INTEGRABILITY OF DISTRIBUTIONS IN GCR-LIGHTLIKE SUBMANIFOLDS

VARUN JAIN, RAKESH KUMAR AND R. K. NAGAICH

(Communicated by Bayram SAHİN)

ABSTRACT. We give necessary and sufficient conditions for the integrability of various distributions of GCR-lightlike submanifold of an indefinite Kenmotsu manifold. We also find the conditions for each leaf of holomorphic distribution and radical distribution to be totally geodesic in submanifold.

1. Introduction

Duggal and Şahin [4] introduced the theory of contact CR and contact SCR-lightlike submanifolds of indefinite Sasakian manifolds. To find an umbrella of invariant, screen real, contact CR-lightlike submanifolds and real hypersurfaces, Duggal and Şahin [5] introduced a new class of submanifolds called generalized Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Sasakian manifolds. Since contact geometry has vital role in the theory of differential equations, optics and phase spaces of a dynamical system, therefore contact geometry with definite and indefinite metric becomes the topic of main discussion.

In [8] Şahin and $G\ddot{u}$ neş studied the necessary and sufficient conditions on integrability of distibutions on CR-lightlike submanifolds in an indefinite Kaehler manifolds. Sangeet et al. [9] and Varun et al. [10] established the conditions for the integrability of various distributions of GCR-lightlike submanifolds of indefinite Kaehler manifolds and indefinite cosymplectic manifolds, respectively. In this paper, we give necessary and sufficient conditions for the integrability of various distributions of GCR-lightlike submanifold of an indefinite Kenmotsu manifold. We also find the conditions for each leaf of holomorphic distribution and radical distribution to be totally geodesic in submanifold.

2. Lightlike Submanifolds

We recall notations and fundamental equations for lightlike submanifolds, which are due to the book [3] by Duggal and Bejancu.

Let (\bar{M}, \bar{g}) be a real (m+n)-dimensional semi-Riemannian manifold of constant

1

Date: Received: May 16, 2013; Accepted: August 13, 2013.

 $^{2000\} Mathematics\ Subject\ Classification.\ 53C15,\ 53C40,\ 53C50.$

 $Key\ words\ and\ phrases.$ Lightlike submanifold, indefinite Kenmotsu manifolds, GCR-lightlike submanifold.

index q such that $m,n\geq 1$, $1\leq q\leq m+n-1$ and (M,g) be an m-dimensional submanifold of \bar{M} and g the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle TM of M then M is called a lightlike submanifold of \bar{M} . For a degenerate metric g on M, TM^{\perp} is a degenerate n-dimensional subspace of $T_x\bar{M}$. Thus, both T_xM and T_xM^{\perp} are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace $RadT_xM = T_xM \cap T_xM^{\perp}$ which is known as radical (null) subspace. If the mapping $RadTM: x \in M \longrightarrow RadT_xM$ defines a smooth distribution on M of rank r>0 then the submanifold M of \bar{M} is called an r-lightlike submanifold and RadTM is called the radical distribution on M.

Let S(TM) be a screen distribution which is a semi-Riemannian complementary distribution of Rad(TM) in TM, that is,

$$(2.1) TM = RadTM \perp S(TM),$$

and $S(TM^{\perp})$ is a complementary vector subbundle to RadTM in TM^{\perp} . Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles to TM in $T\bar{M}|_{M}$ and to RadTM in $S(TM^{\perp})^{\perp}$ respectively. Then we have

$$(2.2) tr(TM) = ltr(TM) \perp S(TM^{\perp}).$$

$$(2.3) T\bar{M}\mid_{M} = TM \oplus tr(TM) = (RadTM \oplus ltr(TM)) \bot S(TM) \bot S(TM^{\perp}).$$

Theorem 2.1. ([3]). Let $(M, g, S(TM), S(TM^{\perp}))$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) . Then there exists a complementary vector bundle ltr(TM) of RadTM in $S(TM^{\perp})^{\perp}$ and a basis of $\Gamma(ltr(TM)|_{\mathbf{u}})$ consisting of smooth section $\{N_i\}$ of $S(TM^{\perp})^{\perp}|_{\mathbf{u}}$, where \mathbf{u} is a coordinate neighborhood of M, such that

$$\bar{g}(N_i,\xi_j)=\delta_{ij},\quad \bar{g}(N_i,N_j)=0,\quad \textit{for any}\quad i,j\in\{1,2,..,r\},$$

where $\{\xi_1,...,\xi_r\}$ is a lightlike basis of $\Gamma(Rad(TM))$.

Let ∇ be the Levi-Civita connection on \bar{M} . Then according to the decomposition (2.3), the Gauss and Weingarten formulas are given by

$$(2.4) \bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \bar{\nabla}_X U = -A_U X + \nabla_X^{\perp} U,$$

for any $X,Y \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$, where $\{\nabla_X Y, A_U X\}$ and $\{h(X,Y), \nabla_X^{\perp} U\}$ belongs to $\Gamma(TM)$ and $\Gamma(tr(TM))$, respectively. Here ∇ is a torsion-free linear connection on M, h is a symmetric bilinear form on $\Gamma(TM)$ which is called second fundamental form, A_U is linear a operator on M, known as shape operator.

