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PARALLEL LINEAR WEINGARTEN SURFACES IN E? AND E?
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(Communicated by Sadahiro MAEDA)

ABSTRACT. In this paper we show that M is a linear Weingarten surface if
and only if M, is a linear Weingarten surface in E® and Ei"’ And also we
determine the types of the pair (M, M, ) according to the distance 7.

1. INTRODUCTION

Let M and M, be two surfaces in Euclidean space. The function

f: M = M,
p — flp)=p+rN,

is called the parallelization function between M and M, and furthermore M, is
called parallel surface to M where N is the unit normal vector field on M and r is
a given real number.

The Gaussian curvature and mean curvature of M, denoted by K, and H, are
respectively

K H+2rK
(1) E=irmrer ™ =10 m ek
where K and H are Gaussian curvature and mean curvature of M [1].

A surface M in 3-dimensional Euclidean space E3 is called a Weingarten surface
if there is a relation between its two principal curvatures ki and ko, that is, if there
is a smooth function W of two variables such that W (ky, ko) = 0 implies a relation
U(K,H) = 0. In this paper we study Weingarten surfaces that satisfy the simplest
case for U, that is, that U is of the linear type

(1.2) aH +bK =,

where a,b,c € R. We say that M is a linear Weingarten surface and we abbreviate
by LW-surface.
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The behaviour of a LW-surface and its qualitative properties strongly depend
on the sign of the distriminant A := a? + 4bc. A surface M is called hyperbolic if
A <0, elliptic if A > 0 and parabolic if A =0 [2,3]

2. PARALLEL LINEAR WEINGARTEN SURFACES IN E?

Theorem 2.1. M is a linear Weingarten surface if and only if M, is a linear
Weingarten surface in E3.

Proof. Let M be a linear Weingarten surface. Then mean curvature H and Gauss-
ian curvature K of M satisfy a relation

(2.1) aH+bK =c¢
where a,b,c € R. From (1.1) we obtain that
K H, —2rK,
K= —"-""T d H=—"—""_=~"""
1—rH, +rK, an 1—-rH, +r?K,
If we use these equations in (2.1) we get
(2.2) (a+cr)H, + (b—2ar — cr®)K, = c.

In (2.2) if we take a + c¢r = a,, b — 2ar — cr? = b, and ¢ = ¢, then
a-H,. +b. K, = c,.

So that M, is a linear Weingarten surface.
Conversely we assume that M, is a linear Weingarten surface. Then the proof
can be obtained with similar calculations. [

Theorem 2.2. Let M be a LW-surface with ¢ = 0 in E3. Then M and M, are
elliptic LW-surface.

Proof. Since A = a? > 0 and from (2.2) A, = a® > 0 then M, is an elliptic
LW-surface. O

Theorem 2.3. Let M be an elliptic LW-surface with ¢ > 0 in E3.

a) If% <—a —; 3(a? —|—bc)> <r < % <—a+§ 3(a? —|—bc)> then M, is an
elliptic LW-surface.

b) If r < % <a - % 3(a? +bc)> orr > % (a+ ; 3(a? +bc)) then M, is
a hyperbolic LW-surface.

c) Ifr= % (—a - % 3(a® + bc)> orr = % (—a + % 3(a? + bc)) then M, is
a parabolic LW-surface.
Proof. Let M be an elliptic LW-surface with ¢ > 0 in E3. From (2.2)

A, = —=3¢%r? — 6acr + A.

1 2 1
Then the roots of A, = 0 arer; = - (—a ~3 3(a? + bc)) and ry = -

<—a + ; 3(a? + bc)).

So the proof is obvious. O
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Theorem 2.4. Let M be an elliptic LW-surface with ¢ < 0 in E3.

a) If% (—a—i—; 3(a? —l—bc)) <r< % <—a—§ 3(a? —|—bc)> then M, is an
elliptic LW-surface.

b) If r < % (—a—&—g 3(a2—|—bc)> orr >
a hyperbolic LW-surface.

c) If r = % (—a+ ; 3(a? —|—bc)> orr = % (—a - % 3(a? —|—bc)> then M, is
a parabolic LW-surface.

