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Abstract. Burst errors are very common in practice. There have been many

designs in order to control and correct such errors. Recently, a new class

of byte error control codes called spotty byte error control codes has been
specifically designed to fit the large capacity memory systems that use high-

density random access memory (RAM) chips with input/output data of 8, 16,

and 32 bits. The MacWilliams identity describes how the weight enumerator
of a linear code and the weight enumerator of its dual code are related. Also,

Lee metric which has attracted many researchers due to its applications. In

this paper, we combine these two interesting topics and introduce the m-spotty
generalized Lee weights and the m-spotty generalized Lee weight enumerators

of a code over Zq and prove a MacWilliams type identity. This generalization

includes both the case of the identity given in the paper [I. Siap, MacWilliams
identity for m-spotty Lee weight enumerators, Appl. Math. Lett. 23 (1)

(2010) 13-16] and the identity given in the paper [M. Özen, V. Şiap, The
MacWilliams identity for m-spotty weight enumerators of linear codes over

finite fields, Comput. Math. Appl. 61 (4) (2011) 1000-1004] over Z2 and Z3

as special cases.

1. Introduction

Large-capacity high-speed memory systems often adopt high-density RAM chips
with wide input/output data. Because of their high-density nature, these RAM
chips are strongly vulnerable to α−particles, neutrons, and so forth. In particular,
the large-capacity memory systems need to be protected from high-energy neutrons
and cosmic rays. Because of these facts, in order to be able to correct multiple errors
a new spotty byte error called m-spotty byte error is introduced in [1] for binary
codes. Construction of codes correcting byte errors and properties of such codes
are also studied. Some of the related work can be found in [2], [3]. However,
the Lee metric was developed as an alternative to the Hamming metric for certain
noisy channels that use phase-shift keying modulation [4]. The literature on codes
in the Lee metric is very extensive, e.g. [4], [5], [6]. The interest in Lee codes
has been increased in the last decade due to many new and diverse applications
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of these codes. Some examples are multidimensional burst-error-correction [7], and
error-correction for flash memories [8]. So, we combine these two interesting topics,
Lee weight and m-spotty. Recently, Suzuki et al. proved the MacWilliams for m-
spotty weight enumerator of m-spotty byte error control codes and the MacWilliams
identity for the Hamming weight enumerator as a special case [9]. Siap adopted a
definition similar to Hamming definition given in [9] for m-spotty Lee weights and
proved the MacWilliams identity for m-spotty Lee weight enumerators [10]. Then,

Özen and Şiap extended the definition of m-spotty weights originally introduced in
[9] for binary codes to codes over finite fields and proved the MacWilliams identity
for m-spotty enumerators of linear codes over finite fields [11]. In this paper, we
introduce the m-spotty generalized Lee weights and the m-spotty generalized Lee
weight enumerators of a code over Zq and prove a MacWilliams type identity. Also,
we show that this identity is a general of both identities given in [10] and in [11]
over Z2 and Z3.

Let Zq be the ring of integers modulo q. Let Fnq be set of all n−tuples over Zq.
Then, Fnq is a module over Zq. Let F be a submodule of the module Fnq over Zq.
For q prime, Zq becomes a field and correspondingly Fnq and F become vector space
and subspace respectively over the field Zq. Also, we define modular value |c| of an
element c ∈ Zq by

(1.1) |c| =
{

c if 0 ≤ c ≤ q/2
q − c if q/2 < c ≤ q − 1,

and then a given vector c = (c0, c1, ..., cn−1) , ci ∈ Zq, the generalized Lee weight
[12] wGL (c) of c is given by

(1.2) wGL (c) =

n−1∑
i=0

|ci| .

The generalized Lee distance dGL between two vectors u and v is defined as the
generalized Lee weight of their difference vector, i.e.

(1.3) dGL (u, v) = wGL (u− v) .

Observation. Over Z2 and Z3, generalized Lee weight (distance) coincides with
Hamming weight (distance).

Let c = (c11, c12, ..., c1b, ..., cn1, cn2, ..., cnb) ∈ Znbq be a codeword of N = nb. The
first byte of c is the first b entries denoted by (c11, c12, ..., c1b) . Hence, the ith byte
of c will be denoted by ci = (ci1, ci2, ..., cib) .

Definition 1.1. [2] An error is called a t/b−error if t or fewer bits within a b−bit
byte are in error, where 0 ≤ t ≤ b.
Definition 1.2. [13] An error is called an m-spotty byte error if at least one
t/b−error is present in a byte.

Now, we extend the definition of m-spotty weights originally introduced in [10]
from codes over Z4 to codes over Zq.
Definition 1.3. Let e ∈ ZNq be an error vector and ei ∈ Zbq be the ith byte of e
where 1 ≤ i ≤ n. The number of t/b− errors in e, denoted by wMGL (e) , and called
m-spotty generalized weight is defined as

(1.4) wMGL (e) =

n∑
i=1

⌈
wGL (ei)

t

⌉
,
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where dxe shows the smallest integer larger than or equal to x. If t = 1, this weight,
defined by wMGL, is equal to the generalized Lee weight.