According to (2.2), considering the projection morphisms L and S of tr(TM) on ltr(TM) and $S(TM^{\perp})$, respectively then (2.4)gives

(2.5)
$$\bar{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y),$$

$$(2.6) \bar{\nabla}_X U = -A_U X + D_X^l U + D_X^s U,$$

where we put $h^l(X,Y) = L(h(X,Y)), h^s(X,Y) = S(h(X,Y)), D_X^l U = L(\nabla_X^{\perp} U), D_X^s U = S(\nabla_X^{\perp} U).$

As h^l and h^s are $\Gamma(ltr(TM))$ -valued and $\Gamma(S(TM^{\perp}))$ -valued respectively, therefore they are called as the lightlike second fundamental form and the screen second fundamental form on M. In particular

(2.7)
$$\bar{\nabla}_X N = -A_N X + \nabla_X^l N + D^s(X, N),$$

(2.8)
$$\bar{\nabla}_X W = -A_W X + \nabla_X^s W + D^l(X, W),$$

where $X \in \Gamma(TM)$, $N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. By using (2.2)-(2.3) and (2.5)-(2.8), we obtain

$$(2.9) \bar{g}(h^s(X,Y),W) + \bar{g}(Y,D^l(X,W)) = g(A_W X,Y),$$

(2.10)
$$\bar{g}(h^{l}(X,Y),\xi) + \bar{g}(Y,h^{l}(X,\xi)) + g(Y,\nabla_{X}\xi) = 0,$$

for any $\xi \in \Gamma(RadTM)$ and $W \in \Gamma(S(TM^{\perp}))$.

Let P be the projection morphism of TM on S(TM). Then using (2.1), we can induce some new geometric objects on the screen distribution S(TM) on M as

(2.11)
$$\nabla_X PY = \nabla_X^* PY + h^*(X, Y),$$

(2.12)
$$\nabla_X \xi = -A_{\varepsilon}^* X + \nabla_X^{*t} \xi,$$

for any $X,Y\in\Gamma(TM)$ and $\xi\in\Gamma(RadTM)$, where $\{\nabla_X^*PY,A_\xi^*X\}$ and $\{h^*(X,Y),\nabla_X^{*t}\xi\}$ belong to $\Gamma(S(TM))$ and $\Gamma(RadTM)$, respectively. ∇^* and ∇^{*t} are linear connections on complementary distributions S(TM) and RadTM, respectively. h^* and A^* are $\Gamma(RadTM)$ -valued and $\Gamma(S(TM))$ -valued bilinear forms and called as the second fundamental forms of distributions S(TM) and RadTM, respectively. By using above equation we obtain

$$\bar{g}(h^l(X,\bar{P}Y),\xi) = g(A_{\varepsilon}^*X,\bar{P}Y),$$

(2.14)
$$\bar{g}(h^*(X,\bar{P}Y),N) = g(A_N X,\bar{P}Y),$$

Next, an odd-dimensional semi-Riemannian manifold \bar{M} is said to be an indefinite almost contact metric manifold if there exist structure tensors (ϕ, V, η, \bar{g}) , where ϕ is a (1,1) tensor field, V is a vector field called structure vector field, η is a 1-form and \bar{g} is the semi-Riemannian metric on \bar{M} satisfying (see [7])

(2.15)
$$\bar{g}(\phi X, \phi Y) = \bar{g}(X, Y) - \eta(X)\eta(Y), \quad \bar{g}(X, V) = \eta(X),$$

(2.16)
$$\phi^2 X = -X + \eta(X)V, \quad \eta \circ \phi = 0, \quad \phi V = 0, \quad \eta(V) = 1,$$

for any $X, Y \in \Gamma(TM)$.

An indefinite almost contact metric manifold \bar{M} is called an indefinite Kenmotsu manifold if (see [1]),

$$(2.17) \qquad (\bar{\nabla}_X \phi) Y = \bar{g}(\phi X, Y) V + \eta(Y) \phi X.$$

$$(2.18) \bar{\nabla}_X V = X - \eta(X)V.$$

3. GENERALIZED CAUCHY-RIEMANN LIGHTLIKE SUBMANIFOLD

Calin[2], proved that if the characteristic vector field V is tangent to (M, g, S(TM)) then it belongs to S(TM). We assume the characteristic vector field V is tangent to M throughout this paper.