Theorem 2.5. Let M be a hyperbolic LW-surface with ¢ # 0 in E3.
a) If a®> < —bc then M, is a hyperbolic LW-surface.
b) Let a? = —bc.

b.i) If r # —% then M, is a hyperbolic LW-surface.

b.ii) If r = —% then M, is a parabolic LW-surface.

¢) Let —bc < a® < —4be and ¢ > 0.

c.i) If% (—a - ; 3(a? + bc)) <r< % (—a—&—; 3(a? + bc)) then M, is an
elliptic LW-surface.

cu) If r < % (—a - % 3(a? —l—bc)) orr > % (—a—l—g 3(a? + bc)) then M,
is a hyperbolic LW-surface.

c.4ii) If r = % (—a — g 3(a? + bc)) orr = % (—a + ; 3(a? + bc)) then M,

is a parabolic LW-surface.
d) Let —bc < a®> < —4bc and ¢ < 0

d.i) If% (a+§ 3(a? + bc)) <r< % (a - % 3(a? + bc)) then M, is an
elliptic LW-surface.

d.ii) If r < % (a + ; 3(a? + bc)) orr > % (a - % 3(a® + bc)) then M,
is a hyperbolic LW-surface.

d.iii) If r = % (—a + % 3(a? + bc)) orr = % (—a - % 3(a? + bc)) then M,

is a parabolic LW-surface.

2
(—a —3 3(a? + bc)) then M, is

Theorem 2.6. Let M be a parabolic LW-surface with ¢ > 0 and a > 0 or c < 0
and a < 0 in E>.

2
a)lfr < 2% ory > 0 then M, is a hyperbolic LW-surface.
c
2
b) If e <r <0 then M, is an elliptic LW-surface.
c
2
c)Ifr=0orr= 2% then M, is a parabolic LW-surface.
c

Theorem 2.7. Let M be a parabolic LW-surface with ¢ > 0 and a < 0 orc < 0
and a > 0 in E>.

2
a) Ifr <0 orr> 2% then M, is a hyperbolic LW-surface.
c

2
b)) If0<r< e then M, is an elliptic LW-surface.
c
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2
c)Ifr=0orr= —Z% then M, is a parabolic LW-surface.
c

Theorem 2.8. Let M, be a LW-surface with ¢, = 0 in E3. Then M and M, are
elliptic LW-surface.

Theorem 2.9. Let M, be an elliptic LW-surface with ¢, > 0 in E>.

1 2 1 2
a) If . (a,. ~3 3(a2 + bT.c,.)> <r< . (ar + 3 3(a2 + b,.c,.)> then M, is

an elliptic LW-surface.
1 2 1 2
b) If r < — <a,« ~3 3(a2 + brcr)> orr > — <aT + 3 3(a2 + brcr)> then
c Cr

r

M, is a hyperbolic LW-surface.
1 2 1 2
c) If r = — <ar ~3 3(a2 + brcr)> orr = — <ar + 3 3(a2 + brcr)> then
c c

T ™

M, is a parabolic LW-surface.

Theorem 2.10. Let M, be an elliptic LW-surface with ¢, < 0 in E3.

a) Ifé <a,« + % 3(a2 + b,.c,n)> <r< é (a, - ; 3(a2 + b,«c,.)> then M, is
an elliptic LW-surface.

b) If r < é <ar +§ 3(a2 errcr)) orr > ci <a7, - ; 3(a2 errcr)) then
M, is a hyperbolic LW-surface.

c) If r = ci <ar +§ 3(a2 +brcr)> orr = ci <ar - ; 3(a2 +brcr)> then

T ™

M, is a parabolic LW-surface.

Theorem 2.11. Let M, be a hyperbolic LW-surface with c, # 0 in E>.
a) If a? < —b,c, then M is a hyperbolic LW-surface.
b) Let a? = —b.cr
b.i) If r # 9 then M is a hyperbolic LW-surface.
c

(a

b.ii) If r = Y then M is a parabolic LW-surface.
c

T
c¢) Let —b.c, < a? < —4b,c, and ¢, > 0.

c.i) Ifé <ar - ; 3(a2 er,,cr)) <r< é <ar + gm) then M is
an elliptic LW-surface.

ci) If r < é <ar - % 3(a2 + brcr)) orr > é (ar + ; 3(a2 + brcr)> then
M is a hyperbolic LW-surface.

