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A NEW SEQUENCE OF FUNCTIONS INVOLVING pjFqj

PRAVEEN AGARWAL AND MEHAR CHAND
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Abstract. A remarkably large number of operational techniques have drawn
the attention of several researchers in the study of sequences of functions and

polynomials. Very recently, Agarwal and Chand gave a interesting new se-
quence of functions involving the pFq .Using the same method, in this paper,
we present a new sequence of functions involving product of the pFq . Some
generating relations and finite summation formula of the sequence presented

here are also considered. In the last, we use Matlab (R2012a) for each param-
eter of our main sequence, which gives the eccentric characteristics in the area
of sequences of functions or class of polynomials.

1. Introduction

The idea of representing the processes of calculus, differentiation, and integra-
tion, as operators, is called an operational technique, which is also known as an
operational calculus. Many operational techniques involve various special functions
have found some significant applications in various sub-fields of applicable mathe-
matical analysis. Many applications of operational techniques can be found in the
mathematical analysis, solving a polynomial equations and differential equations.
Since last four decades, a number of workers like Chak[2], Gould and Hopper [6],
Chatterjea[5], Singh[16], Srivastava and Singh[19], Mittal[8, 9, 10], Chandal[3, 4],
Srivastava[14], Joshi and Parjapat[7], Patil and Thakare[11] and Srivastava and
Singh[18] have made deep research of the properties, applications and different ex-
tensions of the various operational techniques.

The key element of the operational technique is to consider differentiation as an
operator D = d

dx acting on functions. Linear differential equations can then be
recast in the form of an operator valued function F(D) of the operator D acting on
an unknown function which equals a known function. Solutions are then obtained
by making the inverse operator of F acting on the known function.
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Indeed, a remarkably large number of sequences of functions involving a variety
of special functions have been developed by many authors (see, for example, [18];
for a very recent work, see also [1, 16]). Here we aim at presenting a new sequence
of functions involving a product of the pFq by using operational techniques, which
are expressed in terms of the Gauss hypergeometric function. Some generating re-
lations and finite summation formulae are also obtained.

For our purpose, we begin by recalling some known functions and earlier works.
In 1971, by Mittal [8] gave the Rodrigues formula for the generalized Lagurre poly-
nomials defined by

T
(α)
kn (x) =

1

n!
x−α exp (pk (x))D

n
[
xα+n exp (−pk (x))

]
,(1.1)

where pk (x) is a polynomial in x of degree k.

Mittal [9] also proved the following relation for (1.1) given by

T
(α+s−1)
kn (x) =

1

n!
x−α−n exp (pk (x))T

n
s [xα exp (−pk (x))] ,(1.2)

where s is a constant and Ts ≡ x (s+ xD).

In this sequel, in 1979, Srivastava and Singh [18] studied a sequence of functions

V
(α)
n (x; a, k, s) defined by

V (α)
n (x; a, k, s) =

x−α

n!
exp {pk (x)} θn [xα exp {−pk (x)}](1.3)

By using the operator θ ≡ xa (s+ xD) , where s is constant, and pk (x) is a poly-
nomial in x of degree k.

Here, a new sequence of function
{
V

(p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)

}∞

n=0
is introduced as follows:

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s) :=

1

n!
x−α

r∏
j=1

×(1.4)

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
(T a,s

x )
n

xα
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] ,

where T a,s
x ≡ xa (s+ xD) , D ≡ d

dx
, a and s are constants, β ≥ 0, kj is a finite

and non-negative integer, yj ∈ R, Pkj (x) are polynomials in x of degree kj , where
j = 1, 2, ..., r. pjFqj is a special case of the generalized hypergeometric functions of
one variable. For the sake of completeness, we recall the pFq.