Definition 3.1. ([6]) Let $(M, g, S(TM), S(TM^{\perp}))$ be a real lightlike submanifold of an indefinite Kenmotsu manifold (\bar{M}, \bar{g}) then M is called a generalized Cauchy-Riemann (GCR)-lightlike submanifold if the following conditions are satisfied

(A) There exist two subbundles D_1 and D_2 of Rad(TM) such that

$$Rad(TM) = D_1 \oplus D_2, \quad \phi(D_1) = D_1, \quad \phi(D_2) \subset S(TM).$$

(B) There exist two subbundles D_0 and \bar{D} of S(TM) such that

$$S(TM) = \{\phi D_2 \oplus \bar{D}\} \perp D_0 \perp V, \quad \phi(\bar{D}) = L \perp S.$$

where D_0 is invariant non degenerate distribution on M, $\{V\}$ is one dimensional distribution spanned by V and L, S are vector subbundles of ltr(TM) and $S(TM)^{\perp}$, respectively.

Then tangent bundle TM of M is decomposed as

$$TM = \{D \oplus \bar{D} \oplus \{V\}\}, \text{ where } D = Rad(TM) \oplus D_0 \oplus \phi(D_2).$$

Let Q, P_1, P_2 be the projection morphism on $D, \phi L, \phi S$ respectively, therefore

$$(3.1) X = QX + V + P_1X + P_2X,$$

for $X \in \Gamma(TM)$. Applying ϕ to (3.1), we obtain

$$\phi X = fX + \omega P_1 X + \omega P_2 X,$$

where $fX \in \Gamma(D)$, $\omega P_1X \in \Gamma(L)$ and $\omega P_2X \in \Gamma(S)$, or, we can write (3.2), as

$$\phi X = fX + \omega X,$$

where fX and ωX are the tangential and transversal components of ϕX , respectively. Similarly,

$$\phi U = BU + CU, \quad U \in \Gamma(tr(TM)),$$

where BU and CU are the sections of TM and tr(TM), respectively. By using Kenmotsu property of $\bar{\nabla}$ with (2.5) and (2.6), we have the following lemmas.

Lemma 3.1. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} then we have

$$(\nabla_X f)Y = A_{\omega Y}X + Bh(X,Y) + q(\phi X,Y)V - \eta(Y)fX,$$

and

$$(\nabla_X^t \omega)Y = Ch(X, Y) - h(X, fY) - \eta(X)\omega X,$$

where $X, Y \in \Gamma(TM)$ and

$$(\nabla_X f)Y = \nabla_X fY - f\nabla_X Y, \quad (\nabla_X^t \omega)Y = \nabla_X^t \omega Y - \omega \nabla_X Y.$$

Lemma 3.2. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} then we have

$$(\nabla_X B)U = A_{CU}X - fA_UX + g(\phi X, U)V, \quad and \quad (\nabla_X^t C)U = -\omega A_UX - h(X, BU),$$

where $X \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$ and

$$(\nabla_X B)U = \nabla_X BU - B\nabla_X^t U, \quad (\nabla_X^t C)U = \nabla_X^t CU - C\nabla_X^t U.$$

4. Integrability of Distributions

Let \bar{M} be a real m+n-dimensional smooth manifold then a distribution of rank t on \bar{M} is a mapping D defined on \bar{M} , which assign to each point x of \bar{M} a t-dimensional linear subspace D_x of $T_x(M)$. A vector field X on \bar{M} belongs to D if $X(x) \in D_x$ for each x of \bar{M} . The distribution D is said to be involutive if $[X,Y] \in \Gamma(D)$, for any $X,Y \in \Gamma(D)$. Then from page no. 34 of [3], a distribution D is integrable if and only if it is involutive.

Theorem 4.1. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then \bar{D} is integrable if and only if $\nabla_X \phi Y = \nabla_Y \phi X$ for any $X, Y \in \Gamma(\bar{D})$.

Proof. For any $X, Y \in \Gamma(\bar{D})$ we have

$$h(X, \phi Y) = \bar{\nabla}_X \phi Y - \nabla_X \phi Y.$$

Replacing X by Y and then subtracting the resulting equation from the above equation and using (2.17) and (3.3), we get

$$h(X, \phi Y) - h(Y, \phi X) = \bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X - \nabla_X \phi Y + \nabla_Y \phi X$$

= $\phi[X, Y] - \nabla_X \phi Y + \nabla_Y \phi X$
= $f[X, Y] + \omega[X, Y] - \nabla_X \phi Y + \nabla_Y \phi X$.

Taking tangential parts of this equation, we have $f[X,Y] = \nabla_X \phi Y - \nabla_Y \phi X$. Hence the result follows.