1 2 1
c.4ii) If r = o (ar —3 3(a2 + brcr)> orr = .

M is a parabolic LW-surface.
d) Let —b,c, < a? < —4b,.c, and c, < 0.

1 2 1 2
d.i) If — (ar + 3 3(a2 + brcr)) <r< — (ar ~3 3(a2 + brcr)) then M is
Cr Cr
an elliptic LW-surface.

1 2 1 2
d.ii) If r < = (ar + §N/3(a3 + brcr)) orr > (ar ~3 3(aZ + brcr)) then

Cr

2
(ar + 3 3(a2 + brcr)) then

M is a hyperbolic LW-surface.
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1 2 1 2
d.iii) If r = — <ar + 3 3(a2 + brcr)> orr=— <ar ~3 3(a2 + brcr)> then
Cr Cr
M is a parabolic LW-surface.

Theorem 2.12. Let M, be a parabolic LW-surface with ¢, > 0 and a, > 0 or
¢ <0 and a, <0 in E3

2a,
a) Ifr <0 orr> a

then M is a hyperbolic LW-surface.

(a

2a,
a then M is an elliptic LW-surface.

b) If0 <7 <

r

c)Ifr=0orr=

2a,

then M is a parabolic LW-surface.

Cr
Theorem 2.13. Let M, be a parabolic LW-surface with ¢, > 0 and a, < 0 or
¢ <0 anda, >0 in E3.

a) If r < 26y
Ve

c) If r =

orr >0 then M is a hyperbolic LW-surface.
c
2a, "

<1 <0 then M is an elliptic LW-surface.

2a,
O orr =0 then M is a parabolic LW-surface.

T

Example 2.1. Let M be a sphere surface in E3 given with the equation y? + y3 +
y3 = 1. The Gaussian curvature and the mean curvature of M are respectively
K =1and H = 2. If we take a = 1 and b = 1 then we obtain from the relation
(2.1) ¢ =3 > 0. So that A, = —27r? — 18r + 13 and the roots of this equation are

_6-8V3 . _-6+8V3

ry = 13 nd 7o 13 . Therefore
-3—-4 —3+4
a) If 5 9 V3 <r< 3+4v3 then M, is elliptic.
-3-4v3 —3+4v3
b) If r < T\f or r > %[ then M, is hyperbolic.
-3-2 —3+2
c) Ifr = 3T\/§ orr = 3+T\/§ then M, is parabolic.

3. PARALLEL SURFACES IN E3
Definition 3.1. Let M be a pseudo-Euclidean surface in E} and D be the Levi-
Civita connection on E3. Then,

S x(M) = x(M), X - S(X)=DxN

is called the shape operator (Weingarten map), where N is the unit normal vector
on M [4].
Definition 3.2. Let M be a pseudo-Euclidean surface in Ef and S be shape
operator on M, for p € M, K denotes Gauss curvature of M and defined as

K: M — R

p — K(p)=edets,

where e = (N, N) = £1 and N is the unit normal vector field on M [5].
Definition 3.3. Let M be a pseudo-Euclidean surface in Ef and H denotes mean

curvature of M and defined as H = €izS, where ¢ = (N, N) = 1 and N is the
unit normal vector field on M [5].
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Note that the principal curvatures of the Weingarten map on M can be obtained
easily

2ky = H+ VH? —4eK

and

Oky = H — /H? — 4¢K.

Let M be a pseudo-Euclidean surface with N = (a1, as,a3) where each a; is
a real valued C* function on M and —a? + a3 + a} = +1. For any constant r
in R, let M, = {P+rN, : P € M}. Thus if P = (p1,p2,p3) is on M, then
f(P)=P+rN, = (p1 +rai(p),ps + raz(p),ps + raz(p)) defines a new surface M,.
The map f is called the natural map on M into M,, and if f is univalent, then M,
is a parallel surface of M with unit normal N, i.e., Ny = N, for all P in M.

Theorem 3.1. Let M and M, be two parallel pseudo-Euclidean surface in E3 and
S, be the Weingarten map on M,. Let

f:M— M,
be a parallellization function. Then for X € X(M),
1. fi(X) =X +rS(X)
2. S (fu(X) = S(X)

3. f preserves principal directions of curvature, that is

SF(0) = T £ (X)

where k is a principal curvature of M at p in direction X [4].

