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Abstract. In this paper we study inextensible flows of curves in 4-dimensional
Galilean space. We give necessary and sufficient conditions for inextensible

flows are expressed as a partial differential equation involving the curvature in

4-dimensional Galilean space.

1. INTRODUCTION

It is well known that many nonlinear phenomena in physics, chemistry and biol-
ogy are described by dynamics of shapes, such as curves and surfaces. The evolution
of curve and surface has significant applications in computer vision and image pro-
cessing. The time evolution of a curve or surface generated by its corresponding flow
in R3 is said to be inextensible if, in the former case, its arclength is preserved, and
in the latter case, if its intrinsic curvature is preserved. Physically, the inextensible
curve flows give rise to motions in which no strain energy is induced. The swinging
motion of a cord of fixed length, for example, or of a piece of paper carried by the
wind, can be described by inextensible curve and surface flows. Such motions arise
quite naturally in a wide range of the physical applications. The inextensible curve
and surface flows also arise in the context of many problems in computer vision [6],
[8], computer animation [9] and even structural mechanics [4].

The distinction between heat flows and inextensible flows of planar curves
were elaborated in detail, and some examples of the latter were given by [3]. Also,
a general formulation for inextensible flows of curves and developable surfaces in
R3 are exposed by [2]. Latifi et al. [5] studied inextensible flows of curves in

Minkowski 3-space. Moreover Öğrenmiş et al. [1] studied inextensible curves in the
Galilean space G3 and Ergüt et al.[7] studied characterization of inextensible flows
of spacelike curves with Sabban Frame in S2

1 .
In this paper we study inextensible flows of curves in 4-dimensional Galilean

space. We give necessary and sufficient conditions for inextensible flows are ex-
pressed as a partial differential equation involving the curvature in 4-dimensional
Galilean space.
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2. PRELIMINARIES

In Affine coordinates the Galilean scalar product between two points

Pi = (pi1, pi2, pi3, pi4), i = 1, 2

is defined by

g(P1, P2) =

{
|p21 − p11| , if p21 6= p11,√∣∣(p22 − p12)2 + (p23 − p13)2 + (p24 − p14)2

∣∣, if p21 = p11.

We define the Galilean cross product in G4 for the vectors −→u = (u1, u2, u3, u4),
−→v = (v1, v2, v3, v4) and −→w = (w1, w2, w3, w4) as follows:

−→u ∧ −→v ∧ −→w = −

∣∣∣∣∣∣∣∣
0 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

∣∣∣∣∣∣∣∣ ,

where ei , 1 ≤ i ≤ 4, are the standart basis vectors.

The scalar product of two vectors
−→
U = (u1, u2, u3, u4) and

−→
V = (v1, v2, v3, v4)

in G4 is defined by〈−→
U ,
−→
V
〉
G4

=

{
u1v1, if u1 6= 0 or v1 6= 0,

u2v2 + u3v3 + u4v4 if u1 = 0 and v1 = 0.

The norm of vector
−→
U = (u1, u2, u3, u4) is defined by∥∥∥−→U ∥∥∥

G4

=

√∣∣∣∣〈−→U ,−→U 〉
G4

∣∣∣∣.
Let α : I ⊂ R −→ G4 , α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by

arclength s in G4. Here we denote differentiation with respect to s by a dash. The
first vector of the Frenet-Serret frame, that is the tangent vector of α is defined by

t = α′(s) = (1, y′(s), z′(s), w′(s)).

Since t is a unit vector, so we can express

(2.1) 〈t, t〉G4
= 1.

Differentiating the equation (2.1) with respect to s, we have

〈t′, t〉G4
= 0.