Theorem 4.2. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then the distribution D_0 is integrable if and only if

- (i) $\bar{g}(h^*(X,Y),N) = \bar{g}(h^*(Y,X),N)$
- (ii) $\bar{g}(h^*(X, \phi Y), N_1) = \bar{g}(h^*(Y, \phi X), N_1)$
- (iii) $h^s(X, \phi Y) = h^s(Y, \phi X)$
- (iv) $g(\nabla_X^* Y, \phi \xi) = g(\nabla_Y^* X, \phi \xi),$

for any $X, Y \in \Gamma(D_0), N \in \Gamma(ltr(TM)), N_1 \in \Gamma(L), W \in \Gamma(S), \text{ and } \xi \in \Gamma(D_2).$

Proof. Using the definition of GCR-lightlike submanifold the distribution D_0 is integrable if and only if

$$\bar{g}([X,Y],\phi W) = \bar{g}([X,Y],\phi \xi) = \bar{g}([X,Y],V) = \bar{g}([X,Y],\phi N_1) = \bar{g}([X,Y],N) = 0,$$
 for any $X,Y \in \Gamma(D_0), N \in \Gamma(ltr(TM)), N_1 \in \Gamma(L), W \in \Gamma(S),$ and $\xi \in \Gamma(D_2).$ Using (2.5), (2.11), (2.17) and (2.18), we have

$$\bar{g}([X,Y],N) = \bar{g}(h^*(X,Y),N) - \bar{g}(h^*(Y,X),N),$$

$$\bar{g}([X,Y],V) = -\bar{g}(Y,\bar{\nabla}_X V) + \bar{g}(X,\bar{\nabla}_Y V) = -\bar{g}(Y,X) + \bar{g}(X,Y)$$
(4.2) = 0.

$$\bar{g}([X,Y],\phi N_{1}) = \bar{g}(\bar{\nabla}_{X}Y,\phi N_{1}) - \bar{g}(\bar{\nabla}_{Y}X,\phi N_{1})
= -\bar{g}(\nabla_{X}\phi Y, N_{1}) + \bar{g}(\nabla_{Y}\phi X, N_{1})
= -\bar{g}(h^{*}(X,\phi Y), N_{1}) + \bar{g}(h^{*}(Y,\phi X), N_{1}).$$
(4.3)

$$\bar{g}([X,Y],\phi W) = \bar{g}(\bar{\nabla}_X Y,\phi W) - \bar{g}(\bar{\nabla}_Y X,\phi W)
= -\bar{g}(\bar{\nabla}_X \phi Y, W) + \bar{g}(\bar{\nabla}_Y \phi X, W)
= -\bar{g}(h^s(X,\phi Y), W) + \bar{g}(h^s(Y,\phi X), W),$$
(4.4)

and

(4.5)
$$\bar{g}([X,Y], \phi \xi) = g(\nabla_X Y, \phi \xi) - g(\nabla_Y X, \phi \xi)$$
$$= g(\nabla_X^* Y, \phi \xi) - g(\nabla_Y^* X, \phi \xi).$$

Thus from (4.1)-(4.5) the proof is complete.

Corollary 4.1. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold M. Then the distribution D_0 is integrable if and only if

- (i) $g(Y, A_N X) = g(X, A_N Y)$
- (ii) $g(A_{N_1}X, \phi Y) = g(A_{N_1}Y, \phi X)$
- (iii) $h^s(X, \phi Y) = h^s(Y, \phi X)$
- (iv) $g(h^{l}(X, \phi Y), \xi) = g(h^{l}(Y, \phi X), \xi),$

for any $X, Y \in \Gamma(D_0), N \in \Gamma(ltr(TM)), N_1 \in \Gamma(L), W \in \Gamma(S), \text{ and } \xi \in \Gamma(D_2).$

Theorem 4.3. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then RadTM is integrable if and only if

- (iii) $h^s(\xi', \phi \xi'') = h^s(\xi'', \phi \xi')$
- (iv) $g(h^*(\xi', \phi \xi''), N_1) = g(h^*(\xi'', \phi \xi'), N_1).$

for any $\xi \in \Gamma(D_2)$, $\xi', \xi'' \in \Gamma(Rad(TM))$, $N_1 \in \Gamma(L)$, $W \in \Gamma(S)$, $Z \in \Gamma(D_0)$.

Proof. Using the definition of GCR-lightlike submanifold of an indefinite Kenmotsu manifold, Rad(TM) is integrable if and only if

$$\bar{g}([\xi',\xi''],V) = \bar{g}([\xi',\xi''],Z) = \bar{g}([\xi',\xi''],\phi\xi) = \bar{g}([\xi',\xi''],\phi W) = \bar{g}([\xi',\xi''],\phi N_1) = 0,$$
 for any $\xi \in \Gamma(D_2),\ \xi',\xi'' \in \Gamma(Rad(TM)),\ N_1 \in \Gamma(L),W \in \Gamma(S),$ and $Z \in \Gamma(D_0).$ Using (2.5), (2.12), (2.13), (2.17) and (2.18), we obtain

$$\bar{g}([\xi', \xi''], V) = \bar{g}(\bar{\nabla}_{\xi'} \xi'' - \bar{\nabla}_{\xi''} \xi', V) = -\bar{g}(\xi'', \bar{\nabla}_{\xi'} V) + \bar{g}(\xi', \bar{\nabla}_{\xi''} V)
= -g(\xi', \xi'') + g(\xi'', \xi') = 0,$$
(4.6)

