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HYPERSURFACES SATISFYING SOME CURVATURE

CONDITIONS ON PSEUDO PROJECTIVE CURVATURE

TENSOR IN THE SEMI-EUCLIDEAN SPACE

YUSUF DOĞRU

(Communicated by Maria FALCITELLI)

Abstract. We consider some curvature conditions on the Pseudo projective

curvature tensor P̃ on a hypersurface in the semi-Euclidean space En+1
s . We

prove that every pseudo projectively Ricci-semisymmetric hypersurface M sat-

isfying the condition P̃ · R = 0 is pseudosymmetric. We also consider the

condition P̃ · S = 0 on hypersurfaces of the semi-Euclidean space En+1
s .

1. Introduction

Let (M, g) be an n-dimensional, n ≥ 3, differentiable manifold of class C∞. The

pseudo projective curvature tensor P̃ was introduced by B.Prasad [11]. According
to them, a pseudo projective curvature tensor is defined by

P̃ (X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

-
κ

n

[
a

n− 1
+ b

]
(g(Y, Z)X − g(X,Z)Y ),

where a and b are constants, S is the Ricci tensor and κ is the scalar curvature of
the manifold M .

In [7], Dabrowska, Defever, Deszcz and Kowalczyk studied semisymmetry and
Ricci-semisymmetry for hypersurfaces of semi-Euclidean space. Recently in [8],

Özgür studied hypersurfaces satisfying some curvature conditions in the semi-
Euclidean space. In [10], Özgür, Arslan and Murathan studied conharmonically

semiparallel hypersurfaces in Euclidean space. In [9], Özgür and Arslan studied
pseudosymmetric hypersurfaces satisfying Chen’s equality in Euclidean space. In
the present study, our aim is to study hypersurfaces of dimension n ≥ 4, in (n+ 1)-
dimensional semi-Euclidean space En+1

s . We show that if a pseudo projectively

Ricci-semisymmetric hypersurface M satisfies the condition P̃ · R = 0, where R
denotes the curvature tensor of M , then M is pseudosymmetric.
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The paper is organized as follows: In Section 2, we give a brief account of pseudo
projective curvature tensor, pseudosymmetric manifolds and Kulkarni-Nomizu prod-
uct. In Section 3, we give some information about hypersurfaces of semi-Euclidean
space En+1

s and the main results of the study are presented.

2. Preliminaries

We denote by ∇, R, P̃ , S and κ are the Levi-Civita connection, the Riemannian-
Christoffel curvature tensor, the pseudo projective curvature tensor, the Ricci tensor
and the scalar curvature of (M, g) , respectively. Next, we define the endomorphisms

R(X,Y ) and P̃ (X,Y ) of χ(M) by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z

and

(2.1) P̃ (X,Y )Z = aR(X,Y )Z + b (X ΛS Y )Z-
κ

n

[
a

n− 1
+ b

]
(X Λ Y )Z,

respectively, where (X Λ Y )Z is the tensor, defined by

(X Λ Y )Z = g(Y,Z)X − g(X,Z)Y,

and X,Y, Z ∈ χ(M).
The Riemannian-Christoffel curvature tensor R and the pseudo projective cur-

vature tensor P̃ are defined by

R (X,Y, Z,W ) = g(R (X,Y )Z,W ) ,

P̃ (X,Y, Z,W ) = g(P̃ (X,Y )Z,W ) ,

respectively, where W ∈ χ(M). The (0,4)-tensor G is defined by G (X,Y, Z,W ) =
g((X Λ Y )Z,W ).