A generalized hypergeometric function pFq is defined and represented as follows
(see [15, Section 1.5]):
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(1.5) pFq

[
(ap) ;
(bq) ;

z

]
=

∞∑
n=0

∏p
j=1 (aj)n∏q
j=1 (bj)n

zn

n!
,

where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see [15, p. 2 and p.
4-6]):

(1.6)

(λ)n : =

{
1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N := {1, 2, 3, . . .})

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−

0 )

and Z−
0 denotes the set of non-positive integers. Note that the function pFq con-

verges if p ≤ q; p = q + 1 and |z| < 1.

Some generating relations and finite summation formula of class of polynomials or
sequences of functions have been obtained by using the properties of the differential

operators. The operators T a,s
x ≡ xa (s+ xD)

(
D ≡ d

dx

)
is based on the work of

Mittal [10], Patil and Thakare [11], Srivastava and Singh [18].

Some useful operational techniques are given below:

exp (tT a,s
x )

(
xβf (x)

)
= xβ (1− axat)

−( β+s
a ) f

(
x (1− axat)

−1/a
)
,(1.7)

exp (tT a,s
x )

(
xα−anf (x)

)
= xα (1 + at)

−1+(α+s
a ) f

(
x (1 + at)

1/a
)
,(1.8)

(T a,s
x )

n
(xuv) = x

∞∑
m=0

(
n
m

)
(T a,s

x )
n−m

(v)
(
T a,1
x

)m
(u) ,(1.9)

(1 + xD) (1 + a+ xD) (1 + 2a+ xD)×(1.10)

(1 + 3a+ xD) ... (1 + (m− 1)a+ xD)xβ−1 = am
(
β

a

)
m

xβ−1

and

(1− at)
−α
a = (1− at)

−β
a

∞∑
m=0

(
α− β

a

)
m

(at)
m

m!
.(1.11)

2. Generating Relations

First generating relation:
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∞∑
n=0

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)x

−antn(2.1)

= (1− at)
−(α+s

a )
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1− at)−1/a

)]
Second generating relation:

∞∑
n=0

V (p1,...,pr,q1,...,qr,α−an)
n (x; a, k1, ..., kr, y1, ..., yr, s)x

−antn(2.2)

= (1 + at)
−1+(α+s

a )
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1 + at)1/a

)]
Third generating relation:

∞∑
n=0

(
m+ n
m

)
V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)x

−antn(2.3)

=

(1− at)
−(α+s

a )
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj

(
x(1− at)−1/a

)] ×

V (p1,...,pr,q1,...,qr,α)
n

(
x(1− at)−1/a; a, k1, ..., kr, y1, ..., yr, s

)
Proof of the first generating relation.

We start from (1.4) and consider

∞∑
n=0

V (p1,...,pr,q1,...,qr,α)
n (x; a, r1, ..., kr, y1, ..., yr, s) t

n(2.4)

= x−α
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

exp(tT a,s
x )

xα
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

]
Using the operational technique (1.7), Equation (2.4) reduces to
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∞∑
n=0

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s) t

n(2.5)

= x−α
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
xα(1− axat)−(

α+s
a ) ×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1− axat)−1/a

)]

= (1− axat)−(
α+s
a )

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1− axat)−1/a

)]
,

which upon replacing t by tx−a, yields (2.1).

Proof of the second generating relation.

Again from (1.4), we have

∞∑
n=0

x−anV (p1,...,pr,q1,...,qr,α−an)
n (x; a, k1, ..., kr, y1, ..., yr, s) t

n(2.6)

= x−α
r∏

j=1

pj
Fqj

[ (
apj

)
;(

bqj
)
;
yjPkj

(x)

]
×

exp(tT a,s
x )

xα−an
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] .

Applying the operational technique (1.8), we get

∞∑
n=0

x−anV (p1,...,pr,q1,...,qr,α−an)
n (x; a, k1, ..., kr, y1, ..., yr, s) t

n(2.7)

= x−α
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
xα (1 + at)

α+s
a −1 ×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1 + at)1/a

)]

= (1 + at)
α+s
a −1

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×(2.8)

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1 + at)1/a

)]
.
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This proves (2.2).

Proof of the third generating relation.