(4.7)
$$\bar{g}([\xi',\xi''],Z) = -g(A_{\xi''}^*\xi',Z) + g(A_{\xi'}^*\xi'',Z) \\
= -\bar{g}(h^l(\xi',Z),\xi'') + \bar{g}(h^l(\xi'',Z),\xi').$$

$$\bar{g}([\xi',\xi''],\phi\xi) = \bar{g}(\bar{\nabla}_{\xi'}\xi'',\phi\xi) - \bar{g}(\bar{\nabla}_{\xi''}\xi',\phi\xi)
= -\bar{g}(\xi'',\bar{\nabla}_{\xi'}\phi\xi) + \bar{g}(\xi',\bar{\nabla}_{\xi''}\phi\xi)
= -\bar{g}(h^l(\xi',\phi\xi),\xi'') + \bar{g}(h^l(\xi'',\phi\xi),\xi').$$

$$\bar{g}([\xi',\xi''],\phi W) = \bar{g}(\bar{\nabla}_{\xi'}\xi'',\phi W) - \bar{g}(\bar{\nabla}_{\xi''}\xi',\phi W)
= -\bar{g}(\phi\bar{\nabla}_{\xi'}\xi'',W) + \bar{g}(\phi\bar{\nabla}_{\xi''}\xi',W)
= -\bar{g}(\bar{\nabla}_{\xi'}\phi\xi'',W) + \bar{g}(\bar{\nabla}_{\xi''}\phi\xi',W)$$

$$(4.9) = -\bar{g}(h^{s}(\xi', \phi \xi''), W) + \bar{g}(h^{s}(\xi'', \phi \xi'), W),$$

and

(4.8)

$$\bar{g}([\xi', \xi''], \phi N_1) = -\bar{g}(\bar{\nabla}_{\xi'} \phi \xi'' - (\bar{\nabla}_{\xi'} \phi) \xi'', N_1) + \bar{g}(\bar{\nabla}_{\xi''} \phi \xi' - (\bar{\nabla}_{\xi''} \phi) \xi', N_1)
= -\bar{g}(\nabla_{\xi'} \phi \xi'', N_1) + \bar{g}(\nabla_{\xi''} \phi \xi', N_1)
= -\bar{g}(h^*(\xi', \phi \xi''), N_1) + \bar{g}(h^*(\xi'', \phi \xi'), N_1).$$

Thus from (4.6)-(4.10), the proof is complete.

Corollary 4.2. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then RadTM is integrable if and only if

- (i) $g(A_{\xi''}^*\xi', Z) = g(A_{\xi'}^*\xi'', Z)$
- (ii) $g(\vec{A_{\xi''}}\xi', \phi\xi) = g(\vec{A_{\xi'}}\xi'', \phi\xi)$
- (iii) $h^{s}(\xi', \phi \xi'') = h^{s}(\xi'', \phi \xi')$
- (iv) $g(h^*(\xi', \phi \xi''), N_1) = g(h^*(\xi'', \phi \xi'), N_1),$

for any $\xi \in \Gamma(D_2)$, $\xi', \xi'' \in \Gamma(Rad(TM))$, $N_1 \in \Gamma(L)$, $W \in \Gamma(S)$, and $Z \in \Gamma(D_0)$.

Theorem 4.4. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then D_1 is integrable if and only if

- (i) $\nabla_X^{*t} \phi Y \nabla_Y^{*t} \phi X \in \Gamma(D_1)$.
- (ii) $Bh(X, \phi Y) = Bh(Y, \phi X)$
- (iii) $A_{\phi Y}^* X = A_{\phi X}^* Y$ and belongs to $\Gamma[(\bar{D} \oplus \phi D_2) \perp D_0]$ for any $X, Y \in \Gamma(D_1)$.

Proof. For any $X, Y \in \Gamma Rad(TM)$ using (2.17), we have $\bar{\nabla}_X \phi Y = \phi \bar{\nabla}_X Y$, apply ϕ both sides and then using (2.4), (2.12) and (2.16), we obtain

$$\nabla_X Y + h(X, Y) = -\phi(\nabla_X \phi Y + h(X, \phi Y)) + g(A_Y^* X, V)V.$$

Let $X, Y \in \Gamma(D_1)$ and using (2.12) we have

$$\nabla_X Y + h(X, Y) = -\phi(-A_{\phi Y}^* X + \nabla_X^{*t} \phi Y + h(X, \phi Y)) + g(A_Y^* X, V)V,$$

equating the tangential components of above equation both sides, we get

(4.11)
$$\nabla_X Y = f A_{\phi Y}^* X - f \nabla_X^{*t} \phi Y - B h(X, \phi Y)) + g(A_Y^* X, V) V,$$

replacing X by Y and subtracting resulting equation from this equation, we get

$$[X,Y] = f(A_{\phi Y}^* X - A_{\phi X}^* Y) - f(\nabla_X^{*t} \phi Y - \nabla_Y^{*t} \phi X) - Bh(X, \phi Y) + Bh(Y, \phi X) + g(A_Y^* X, V)V - g(A_Y^* Y, V)V,$$

thus $[X,Y] \in \Gamma(D_1)$ if and only if $\nabla_X^{*t}\phi Y - \nabla_Y^{*t}\phi X \in \Gamma(D_1)$, $Bh(X,\phi Y) = Bh(Y,\phi X)$, $A_{\phi Y}^*X = A_{\phi X}^*Y$ and belongs to $\Gamma[(\bar{D} \oplus \phi D_2) \bot D_0]$, this completes the proof.