Theorem 3.2. Let M and M, be two parallel pseudo-Euclidean surface in E3.
Then we have

K
.1 =
(3.1) K 1+erH +er2K
and
H+2rK
(3.2) H, — e

 14erH +er2K

where (N, N,.) = ¢ and Gaussian curvature and mean curvature of M (and M,.)
be denoted by K (and K,) and H (and H,) [6].

Theorem 3.3. Let M is a reqular surface with no umbilic points and such that its
Gaussian curvature does not vanish.

If M has constant mean curvature H > 0, then there exist two surfaces parallel
to M such that one has constant positive Gaussian curvature K, = eH? and the
other one has constant mean curvature equal to —H .

If eK 1is positive constant, then there exist two surfaces parallel to M at the
distance r = £/ K whose mean curvatures are constant and equal to H = +ev/eK.

Proof. Suppose M has constant mean curvature H > 0. Substituting r = —% into
(3.1) and (3.2) we get,
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K

K, = - — =cH?
1*€EH+€mK
9
H-25K eH? — 2HK

HT - =

€ 1
1—EﬁH+€ﬁK

K

€
By assumption, we have K # 0. So the parallel surface at distance —— has

constant Gaussian cur¥ature eH?.
€
Substituting r = ;i into (3.1) and (3.2) we get,

K K _ HK
o 2e de . —H2+4eK
l—e=H+ —-K
g e
H-4°K
Hy = 2¢ = - H
l—e=H+e—K
6H —|—8H2

‘We have

—H? +4eK =0 <— —(k)l + k‘2)2 + 46(8]411](:2) = (kl — k2)2 =0<= k1 =ko
By assumption M has no umbilic points, so —H? + 4eK # 0. So the parallel

2e
surface at distance 7 has constant mean curvature —H. The rest of the theorem

can be proven with similar arguments. (]

Theorem 3.4. Let M C E3 be a reqular surface.

i) If M has non-zero Gaussian curvature and constant mean curvature H = —;,
then the parallel surface M, has constant Gaussian curvature K, = 7“%

it) If M has Gaussian curvature K # 4%“2 and constant mean curvature H = —;,
then the parallel surface Mas, has constant mean curvature Ho, = ;

iii) If M has Gaussian curvature K = 7% and constant mean curvature H #
:':275; then the parallel surface M4, has constant mean curvature Hqi, = i;
Proof. Tt H = f% then it follows from (3.1), that

1- -t er2K T
(ii) and (iii) follow from (3.1) and (3.2) in similar fashion. O

Theorem 3.5. Let M C E3 be a regular surface with constant positive curvature
ca~2 where a > 0. Let M, denote the surface parallel to M at a distance r. Suppose
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that the umbilic points of M are isolated. If M, has constant mean curvature, then
r = *a.

Proof. Fix r, and suppose that H, is constant on M,. Then (3.2) implies that

€k1(1+7”]€2)+€k2(1+7"k1) = Hr(].+7”k1)(1+7"k2)
e(ky + ko) +2ra™ = H,(1+7r(k + ko) +1r%a72).
Hence
(3.3) (ky + ko)(e —rH,) = H, + H.r?a™? — 2rea™ 2.

By hypothesis, the right hand of (3.3) is constant. But if the left hand of (3.3)
constant, it must vanish at the nonumbilic points of M,.. Hence

(3.4) e—rH, =0
at the nonumbilic points of M,.. Then (3.3) and (3.4) imply that

0 = H,+H,r*a"?—2era?

= H.(1+7r%a"?) —2era™?

_ (1 r? 2¢er
o7 a? a?
e_¢&r

r a?
Therefore, r = *a. [l

4. PARALLEL LINEAR WEINGARTEN SURFACES IN E3}

Theorem 4.1. M is a linear Weingarten surface if and only if M, is a linear
Weingarten surface in E3.