We can write (1.4) as

(T a,s
x )

n

xα
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](2.9)

= n!xαV
(p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
or

exp (t (T a,s
x ))

(T a,s
x )

n

xα
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](2.10)

= n! exp (tT a,α
x )

xαV
(p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]


∞∑
m=0

tm

m!
(T a,s

x )
m+n

xα
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](2.11)

= n! exp (tT a,s
x )

xαV
(p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
 .

Using the operational technique (1.7), Equation (2.11) can be written as:

∞∑
m=0

tm

m!
(T a,s

x )
m+n

xα
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](2.12)

= n!xα (1− axat)
−(α+s

a ) 1
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj

(
x(1− axat)−1/a

)] ×

V (p1,...,pr,q1,...,qr,α)
n

(
x (1− axat)

−1/a
; a, k1, ..., kr, y1, ..., yr, s

)
which, upon using (2.9), gives
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∞∑
m=0

tm (m+ n)!

m!n!
xαV

(p1,...,pm,q1,...,qm,α)
m+n (x; a, k1, ..., km, y1, ..., ym, s)

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](2.13)

= xα (1− axat)
−(α+s

a ) 1
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1− axat)−1/a

)] ×

V (p1,...,pm,q1,...,qm,α)
n

(
x (1− axat)

−1/a
; a, k1, ..., km, y1, ..., ym, s

)
.

Therefore, we have

∞∑
m=0

(
m+ n

n

)
V

(p1,...,pr,q1,...,qr,α)
m+n (x; a, k1, ..., kr, y1, ..., yr, s) t

m ×(2.14)

= (1− axat)
−(α+s

a )

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj

(
x(1− axat)−1/a

)] ×

V (p1,...,pr,q1,...,qr,α)
n

(
x (1− axat)

−1/a
; a, k1, ..., kr, y1, ..., yr, s

)
.

Which, upon replacing t by tx−a, proves the result (2.3).

Remark 2.1. If we give some suitable parametric replacement in (2.1), (2.2) and
(2.3) respectively, then we can arrive at the known results (see [2, 3, 4, 5, 6, 7, 8,
9, 11, 13, 14, 16, 17]).

3. Finite Summation Formulas

First finite summation formula.

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)(3.1)

=
∞∑

m=0

1

m!
(axa)

m
(α
a

)
m
V

(p1,...,pr,q1,...,qr,0)
n−m (x; a, k1, ..., kr, y1, ..., yr, s) .

Second finite summation formula.

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)(3.2)

=

∞∑
m=0

1

m!
(axa)

m

(
α− β

a

)
m

V
(p1,...,pr,q1,...,qr,β)
n−m (x; a, k1, ..., kr, y1, ..., yr, s) .

Proof of the first finite summation formula.

From Equation (1.4), we have
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V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)(3.3)

=
1

n!
x−α

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

(T a,s
x )

n

xxα−1
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] .

Using the operational technique (1.9), we have

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)(3.4)

=
1

n!
x−α

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
x

∞∑
m=0

(
n
m

)
(T a,s

x )
n−m ×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](
T a,1
x

)m (
xα−1

)

=
1

n!
x−α

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
x

∞∑
m=0

n!

m! (n−m)!
xa(n−m) ×

[(s+ xD) (s+ a+ xD) (s+ 2a+ xD) ... (s+ (n−m− 1) a+ xD)]
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

]
xam ×

[(1 + xD) (1 + a+ xD) (1 + 2a+ xD) ... (1 + (m− 1) a+ xD)]
(
xα−1

)
.

Using the result (1.9), we have

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)(3.5)

=

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

] n∑
m=0

1

m! (n−m)!
xan ×

n−m−1∏
i=0

(s+ ia+ xD)


r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] am
(α
a

)
m
.

Put α = 0 and replacing n by n−m in (3.3), we get

V
(p1,...,pr,q1,...,qr,0)
n−m (x; a, k1, ..., kr, y1, ..., yr, s)(3.6)

=
1

(n−m)!