Theorem 4.5. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \overline{M} . Then D_2 is integrable if and only if

- (i) $\nabla_X^* \phi Y \nabla_Y^* \phi X \in \Gamma(\phi D_2)$.
- (ii) $Bh(X, \phi Y) = Bh(Y, \phi X)$.
- (iii) $h^*(X, \phi Y) h^*(Y, \phi X)$
- (iv) $A_Y^*X A_X^*Y$ and belongs to $\Gamma[(\bar{D} \oplus \phi D_2) \perp D_0]$,

for any $X, Y \in \Gamma(D_2)$.

Proof. Let $X, Y \in \Gamma(D_2)$ and using (2.12), we have

$$\nabla_X Y + h(X, Y) = -\phi(\nabla_X^* \phi Y + h^*(X, \phi Y) + h(X, \phi Y)) + g(A_Y^* X, V)V,$$

equating the tangential components of above equation, we get

$$\nabla_X Y = -f \nabla_X^* \phi Y - f h^*(X, \phi Y) - B h(X, \phi Y)) + g(A_Y^* X, V) V,$$

replacing X by Y and subtracting resulting equation from this equation, we get

$$[X,Y] = -f(\nabla_X^* \phi Y - \nabla_Y^* \phi X) - f(h^*(X, \phi Y) - h^*(Y, \phi X)) - Bh(X, \phi Y) + Bh(Y, \phi X) + g(A_Y^* X, V)V - g(A_X^* Y, V)V,$$

thus $[X,Y] \in \Gamma(D_2)$ if and only if $\nabla_X^* \phi Y - \nabla_Y^* \phi X \in \Gamma(\phi D_2)$, $h^*(X,\phi Y) = h^*(Y,\phi X)$, $Bh(X,\phi Y) = Bh(Y,\phi X)$, $A_Y^* X - A_X^* Y$ and belongs to $\Gamma[(\bar{D} \oplus \phi D_2) \bot D_0]$, this proves the theorem.

Theorem 4.6. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then ϕD_2 is integrable if and only if

- (i) $g(A_Y^*\phi X, \phi Z) = g(A_X^*\phi Y, \phi Z)$
- (ii) $h^s(\phi X, Y) = h^s(\phi Y, X)$
- (iii) $\bar{g}(h^l(\phi X, Y), \xi) = \bar{g}(h^l(\phi Y, X))$
- (iv) $g(\phi Y, A_N \phi X) = g(\phi X, A_N \phi Y)$

for any $X, Y \in \Gamma(D_2), Z \in \Gamma(D_0), W \in \Gamma(S), N \in \Gamma(ltr(TM)), \text{ and } \xi \in \Gamma(D_2).$

Proof. Using the definition of GCR-lightlike submanifolds, it is clear that ϕD_2 is integrable if and only if

 $\bar{g}([\phi X, \phi Y], Z) = \bar{g}(\bar{\nabla}_{\phi X} \phi Y, Z) - \bar{g}(\bar{\nabla}_{\phi Y} \phi X, Z)$

 $\bar{g}([\phi X, \phi Y], Z) = \bar{g}([\phi X, \phi Y], V) = \bar{g}([\phi X, \phi Y], \phi W) = \bar{g}([\phi X, \phi Y], \phi \xi) = \bar{g}([\phi X, \phi Y], N) = 0,$ for any $X, Y \in \Gamma(D_2), Z \in \Gamma(D_0), W \in \Gamma(S), \xi \in \Gamma(D_2)$ and $N \in \Gamma(ltr(TM))$. Using (2.4) and (2.12)-(2.17), we obtain

$$= \bar{g}(\phi \bar{\nabla}_{\phi X} Y, Z) - \bar{g}(\phi \bar{\nabla}_{\phi Y} X, Z)$$

$$= -\bar{g}(\bar{\nabla}_{\phi X} Y, \phi Z) + \bar{g}(\bar{\nabla}_{\phi Y} X, \phi Z)$$

$$= -g(\nabla_{\phi X} Y, \phi Z) + g(\nabla_{\phi Y} X, \phi Z)$$

$$= g(A_Y^* \phi X, \phi Z) - g(A_X^* \phi Y, \phi Z),$$

$$\bar{g}([\phi X, \phi Y], V) = \bar{g}(\bar{\nabla}_{\phi X} \phi Y, V) - \bar{g}(\bar{\nabla}_{\phi Y} \phi X, V)$$

