 =
a2(1 + ν)(a2(1 + ν)− 1 + ν)

(1− a2)(1− ν) [1− ν + a2(1 + ν)]
q

∫ 1

a

rθ(r, τ)dr,(2.48)

C2 =
(1 + ν)(a2(1− 3ν)− 1 + ν)

(1− a2)(1− ν) [1− ν + a2(1 + ν)]
q

∫ 1

a

rθ(r, τ)dr,(2.49)

ε0 =
2(1 + ν)(1 + a2)

(1− a2) [1− ν + a2(1 + ν)]
q

∫ 1

a

rθ(r, τ)dr.(2.50)

The temperature integral in these equations is determined as

∫ r

a

ξθ(ξ, τ)dξ =
τ

τt
r +

π

τt

∞∑
n=1

(1− e−λ
2
nτ )

P (λn)

λ2nF (λn)

∫ r

a

ξC0(ξ, λn)

=
τ

τt

{
(r2 − a2)

2

}
+
π

τt

∞∑
n=1

(1− e−λ
2
nτ )

P (λn)

λ3nF (λn)
{Y0(aλn) [rJ1(rλn)− aJ1(aλn)]

−J0(aλn) [rY1(rλn)− aY1(aλn)]} .(2.51)
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3. Numerical Results of the Solutions

The inner radius of the tube is taken as a = 0.5. In addition, the temperature
distribution calculations are carried out by using the following parameters: τt = 1.2,
τc = 0.4 . The period is completed when τ = 2.8. The heat conduction equation is
also solved numerically by using a semi-analytical collocation method [13]. Fig. 2
shows the temperature distribution time history in the tube corresponding to im-
portant heating and cooling paths. In this figure solid lines belong to the analytical
solution and dots to numerical solution. As seen in Fig. 2, analytical and numerical
results are in perfect agreement.

The thermoelastic response of the tube corresponding to the temperature dis-
tribution depicted in Fig. 2 is then calculated. In these calculations, the following
numerical values of the parameters are used: Poisson ratio ν = 0.287, and the heat
load parameter q = 0.15. Fig. 3 and 4 show, respectively, the evolution of nondi-
mensional radial and tangential stress distributions during the periodic heating.
The variation of the radial displacement is depicted in Fig. 5. The stresses and
displacement increase with the increasing temperature until τ = 1.2, and start to
decrease when the cooling starts at τ = 1.6. In these figures, as before, solid lines
show the analytical results, while dots the numerical results. Numerical solution
of the mechanical equations are performed by using the shooting method. To inte-
grate the initial value system Runge-Kutta-Fehlberg fourth-fifth order integration
method is used. Fig. 6 presents the evolution of the axial strain for different values
of inner radius during the temperature cycle. The axial strain slightly changes and
increases with the decreasing thickness of the tube. It is noted that the axial strain
follows the similar trend as the plot of the periodic heating boundary condition.
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Figure 2. Temperature distribution in the tube at different time
steps. Solid line denotes the analytical solution, while dotes indi-
cate the numerical. The parameters are used: τt = 1.2 and τc =
0.4.
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Figure 3. Nondimensional radial stress. Solid lines denote the
analytical solution, while dotes indicate the numerical results. q =
0.15.
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Figure 4. Nondimensional tangential stress. Solid lines denote
the analytical solution, while dotes indicate the numerical results.
q = 0.15.
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Figure 5. Nondimensional radial displacement. Solid lines denote
the analytical solution, while dotes indicate the numerical results.
q = 0.15.
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Figure 6. Evolution of the axial strain for different values of the
inner radius during periodic heating. q = 0.15.
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