Proof. It can be proved easily following the same procedure as in the Teorem 2.1.
O

Let M (or M,) be a timelike surface. Since ¢ = 1 the Gaussian and the mean
curvature of M (or M,) are

K, H, — 2rK,
K= —m—— d H=—"_—"""
1—rH, +7rK, an 1—rH, +1r%K,
or
K H+2rK
K———  apd H = —1"%
14+rH +r2K an 1+7rH +rK

These formulas are the same for any surface in E3. Therefore Theorem 2.2, 2.3,
2.4, 2.5, 2.6, 2.7 are valid for M and Theorem 2.8, 2.9, 2.10, 2.11, 2.12, 2.13 are
valid for M, in E}.
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Because of that in this section we give the teorems for only spacelike surfaces.

Theorem 4.2. Let M be a spacelike LW-surface with ¢ = 0 in E3. Then M and
M, are elliptic LW-surface.

Theorem 4.3. Let M be a spacelike elliptic LW-surface with ¢ > 0 in E3
a) If a® < be then M is an elliptic LW-surface.
b) Let a? = be.
b.i) If r # & or then M, is an elliptic LW-surface.
c

b.ii) If r = 2 then M., is a spacelike parabolic LW-surface.
c

¢) Let a®> > be and ¢ > 0.

c.i) If E <a—§ 5(a? —bc)) <r < = (a—!—i 5(a? —bc)) then M, is an
hyperbolic cLW—surface. ‘

cii) If r < % (a—z 5(a? — bc)) orr > % <a+§ 5(a? — bc)> then M, is
an elliptic LW-surface.

cig) If r = % <a - % 5(a? — bc)> orr = % <a+ % 5(a? — bc)) then M, is
a parabolic LW-surface.

d) Let a®> > bc and ¢ < 0.

d.i) If % (a+§ 5(a? —bc)> <r < % (a—§ 5(a? —bc)> then M, is an
hyperbolic LW-surface.

d.ii) If r < % (a—i—? 5(a? — bc)) orr > % (a—? 5(a? —bc)) then M, is
an elliptic LW-surface.

1 2 1 2
d.iii) If r = - (a + R 5(a? — bc)) orr=— (a — 5(a? — bc)) then M, is
c c

a parabolic LW-surface.

Theorem 4.4. Let M be a spacelike hyperbolic LW-surface with ¢ # 0 in E3.
a) If a® < be then M, is an elliptic LW-surface.
b) Let a® = be.

b.i) If r #+ % or then M, is a elliptic LW-surface.

b.ii) If r = 2 then M, is a parabolic LW-surface.
c

¢) Let be < a? < —4bc and ¢ > 0.

1 2 1 2
c.i) If - (a R 5(a? bc)) <r < - <a+ £ 5(a? — bc)) then M, is an
c c
hyperbolic LW-surface.

1 2 1 2
ci) If r < — (a ~z 5(a? — bc)) orr > — (a-i— E 5(a? — bc)) then M, is
c c
an elliptic LW-surface.
1 2 1 2
cig) If r = — (a ~z 5(a? — bc)) orr=— (a + 3 5(a? — bc)) then M, is
c c

a parabolic LW-surface.
d) Let be < a® < —4bc and ¢ < 0.
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1 2 1 2
d.i) If p <a+5 5(a2—bc)> << (a— £ 5(@2—bc)> then M, is an

hyperbolic LW-surface.

1 2 1 2
d.ii) If r < — (a—i— E 5(a? — bc)) orr > — (a ~z 5(a? — bc)) then M, is
c c

an elliptic LW-surface.

1 2 1 2
d.iii) If r = - (a + R 5(a? — bc)) orr=— (a — 5(a? — bc)) then M, is
c

a parabolic LW-surface.

Theorem 4.5. Let M be a spacelike parabolic LW-surface with ¢ > 0 and a > 0 or
c<0anda<0 in E3.

2
a) Ifr <0 orr> ?a then M, is an elliptic LW-surface.
2
b)) If0<r< 2% then M, is a hyperbolic LW-surface.
c

2
) Ifr=0orr= ?a then M, is a parabolic LW-surface.

Theorem 4.6. Let M be a spacelike parabolic LW-surface with ¢ > 0 and a < 0 or
c<0anda>0 in E3.

2
a) If r < “ orr >0 then M, is an elliptic LW-surface.
c
2
b) If ?a <r <0 then M, is a hyperbolic W-surface.