$$= -\bar{g}(\bar{\nabla}_{\phi X} \phi Y - \bar{\nabla}_{\phi Y} \phi X, V)$$

$$= -g(\phi Y, \phi X) + g(\phi X, \phi Y)$$

$$= 0.$$

$$(4.13)$$

$$\bar{g}([\phi X, \phi Y], \phi W) = \bar{g}(\bar{\nabla}_{\phi X} \phi Y, \phi W) - \bar{g}(\bar{\nabla}_{\phi Y} \phi X, \phi W)$$

$$(4.14) \qquad = \overline{g}(\overline{\nabla}_{\phi X}Y, \phi W) - \overline{g}(\nabla_{\phi Y}X, \phi W)$$

$$= \overline{g}(\overline{\nabla}_{\phi X}Y, \phi W) - \overline{g}(\overline{\nabla}_{\phi Y}X, \phi W)$$

$$= \overline{g}(\overline{\nabla}_{\phi X}Y, W) - \overline{g}(\overline{\nabla}_{\phi Y}X, W)$$

$$= \overline{g}(h^{s}(\phi X, Y), W) - \overline{g}(h^{s}(\phi Y, X), W),$$

$$\overline{g}([\phi X, \phi Y], \phi \xi) = \overline{g}(\overline{\nabla}_{\phi X}\phi Y, \phi \xi) - \overline{g}(\overline{\nabla}_{\phi Y}\phi X, \phi \xi)$$

$$= \overline{g}(\phi \overline{\nabla}_{\phi X}Y, \phi \xi) - \overline{g}(\phi \overline{\nabla}_{\phi Y}X, \phi \xi)$$

$$= \overline{g}(\overline{\nabla}_{\phi X}Y, \xi) - \overline{g}(\overline{\nabla}_{\phi Y}X, \xi)$$

$$= \overline{g}(h^{l}(\phi X, Y), \xi) - \overline{g}(h^{l}(\phi Y, X), \xi),$$

and

$$\bar{g}([\phi X, \phi Y], N) = \bar{g}(\bar{\nabla}_{\phi X} \phi Y, N) - \bar{g}(\bar{\nabla}_{\phi Y} \phi X, N)
= -\bar{g}(\phi Y, \bar{\nabla}_{\phi X} N) + \bar{g}(\phi X, \bar{\nabla}_{\phi Y} N)
= \bar{g}(\phi Y, A_N \phi X) - \bar{g}(\phi X, A_N \phi Y).$$
(4.16)

Thus from (4.12)-(4.16), the proof is complete.

Corollary 4.3. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then ϕD_2 is integrable if and only if

- (i) $\bar{g}(h^l(\phi X, \phi Z), Y) = \bar{g}(h^l(\phi Y, \phi Z), X)$
- (ii) $h^s(\phi X, Y) = h^s(\phi Y, X)$
- (iii) $g(A_{\varepsilon}^*Y, \phi X) = g(A_{\varepsilon}^*X, \phi Y)$
- (iv) $g(h^*(\phi X, \phi Y), N) = g(h^*(\phi Y, \phi X), N)$

for any $X, Y \in \Gamma(D_2), Z \in \Gamma(D_0), W \in \Gamma(S), N \in \Gamma(ltr(TM)), \text{ and } \xi \in \Gamma(D_2).$

Theorem 4.7. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . Then each leaf of radical distribution is totally geodesic in M if and only if

- (i) $A_{\varepsilon}^* \xi' \notin \Gamma(D_0 \perp M_1)$
- (ii) $\bar{g}(h^s(\xi', \phi \xi''), W) = 0$
- (iii) $\bar{g}(h^*(\xi', \phi \xi''), N_1) = 0$

where $M_1 = \phi(L)$ for any $\xi \in \Gamma(D_2)$, $\xi', \xi'' \in \Gamma(Rad(TM))$, $N_1 \in \Gamma(L)$, $W \in \Gamma(S)$ and $Z \in \Gamma(D_0)$.

Proof. Using the definition of GCR-lightlike submanifold of an indefinite Kenmotsu manifold, each leaf of Rad(TM) defines totally geodesic foliation in M if and only if

$$\bar{g}(\nabla_{\xi'}\xi'',V) = \bar{g}(\nabla_{\xi'}\xi'',Z) = \bar{g}(\nabla_{\xi'}\xi'',\phi\xi) = \bar{g}(\nabla_{\xi'}\xi'',\phi W) = \bar{g}(\nabla_{\xi'}\xi'',\phi N_1) = 0,$$

for any $\xi \in \Gamma(D_2)$, $\xi', \xi'' \in \Gamma(Rad(TM))$, $N_1 \in \Gamma(L)$, $W \in \Gamma(S)$, and $Z \in \Gamma(D_0)$. Using (2.5), (2.11), (2.12), (2.15), (2.17) and (2.18), we obtain

$$(4.17) \quad g(\nabla_{\xi'}\xi'', V) = \bar{g}(\bar{\nabla}_{\xi'}\xi'', V) = -\bar{g}(\xi'', \bar{\nabla}_{\xi'}V) = -g(\xi'', \xi') = 0.$$