For a (0, k)-tensor field T , k ≥ 1, and a (0, 2)-tensor field E on (M, g) we define

the tensors R · T, P̃ · T, and Q(E, T ) by

(R(X,Y ) · T )(X1, ..., Xk) = −T (R(X,Y )X1, X2,...,Xk)

−...− T (X1, ..., Xk−1,R(X,Y )Xk).(2.2)

(P̃ (X,Y ) · T )(X1, ..., Xk) = −T (P̃(X,Y )X1, X2,...,Xk)

−...− T (X1, ..., Xk−1, P̃(X,Y )Xk).(2.3)

Q(E, T )(X1, ..., Xk;X,Y ) = −T ((X ∧E Y )X1, X2, ..., Xk)

−...− T (X1, ..., Xk−1, (X ∧E Y )Xk),(2.4)

respectively, where the tensor X ∧E Y is defined by

(X ∧E Y )Z = E(Y, Z)X − E(X,Z)Y.

If E = g then we simply denote it by X ∧ Y.
If the tensor R · R and Q(g,R) are linearly dependent, then M is called pseu-

dosymmetric. This is equivalent to

(2.5) R ·R = LRQ(g,R)

holding on the set UR = {x ∈Mn|Q(g,R) 6= 0 at x}, where LR is some function
on UR(see[5]). If R ·R = 0, then M is called semi-symmetric (see[12]).
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If the tensors R · S and Q(g, S) are linearly dependent, then M is called Ricci-
pseudosymmetric. This is equivalent to

(2.6) R · S = LSQ(g, S)

holding on the set US = {x ∈Mn|S − κ
ng 6= 0 at x}, where LS is some function on

US (see [5]).
The Kulkarni-Nomizu product E ∧̃ B is given by

(E∧̃B)(X1, X2, X3, X4) = E(X1, X4)B(X2, X3) + E(X2, X3)B(X1, X4)

−E(X1, X3)B(X2, X4)− E(X2, X4)B(X1, X3).(2.7)

We note that if E = B, then we have E= 1
2E ∧̃ E, where the (0,4)-tensor E is

defined by

E(X1, X2, X3, X4) = E(X1, X4)E(X2, X3)− E(X1, X3)E(X2, X4).

Further, for a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we define
their Kulkarni-Nomizu product E ∧̃ T by

(E∧̃T )(X1, X2, X3, X4;Y3, ..., Yk) = E(X1, X4)T (X2, X3;Y3, ..., Yk)

+E(X2, X3)T (X1, X4;Y3, ..., Yk)

−E(X1, X3)T (X2, X4;Y3, ..., Yk)

−E(X2, X4)T (X1, X3;Y3, ..., Yk)(2.8)

(see [4]). For symmetric (0, 2)-tensor field E and B, we have the following identity
([4]):

(2.9) E∧̃Q(B,E) = Q(B,E).

Note that

(2.10) g = G.

3. Hypersurfaces

Let M , n = dimM ≥ 3, be a connected hypersurface immersed isometrically
in a semi-Riemannian manifold (N, g̃). We denote by g the metric tensor of M

induced from the metric tensor g̃. Further, we denote by ∇̃ and ∇ the Levi-Civita
connections corresponding to the metric tensors g̃ and g, respectively. Let ξ be a
local unit vector field on M in N and let ε = g̃(ξ, ξ) = ±1. We can present the
Gauss formula and Weingarten formula of M in N in the following form:

∇̃XY = ∇XY + εH(X,Y )ξ, ∇̃Xξ = −A(X)

respectively, whereX,Y are vector fields tangent toM, H is the second fundamental
tensor and A is the shape operator of M in N and g(A(X), Y ) = H(X,Y ). Fur-
thermore, for k > 1, we also have that Hk(X,Y ) = g(Ak(X), Y ), tr(Hk) = tr(Ak),

k ≥ 1, H1 = H and A1 = A. We denote by R and R̃ the Riemannian-Christoffel
curvature tensors of M and N, respectively.

The Gauss equation of M in N has the following form:

(3.1) R(X1, X2, X3, X4) = R̃(X1, X2, X3, X4) + εH(X1, X2, X3, X4).
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From now on, we will assume that M is a hypersurface in a semi-Euclidean space
En+1
s . So, Eq.(3.1) turns into

(3.2) R(X1, X2, X3, X4) = εH(X1, X2, X3, X4),

where X1, X2, X3, X4 are vector fields tangent to M and H = 1
2H∧̃H. From (3.2),

by contraction, we get easily

(3.3) S(X1, X4) = ε(tr(H)H(X1, X4)−H2(X1, X4)).