2
c)Ifr=0orr= —a then M, is a parabolic LW-surface.
c

Theorem 4.7. Let M, be a spacelike LW-surface with ¢, = 0 in E?. Then M is
an elliptic LW-surface.

Theorem 4.8. Let M, be a spacelike elliptic LW-surface with ¢, # 0 in E3.
a) If a2 < byc, then M is an elliptic LW-surface.
b) Let a? = b,c,.
b.i) If r # 9 oy > ~ Y then M is an elliptic LW-surface.
Cr Cr

b.ii.) If r = — % then M is a parabolic LW-surface.

c) Let a? > b.c, and ¢, > 0.
1 2 1 2
ci)If — (—ar — 5(a2 — brcr)> <r< — <—ar + R 5(a2 — brcr)> then M
Cr Cr
is a hyperbolic LW-surface.
1 2 1 2
cit) If r < — ( —a, — =/5(a2 — byc,) | orr > — | —a, + =+/5(a2 — bc;)
Cr 5 Cr 5
then M is an elliptic LW-surface.
1 2 1 2
i) If r = — [ —a, — = 2 _ = (- Z 2
cur) If r o ( ar — = 5(a2 brcr)> orr = ( ar + 7 5(a2 brcr))
then M is a parabolic LW-surface.
d) Let a? > b,.c, and ¢, < 0.
. 1 2 1 2
d i) If . (—ar + E 5(a2 — brcT)> <r< - (—ar —F 5(a2 — brcr)> then
M is a hyperbolic LW-surface.
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1 2 1 2
d.ii) If r < — <—ar + £ 5(a2 — brcr)) orr > — <—ar —F 5(a2 — brcr))
Cr cr
then M is an elliptic LW-surface.

1 2 1 2
d.iii) If r = - (—a,« + 5\/5((1% - b,,cr)> orr = . (—ar ~ 5(a2 — brcr))

then M is a parabolic LW-surface.

Theorem 4.9. Let M, be a spacelike hyperbolic LW-surface with ¢, # 0 in E}.
a) If a2 < byc, then M is an elliptic LW-surface.
b) Let a? = b,.c,.
b.i) If r < —2 orr > =2 then M s an elliptic LW-surface.
T Cr

b.ii) If r = ~ % then M is a parabolic LW-surface.
c

¢) Let byc, < a? < —4b,c, and ¢, > 0.

ci) Ifé (—ar - % 5(a2 — brcT)) <r< i <—ar + % 5(aZ — chT)> then M
is a hyperbolic LW-surface.

cu) If r < é (—ar — % 5(a2 — chT)) orr > é (—ar + % 5(a2 — brcr))
then M is an elliptic LW-surface.

c.4ii) If r = é (—ar - % 5(a2 — b,«cr)> orr =
then M is a parabolic LW-surface.

d) Let a? > b,.c, and ¢, < 0.

1 2 1 2
d i) If . (ar + g 5(a2 — brcr)) <r<— <ar 5 5(a2 — brcr)> then

2
(—ar + £ 5(a2 — brcr))

1
cr

M is a hyperbolic LW-surface.
1 2 1 2
d.ii) If r < — <ar + £ 5(a2 — brcr)) orr > — (ar —F 5(a2 — brcr))
Cr Cr
then M is an elliptic LW-surface.

1 2 1 2
d.iii) If r = - (—a,« + g\/5(a% - chT)> orr = . (—ar — 5(a2 — brcr)>

then M, is a parabolic LW-surface.

Theorem 4.10. Let M, be a spacelike parabolic LW-surface with ¢, > 0 and a, > 0
orc. <0 and a, <0 mE?
2a, . o
a)lf r < — & o > 0 then M is an elliptic LW-surface.
2a, . .
b) If — a4 < r <0 then M is a hyperbolic LW-surface.

T
cr

2a,

c)r=0orr=— then M is a parabolic LW-surface.

Cr
Theorem 4.11. Let M, be a spacelike parabolic LW-surface with ¢, > 0 and a, <0

or ¢, <0 and a, > 0 in E3.
2a,

a) Ifr<0orr>— then M is an elliptic LW-surface.

cr
2a, . .
b)) Ifo<r<— Y then M is a hyperbolic LW-surface.
C/I"
2a, . ,
) Ifr=0orr=— O then M is a parabolic LW-surface.

cr
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