The vector function t′ gives us the rotation measurement of the curve α. The
real valued function

κ(s) = ‖t′(s)‖ =
√

(y′′(s))2 + (z′′(s))2 + (w′′(s))2

is called the first curvature of the curve α. We assume that, κ(s) 6= 0, for all s ∈ I.
Similar to space G3, we define the principal vector

n(s) =
t′(s)

κ(s)

in another words

(2.2) n(s) =
1

κ(s)
(0, y′′(s), z′′(s), w′′(s))
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By the aid of the differentiation of the principal normal vector given in (2.2), we
define the second curvature function as

(2.3) τ(s) = ‖n′(s)‖G4
.

This real valued function is called torsion of the curve α. The third vector field,
namely binormal vector field of the curve α is defined by

(2.4) b(s) =
1

τ(s)

(
0,

(
y′′(s)

κ(s)

)′

,

(
z′′(s)

κ(s)

)′

,

(
w′′(s)

κ(s)

)′
)
.

Thus the vector b(s) is both perpendicular to t and n. The fourth unit vector is
defined by

(2.5) e(s) = µt(s)Λn(s)Λb(s).

Here the coefficient µ is taken ±1 to make +1 determinant of the matrix [t,n,b, e].
We define the third curvature of the curve α by the Galilean inner product

(2.6) σ = 〈b′, e〉G4
.

Here, as well known, the set {t,n,b, e, κ, τ, σ} is called the Frenet-Serret apparatus
of the curve α. We know that the vectors {t,n,b, e} are mutually orthogonal vectors
satisfying

(2.7) 〈t, t〉G4
= 〈n,n〉G4

= 〈b,b〉G4
= 〈e, e〉G4

= 1,

〈t,n〉G4
= 〈t,b〉G4

= 〈t, e〉G4
= 〈n,b〉G4

= 〈n, e〉G4
= 〈b, e〉G4

= 0.

For the curve α in G4, we have following the Frenet-Serret equations

(2.8) t′ = κ(s)n(s), n′ = τ(s)b(s), b′ = −τ(s)n(s) + σ(s)e(s), e′ = −σ(s)b(s),

[10].

3. INEXTENSIBLE FLOWS OF CURVES IN 4D GALILEAN SPACE

Throughout this paper, we assume that α (u, t) is a one parameter family of
smooth curves in 4-dimensional Galilean space G4. The arclength of γ is given by

(3.1) s (u) =

∫ u

0

∣∣∣∣∂γ∂u
∣∣∣∣ du ,

where

(3.2)

∣∣∣∣∂γ∂u
∣∣∣∣ =

∣∣∣∣〈∂γ∂u, ∂γ∂u
〉∣∣∣∣ 12 .

The operator ∂
∂s is given in terms of u by

∂

∂s
=

1

v

∂

∂u
,

where v =
∣∣∣∂γ∂u ∣∣∣ and the arclength parameter is ds = vdu.

Any flow of γ can be represented as

(3.3)
∂γ

∂t
= f1t + f2n + f3b + f4e
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Letting the arclength variation be

s (u, t) =

∫ u

0

vdu .

In the 4-dimensional Galilean space G4 the requirement that the curve not be
subject to any elongation or compression can be expressed by the condition

(3.4)
∂

∂t
s (u, t) =

∫ u

0

∂v

∂t
du = 0 ,

for all u ∈ [0, l].

Definition 3.1. A curve evolution γ (u, t)and its flow ∂γ
∂t in 4D Galilean space G4

are said to be inextensible if
∂

∂t

∣∣∣∣∂γ∂u
∣∣∣∣ = 0.

Lemma 3.1. Let ∂γ
∂t = f1t + f2n + f3b + f4e be a smooth flow of the curve γ in

G4. The flow is inextensible if and only if

(3.5)
∂v

∂t
=
∂f1
∂u

.

Proof. Suppose that ∂γ
∂t be a smooth flow of the curve γ in G4. Using definition of

γ , we have

(3.6) v2 =

〈
∂γ

∂u
,
∂γ

∂u

〉
.

So, by differentiating of the formula (3.6), we get

v
∂v

∂t
=

〈
∂γ

∂u
,
∂

∂u
(f1t + f2n + f3b + f4e)

〉
.