Moreover, by contracting (3.3), we obtain

(3.4) κ = ε(tr(H)2 − tr(H2)).

Now we give the following Lemmas which will be used in the main results.

Lemma 3.1. [6]Let E and D be two symmetric (0, 2)−tensors at point x of a
semi-Riemannian manifold (M, g). If the condition

αQ(g,E) + γQ(E,D) + βQ(g,D) = 0; α, β, γ ∈ R, γ 6= 0

is satisfied at x, then the tensors E − 1
n tr(E)g and D − 1

n tr(D)g are linearly de-
pendent.

Lemma 3.2. [6]Any hypersurface M, immersed isometrically in an (n+1)-dimensional
semi-Euclidean space En+1

s , n ≥ 4, satisfies the condition

(3.5) R ·R = Q(S,R).

Proposition 3.1. Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4,

then we have

(3.6) P̃ ·R = −(a+ b)R ·R+
κ

n

[
a

n− 1
+ b

]
Q(g,R).

Proof. Let Xh, Xi, Xj , Xk, Xl, Xm ∈ χ(M). So using (2.3) we have

(P̃ (Xh, Xi) ·R)(Xj , Xk, Xl, Xm) = −R(P̃ (Xh, Xi)Xj , Xk, Xl, Xm)

−R(Xj , P̃ (Xh, Xi)Xk, Xl, Xm)

−R(Xj , Xk, P̃ (Xh, Xi)Xl, Xm)

−R(Xj , Xk, Xl, P̃ (Xh, Xi)Xm).(3.7)

Then using (2.1), (2.4) and (2.7), we have

(3.8) P̃ ·R = aH∧̃Q(H2, H)− bQ(S,R) +
κε

n

[
a

n− 1
+ b

]
(H∧̃Q(g,H).

Thus, by (2.9), Eq. (3.8) turns into

(3.9) P̃ ·R = aQ(H2, H)− bQ(S,R) +
κε

n

[
a

n− 1
+ b

]
Q(g,H).

By using (3.3), (3.2) and Lemma 3.2, the Eq. (3.9) can be rewritten as

(3.10) P̃ ·R = −(a+ b)R ·R+
κ

n

[
a

n− 1
+ b

]
Q(g,R).

This completes the proof of the proposition. �

As an immediate consequence of Proposition 3.1, we have the following theorem:
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Theorem 3.1. Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4.

If the condition P̃ ·R = 0 holds on M, then M is pseudosymmetric.

Lemma 3.3. [3]Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 3.

Then M is pseudosymmetric if and only if R · R = 0 or the second fundamental
tensor H of M satisfies the condition

H2 = αH + βg α, β ∈ R.

Definition 3.1. Let M be a hypersurface in a semi-Euclidean space En+1
s ,n≥ 4.

If P̃ · S = 0, then M is called pseudo projectively Ricci-semisymmetric.

Lemma 3.4. Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4. If

M is pseudo projectively Ricci-semisymmetric, then there is a real valued function
λ on M such that

(3.11) H2 = λH +
1

n
(tr(H2)− λtr(H))g.

Proof. Let Xh, Xi, Xj , Xk ∈ χ(M). So, by using (2.3), we have

(3.12) (P̃ ·H)(Xh, Xi;Xj , Xk) = −H(P̃ (Xj , Xk)Xh, Xi)−H(Xh, P̃ (Xj , Xk)Xi)

and, similarly,
(3.13)

(P̃ ·H2)(Xh, Xi;Xj , Xk) = −H2(P̃ (Xj , Xk)Xh, Xi)−H2(Xh, P̃ (Xj , Xk)Xi).