(4.18)
$$g(\nabla_{\xi'}\xi'', Z) = -g(A_{\xi''}^*\xi', Z).$$

$$(4.19) g(\nabla_{\xi'}\xi'', \phi\xi) = -g(A_{\xi''}^*\xi', \phi\xi).$$

$$g(\nabla_{\xi'}\xi'', \phi W) = \bar{g}(\bar{\nabla}_{\xi'}\xi'', \phi W) = -\bar{g}(\bar{\nabla}_{\xi'}\phi\xi'', W)$$

$$= -\bar{g}(h^s(\xi', \phi\xi''), W),$$
(4.20)

and

$$g(\nabla_{\xi'}\xi'', \phi N_1) = \bar{g}(\bar{\nabla}_{\xi'}\xi'', \phi N_1) = -\bar{g}(\bar{\nabla}_{\xi'}\phi\xi'' - (\bar{\nabla}_{\xi'}\phi)\xi'', N_1)$$

$$= -\bar{g}(\nabla_{\xi'}\phi\xi'', N_1) = -\bar{g}(h^*(\xi', \phi\xi''), N_1).$$
(4.21)

Hence form (4.17)-(4.21), the assertion follows.

Theorem 4.8. Let M be a GCR-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} . If M is D-geodesic then each leaf of holomorphic distribution is totally geodesic foliation in M.

Proof. For $X, Y \in \Gamma(D)$ using (2.4) and (2.16), we have

$$h(X,Y) = \bar{\nabla}_X Y - \nabla_X Y$$

$$= \bar{\nabla}_X (-\phi^2 Y + \eta(Y)V) - \nabla_X Y$$

$$= -(\bar{\nabla}_X \phi)(\phi Y) - \phi \bar{\nabla}_X \phi Y - \nabla_X Y$$

$$= \bar{g}(X, \phi Y)V - \phi \bar{\nabla}_X \phi Y - \nabla_X Y$$

$$= \bar{g}(X, \phi Y)V - \phi \nabla_X \phi Y - \phi h(X, \phi Y) - \nabla_X Y$$

$$= \bar{g}(X, \phi Y)V - f \nabla_X \phi Y - \omega \nabla_X \phi Y - Bh(X, \phi Y) - Ch(X, \phi Y) - \nabla_X Y.$$

Equating the transversal parts both sides we get

$$h(X,Y) = -\omega \nabla_X \phi Y - Ch(X,\phi Y),$$

Since by the hypothesis M is D-geodesic therefore we obtain $-\omega \nabla_X \phi Y = 0$ this implies that $\nabla_X \phi Y \in D$. Hence the proof is complete.

References

- Blair, David E., Riemannian Geometry of Contact and Symplectic Manifolds. New York, Birkhauser (2002).
- [2] Calin, C., On Existence of Degenerate Hypersurfaces in Sasakian Manifolds. Arab J. Math. Sci. 5 (1999), 21–27.
- [3] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of semi-Riemannian Manifolds and Applications. Vol. 364 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
- [4] Duggal, Krishan L. and Şahin, B., Lightlike Submanifolds of Indefinite Sasakian Manifolds. Int. J. Math. Math. Sci. Vol 2007, Article ID 57585, 21 pages.
- [5] Duggal, Krishan L. and Şahin, B., Generalized Cauchy-Riemann Lightlike Submanifolds of Indefinite Sasakian Manifolds. Acta Math. Hungar. 122 (2009), 45–58.
- [6] Gupta, Ram S. and Sharfuddin, A., Generalized Cauchy-Riemann Lightlike Submanifolds of Indefinite Kenmotsu Manifolds. Note Mat. 30 (2010), 4959.
- [7] Kumar, Rakesh, Rani, Rachna and Nagaich, Rakesh K., On Sectional curvature of ϵ -Sasakian Manifolds. *Int. J. Math. Math. Sci.* Vol 2007, Article ID 93562, 8 pages.
- [8] Şahin, B. and Güneş, R., Integrebility of Distributions in CR-lightlike Submanifolds. *Tamkang J. Math.* 33 (2002), no. 3, 209-221.
- [9] Kumar, Sangeet, Kumar, Rakesh and Nagaich, Rakesh K., Integrebility of Distributions in GCR-lightlike Submanifolds of Indefinite Kaehler Manifolds. Commun. Korean Math. Soc. 27 (2012), no. 3, 591-602..
- [10] Jain, Varun, Kumar, Rakesh and Nagaich, Rakesh K., Integrability of distributions in GCR-lightlike submanifolds of indefinite Cosymplectic manifolds, *Lobachevskii Journal of Mathematics*. 34 (2013), no. 1, 76-84.

Multani Mal Modi College, Patiala, India.

E-mail address: varun82jain@gmail.com

University College of Engineering, Punjabi University, Patiala, India.

 $E ext{-}mail\ address: dr_rk37c@yahoo.co.in}$

DEPARTMENT OF MATHEMATICS, PUNJABI UNIVERSITY, PATIALA, INDIA.

 $E ext{-}mail\ address: rakeshnagaich@yahoo.com}$