By the formula of the Frenet, we have

∂v

∂t
=

〈
t,
∂f1
∂u

t +

(
f1vκ+

∂f2
∂u
− f3vτ

)
n +

(
f2vτ +

∂f3
∂u
− f4vσ

)
b +

(
f3vσ +

∂f4
∂u

)
e

〉
.

Making necessary calculations from above equation, we have (3.5), which proves
the lemma.

Theorem 3.1. Let ∂γ
∂t = f1t + f2n + f3b + f4e be a smooth flow of the curve γ

in G4. The flow is inextensible if and only if

(3.7)
∂f1
∂u

= 0 .

Proof. From (3.4), we have

(3.8)
∂

∂t
s (u, t) =

∫ u

0

∂v

∂t
du =

∫ u

0

∂f1
∂u

= 0 .

Substituting (3.5) in (3.8) complete the proof of the theorem.
We now restrict ourselves to arc length parametrized curves. That is, v = 1

and the local coordinate u corresponds to the curve arc length s. We require the
following lemma.
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Lemma 3.2. Let ∂γ
∂t = f1t + f2n + f3b + f4e be a smooth flow of the curve γ in

G4. Then,

(3.9)
∂t

∂t
=

(
f1κ+

∂f2
∂s
− f3τ

)
n +

(
f2τ +

∂f3
∂s
− f4σ

)
b

+

(
∂f4
∂s

+ f3σ

)
e ,

(3.10)
∂n

∂t
=

(
−f1κ−

∂f2
∂s

+ f3τ

)
t + Ψ1b+ Ψ2e ,

(3.11)
∂b

∂t
=

(
−f2τ −

∂f3
∂s

+ f4σ

)
t−Ψ1n + Ψ3e ,

where Ψ1 = 〈∂n∂t ,b〉, Ψ2 = 〈∂n∂t , e〉, Ψ3 = 〈∂b∂t , e〉 provided that
(
−f1κ− ∂f2

∂s + f3τ
)

=

0 and
(
−f2τ − ∂f3

∂s + f4σ
)

= 0 .

Proof. Under the asumption, we have

∂t

∂t
=

∂

∂t

∂γ

∂s
=

∂

∂s
(f1t + f2n + f3b + f4e) .

Thus, it is seen that

(3.12)
∂t

∂t
=

∂f1
∂s

t +

(
f1κ+

∂f2
∂s
− f3τ

)
n +

(
f2τ +

∂f3
∂s
− f4σ

)
b

+

(
∂f4
∂s

+ f3σ

)
e.

On the other hand substituting (3.7) in (3.12), we get

∂t

∂t
=

(
f1κ+

∂f2
∂s
− f3τ

)
n +

(
f2τ +

∂f3
∂s
− f4σ

)
b

+

(
∂f4
∂s

+ f3σ

)
e .

The differentiation of the Frenet frame with respect to t is

0 =
∂

∂t
〈t,n〉 = f1κ+

∂f2
∂s
− f3τ +

〈
t,
∂n

∂t

〉
,

0 =
∂

∂t
〈t,b〉 = f2τ +

∂f3
∂s
− f4σ +

〈
t,
∂b

∂t

〉
,

0 =
∂

∂t
〈t, e〉 =

∂f4
∂s

+ f3σ +

〈
t,
∂e

∂t

〉
,

0 =
∂

∂t
〈n,b〉 = ψ1 +

〈
n,
∂b

∂t

〉
,

0 =
∂

∂t
〈n, e〉 = ψ2 +

〈
n,
∂e

∂t

〉
,

0 =
∂

∂t
〈b, e〉 = ψ3 +

〈
b,
∂e

∂t

〉
.