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

(T a,s
x )

n−m


r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] .
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⇒ 1

(n−m)!
(T a,s

x )
n−m


r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](3.7)

=
V

(p1,...,pr,q1,...,qr,0)
n−m (x; a, k1, ..., kr, y1, ..., yr, s)

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj

(x)

] .

This gives

1

(n−m)!

n−m−1∏
i=0

(s+ ia+ xD)


r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

](3.8)

= xa(m−n)V
(p1,...,pr,q1,...,qr,0)
n−m (x; a, k1, ..., kr, y1, ..., yr, s)

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

] .

From Equations (3.5) and (3.8), we have the main result.

Proof of the second finite summation formula.

Equation (1.4) can be written as

∞∑
n=0

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s) t

n(3.9)

= x−α
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

exp
(
tT (a,s)

x

)xα
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] .

Applying the (1.7) to the Equation (3.9), we have

∞∑
n=0

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s) t

n(3.10)

= x−α
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
xα (1− axat)

−(α+s
a ) ×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1− axat)−1/a

)]
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= (1− axat)
−(α+s

a )
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1− axat)−1/a

)]
.

Using the result from Equation (1.11), Equation (3.10) reduces to

∞∑
n=0

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s) t

n(3.11)

= (1− axat)
−( β+s

a )
∞∑

m=0

(
α− β

a

)
m

(axat)
m

m!

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj

(
x(1− axat)−1/a

)]

=
∞∑

m=0

(
α− β

a

)
m

(axat)
m

m!
x−β

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

exp (tT a,s
x )

xβ
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

]
=

∞∑
m=0

∞∑
n=0

(
α− β

a

)
m

(axa)
m
tn+m

m!n!
x−β

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

(T a,s
x )

n

xβ
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

]
=

∞∑
n=0

n∑
m=0

(
α− β

a

)
m

(axa)
m
tn

m! (n−m)!
x−β

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

(T a,s
x )

n−m

xβ
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] .

Now equating the coefficient of tn , we get

V (p1,...,pr,q1,...,qr,α)
n (x; a, k1, ..., kr, y1, ..., yr, s)(3.12)

=
n∑

m=0

(
α− β

a

)
m

(axa)
m

m! (n−m)!
x−β

r∏
j=1

pjFqj

[ (
apj

)
;(

bqj
)
;
yjPkj (x)

]
×

(T a,s
x )

n−m

xβ
r∏

j=1

pjFqj

[ (
apj

)
;(

bqj
)
;

− yjPkj (x)

] .

Using the Equation (1.4) in (3.12), we have the result (3.2).
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4. Special Cases

(I) If we take r = 1, then the results established in equations (2.1), (2.2), (2.3),
(3.1) and (3.2) reduce to the known results in [1].

(II) If we apply the case of Mittage-Leffler function via hypergeometric function,

i.e., Eα = 0Fα−1

(
;
1

α
,
2

α
, ...,

α− 1

α
;
z

αα
,

)
and r = 1, y1 = 1, p1 = p, q1 = q, all the

results established in Equations (2.1), (2.2), (2.3), (3.1) and (3.2) reduce to those
identities in [13].

(III) If we apply the Wright function W (α, δ; z) which is very special case of the
hypergeomtric function pFq and r = 1, y1 = 1, p1 = p, q1 = q, all the results
established in Equations (2.1), (2.2), (2.3), (3.1) and (3.2) reduce to the results in
[12].

5. Matlab implementation

In this section, we choose pj = 2; qj = 1; r = 2 to establish the program of the
sequence of functions given in equation (1.4).

5.1. Code of new sequence of functions:

function [Vn] = pgnhypergeo(sigma,alpha1,lambda,beta,mu,

delta,alpha,a,k,s,x)

%Graph of Vn(sigma,lambda,mu,alpha,a,k,s,x)V

%=Vn(sigma,lambda,mu,alpha,a,k,s,x)=(1/n!).*x.^(-beta)

%.*hypergeom([sigma,lambda],mu,x.^k).