Then, by making use of (2.1), (2.4) and (3.2), we get

(3.14) P̃ ·H = (a+ b)εQ(H,H2)− κ

n

[
a

n− 1
+ b

]
Q(g,H)

and

P̃ ·H2 = aεQ(H,H3) + bεtr(H)Q(H,H2)

−κ
n

[
a

n− 1
+ b

]
Q(g,H2).(3.15)

Since M is pseudo projectively Ricci-semisymmetric, by using (3.3), we have

(3.16) P̃ · S = ε(tr(H)P̃ ·H − P̃ ·H2) = 0.

Thus, by substituting (3.14) and (3.15) into (3.16), we obtain

atr(H)Q(H,H2)− aQ(H,H3)− εκ

n

[
a

n− 1
+ b

]
tr(H)Q(g,H)

+
εκ

n

[
a

n− 1
+ b

]
Q(g,H2) = 0.(3.17)

Hence, from (3.17), by a contraction, we have

H3 = tr(H)H2 +

[
−tr(H2) +

tr(H3)

tr(H)
− εκ

a
(

a

n− 1
+ b)

]
H

+
εκ

atr(H)

[
a

(n− 1)
+ b

]
H2

+

[(
εκtr(H)

a.n
− εκtr(H2)

a.ntr(H)

)[
a

(n− 1)
+ b

]]
g.(3.18)
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So, by substituting (3.18) into (3.17), we get

− εκ

tr(H)

[
a

(n− 1)
+ b

]
Q(H,H2)− εκ.tr(H2)

n.tr(H)

[
a

(n− 1)
+ b

]
Q(g,H)

+
εκ

n

[
a

(n− 1)
+ b

]
Q(g,H2) = 0(3.19)

Then, by Lemma 3.1, the tensors

H2 − 1

n
tr(H2)g

and

H − 1

n
tr(H)g

are linearly dependent, which proves the lemma. �

Hence, by combining Lemma 3.3 and Lemma 3.4, we have the following theorem:

Theorem 3.2. Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4.

If M is pseudo projectively Ricci-semisymmetric, then M is pseudosymmetric.

Theorem 3.3. Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4. If

M is pseudo projectively Ricci-semisymmetric, then M is Ricci-pseudosymmetric.

Proof. By using (2.1), (2.3)and (2.4), we have

(3.20) (P̃ · S) = a(R · S)− κ

n

[
a

n− 1
+ b

]
Q(g, S).

Since the condition P̃ · S = 0 holds on M, we get

R · S =
κ

n

[
1

n− 1
+
b

a

]
Q(g, S).

This completes the proof of the theorem. �

Lemma 3.5. [2]Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4.

M satisfies the condition

(3.21) R · S = Q(H, tr(H)H2 −H3).

Theorem 3.4. Let M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4.

If M the condition H2 =tr(H)H holds on M, then M is pseudo projectively Ricci-
semisymmetric.

Proof. Since H2 =tr(H)H and Hk(X,Y ) = g(Ak(X), Y ), we have

(3.22) H3 = tr(H)H2.

So, by substituting (3.22) into (3.21), we get R · S = 0. Thus, Eq.(3.20) turns into

(P̃ · S) = −κ
n

[
a

n− 1
+ b

]
Q(g, S).

Since H2 =tr(H)H, by using (3.22) and (3.3), we get Q(g, S) = 0. In the proof of
this theorem which proves that M is pseudo projectively Ricci-semisymmetric. �



SOME CURVATURE CONDITIONS ON PSEUDO PROJECTIVE TENSOR 105

Example 3.1. Let S2 =
{
p ∈ R3 such that |p| = 1

}
be the standard unit sphere.

First we consider

M4 = S2
1 × S2

2 =
{

(p, q) ∈ R6 =R3 × R3 such that |p| = |q| = 1
}
.

Next we take the cone

C5 =
{

(tp, tq) ∈ R6 such that |p| = |q| = 1, t > 0, t ∈ R
}
.

In [1], the authors show that the principal curvatures of C5 are
(

0, 1√
2t
, 1√

2t
,− 1√

2t
,− 1√

2t

)
and the cone C5 is Ricci-semisymmetric, but not semi-symmetric. It can be easily

seen that the cone C5 satisfies the condition P̃ · S = 0 and it is pseudosymmetric.
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