From the above and using
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〈
∂n

∂t
,n

〉
=

〈
∂b

∂t
,b

〉
=

〈
∂e

∂t
, e

〉
= 0 ,

we obtain

∂n

∂t
=

(
−f1κ−

∂f2
∂s

+ f3τ

)
t + Ψ1b + Ψ2e ,

∂b

∂t
=

(
−f2τ −

∂f3
∂s

+ f4σ

)
t−Ψ1n + Ψ3e ,

∂e

∂t
=

(
−∂f4
∂s
− f3σ

)
t−Ψ2n−Ψ3b .

where Ψ1 = 〈∂n∂t ,b〉 , Ψ2 = 〈∂n∂t , e〉 , Ψ3 = 〈∂b∂t , e〉 provided that
(
−f1κ− ∂f2

∂s + f3τ
)

=

0 and
(
−f2τ − ∂f3

∂s + f4σ
)

= 0. Thus, we obtain the theorem.

Theorem 3.2. Let ∂γ
∂t = f1t + f2n + f3b + f4e be a smooth flow of the curve γ in

G4. Then, the following system of partial differential equations holds:

∂κ

∂t
= 0 ,

σ

(
∂f4
∂s

+ f3σ

)
= −Ψ1

Ψ2

(
∂

∂s
(f3σ) +

∂2f4
∂s2

)
where Ψ1 = 〈∂n∂t ,b〉 , Ψ2 = 〈∂n∂t , e〉 provided that

(
−f1κ− ∂f2

∂s + f3τ
)

= 0 and(
−f2τ − ∂f3

∂s + f4σ
)

= 0.

Proof. From our assumption provided that
(
−f1κ− ∂f2

∂s + f3τ
)

= 0 and
(
−f2τ − ∂f3

∂s + f4σ
)

=

0, we have
(3.13)

∂

∂s

∂t

∂t
=

∂

∂s

[(
∂f4
∂s

+ f3σ

)
e

]
=

[
∂

∂s
(f3σ) +

∂2f4
∂s2

]
e−

[
σ

(
∂f4
∂s

+ f3σ

)]
b

On the other hand, from the Frenet frame we have

(3.14)
∂

∂t

∂t

∂s
=

∂

∂t
(κn) =

∂κ

∂t
n + κ (Ψ1b + Ψ2e)

Hence from (3.13) and (3.14), we get

∂κ

∂t
= 0 ,

σ

(
∂f4
∂s

+ f3σ

)
= −Ψ1

Ψ2

(
∂

∂s
(f3σ) +

∂2f4
∂s2

)
.

Thus we obtain following theorem.

Theorem 3.3. Let ∂γ
∂t = f1t + f2n + f3b + f4e be a smooth flow of the curve γ

in G4. Then, the following system of partial differential equations holds:

Then,

∂τ

∂t
=

∂Ψ1

∂s
−Ψ2σ ,

τ =
1

Ψ3

(
∂Ψ2

∂s
+ Ψ1σ

)
,
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where Ψ1 = 〈∂n∂t ,b〉 ,Ψ2 = 〈∂n∂t , e〉 ,Ψ3 = 〈∂b∂t , e〉 provided that
(
−f1κ− ∂f2

∂s + f3τ
)

=

0 and
(
−f2τ − ∂f3

∂s + f4σ
)

= 0.

Proof. Similarly, from Frenet formulas provided that
(
−f1κ− ∂f2

∂s + f3τ
)

= 0

and
(
−f2τ − ∂f3

∂s + f4σ
)

= 0 , we have

(3.15)
∂

∂s

∂n

∂t
=

∂

∂s
(Ψ1b + Ψ2e) = −τΨ1n +

[
∂Ψ1

∂s
−Ψ2σ

]
b+

[
∂Ψ2

∂s
+ Ψ1σ

]
e

On the other hand, a straightforward computation gives

(3.16)
∂

∂t

∂n

∂s
=

∂

∂t
(τb) =

∂τ

∂t
b + τ (−Ψ1n + Ψ3e )

Hence from (3.15) and (3.16)

∂τ

∂t
=

∂Ψ1

∂s
−Ψ2σ ,

τ =
1

Ψ3

(
∂Ψ2

∂s
+ Ψ1σ

)
.
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