%*hypergeom([alpha1,beta],delta,x.^k)

%.*Tn.^(a,s)(x.^a.*(s+x.*D)(x.^beta)

%.*hypergeom([sigma,lambda],mu,-x.^k)).

%*hypergeom([alpha1,beta],delta,-x.^k), where n=1,2,3,

syms x

%n=input(’please enter n:’);

n=4;

W11= hypergeom([sigma,lambda],mu,-x.^k);

W12= hypergeom([alpha1,beta],delta,-x.^k);

y=(x.^alpha).*W11.*W12;

for i=1:n

y=(x.^a).*(s.*y+x.*diff(y));

end

W21=hypergeom([sigma,lambda],mu,x.^k);

W22=hypergeom([alpha1,beta],delta,x.^k);

v=(1./factorial(n)).*(1./(x.^alpha)).*W21.*W22.*y;

Vn=subs(v,x);

end

Plot The Graph:

hold on

h1= ezplot(pgnhypergeo(1,1,1,1,1,1,1,3,1,3,x),[-.1:.05:.1]);

h2= ezplot(pgnhypergeo(3,3,3,3,3,3,1,3,1,3,x),[-.1:.05:.1]);
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h3= ezplot(pgnhypergeo(5,5,5,5,5,5,1,3,1,3,x),[-.1:.05:.1]);

h4= ezplot(pgnhypergeo(7,7,7,7,7,7,1,3,1,3,x),[-.1:.05:.1]);

title(’V_1(a,a,a,a,a,a,1,3,1,3,x);a=1,3,5,7’);ylabel(’V_1’)

xlabel(’x-axis’)

hold off

set(h1,’color’,’r’)

set(h2,’color’,’b’)

set(h3,’color’,’g’)

set(h4,’color’,’k’)

legend(’V_1(1,1,1,1,1,1,1,3,1,3,x)’,’V_1(3,3,3,3,3,3,1,3,1,3,x)’,

’V_1(5,5,5,5,5,5,1,3,1,3,x)’,’V_1(7,7,7,7,7,7,1,3,1,3,x)’)

6. Graphs:

Some graphs of new sequence of functions (1.4) are established with the help of
using the above matlab program for different values of the parameters and can be
easily interpreted, which are listed at the end of the paper.

7. Conclusion

In this paper, we have presented a new sequence of functions involving the a
product of the pFq by using operational techniques. With the help of our main
sequence formula, some generating relations and finite summation formula of the
sequence are also presented here. Our sequence formula is important due to presence
of pFq. On account of the most general nature of the pFq a large number of
sequences and polynomials involving simpler functions can be easily obtained as
their special cases but due to lack of space we can not mention here.
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Figure 1. V1(a, a, a, a, a, a, a, 2, 1, 2, x); a = 1, 3, 5, 7

Figure 2. V2(a, a, a, a, a, a, a, 2, 1, 2, x); a = 1, 3, 5, 7
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Figure 3. V3(a, a, a, a, a, a, a, 2, 1, 2, x); a = 1, 3, 5, 7

Figure 4. V4(a, a, a, a, a, a, a, 2, 1, 2, x); a = 1, 3, 5, 7
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Figure 5. V1(a, a, a, a, a, a, 1, 3, 1, 3, x); a = 1, 3, 5, 7

Figure 6. V2(a, a, a, a, a, a, 1, 3, 1, 3, x); a = 1, 3, 5, 7
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Figure 7. V2(a, b, a, a, a, a, c, 3, 1, 3, x); a = 1 : 2 : 7; b = 2 : 2 :
8; c = 3 : 6

Figure 8. V2(a, a, a, a, a, a, b, 3, 2, 3, x); a = 1, 3, 5, 7; b = 3 : 6
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Figure 9. V3(a, a, a, a, a, a, b, 3, 2, 3, x); a = 1, 3, 5, 7; b = 3 : 6