Definition 1.4. Let c and v be codewords of m-spotty byte error control code C.
Here, ci and vi are the ith bytes of c and v, respectively. Then, m-spotty generalized
distance between c and v, denoted by dMGL (c, v), is defined as follows:

(1.5) dMGL (c, v) =

n∑
i=1

⌈
dGL (ci, vi)

t

⌉
.

It is also straightforward to show that this distance is a metric in ZNq .

2. The MacWilliams identity

One of the most important results in coding theory is the MacWilliams identity
which relates the weight enumerator of a linear code C to the weight enumerator
of C⊥. Hence knowing the weight enumerator of one of these codes enables one to
determine the weight enumerator, and hence the weight distribution, of the other.
This is useful in practice if, for example, one of C and C⊥ is substantially smaller
than the other, and the weight enumerator of the larger is required. One can
determine the weight enumerator of the smaller code, perhaps even by exhaustive
methods, and then, from this, obtain the (more difficult to determine directly)
weight enumerator of the larger code by using the MacWilliams identity [14].

Let c = (c1, c2, ..., cN ) and v = (v1, v2, ..., vN ) be two elements of ZNq . The inner
product of c and v, denoted by 〈c, v〉 , is defined as follows:

(2.1) 〈c, v〉 =

n∑
i=1

〈ci, vi〉 =

n∑
i=1

 b∑
j=1

cijvij

.
Here, 〈ci, vi〉 =

b∑
j=1

cijvij denotes the inner product of ci and vi. Also, cij and vij

are the jth bits of ci and vi, respectively.
The following lemma plays an important role in obtaining the main theorem.

Lemma 2.1. [14] Let f be a function defined on Znbq . We define

(2.2) f̃ (c) =
∑
v∈Znbq

χ (〈c, v〉) f (v), c ∈ Znbq .

Here, χ is a character of Zq and defined by χ (a) = ξa, a ∈ Zq, where ξ = e2πi/q.

Then, the following relation holds between f (v) and f̃ (c) :

(2.3)
∑
v∈C⊥

f (v) =
1

|C|
∑
c∈C

f̃ (c),

where the dual code is C⊥ =
{
v ∈ Znbq : 〈c, v〉 = 0 for all c ∈ C

}
.

Let αi,k = # {j : cij = k} . That is, αi,k, 0 ≤ k ≤ q − 1, is the number of entries
in ci that equal to k. Here, ci is the ith byte of c and cij is the jth bit of ci. The gen-
eralized Lee weight distribution vector S (ci) = (αi,0, αi,1, ..., αi,q−1) is determined
uniquely for the codeword c. For example, let c = (0, 0, 1, 5, 4, 4, 0, 3, 5, 5, 3, 2) ∈
Z12

6 be a codeword with byte b = 4. Then, the generalized Lee weight distri-
bution vectors are S (c1) = (2, 1, 0, 0, 0, 1) , S (c2) = (1, 0, 0, 1, 2, 0) and S (c3) =
(0, 0, 1, 1, 0, 2) .
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Definition 2.1. The weight enumerator for m-spotty byte error control code C is
defined as

(2.4) W (z) =
∑
c∈C

zwMGL(c).

The following theorem holds for the weight enumerator W (z) of the code and
that of the dual code C⊥, expressed as W⊥ (z) .

Theorem 2.1. Let C be a linear code over Zq. The relation between the m-spotty
generalized Lee enumerators of C and its dual is given

(2.5) W⊥ (z) =
1

|C|
∑
c∈C

f̃ (c) =
1

|C|
∑
c∈C

n∏
i=1

(
V

(t,q)
S (z)

)
,

where
(2.6)

V
(t,q)
S (z) =

q−1∏
k=0

∑
q−1∑
l=0

βki,l=αi,k

(
αi,k!

βki,0!βki,1!βki,2!...βki,q−1!

)(
e

2πi
q

)(k q−1∑
l=0

l.βki,l

)
z

⌈(
q−1∑
l=0

|l|.βki,l

)/
t

⌉

and S (ci) = (αi,0, αi,1, ..., αi,q−1) .

Proof. Using Lemma 2.1, we set f (v) =
∏n
i=1 z

dwGL(vi)/te where vi denotes the
ith byte of v. Then,

f̃ (c) =
∑
v∈Znbq

χ (〈c, v〉)
n∏
i=1

zdwGL(vi)/te =
∑
v∈Znbq

χ (〈c1, v1〉+ ...+ 〈cn, vn〉)
n∏
i=1

zdwGL(vi)/te

=
∑
v1∈Zbq

· · ·
∑
vn∈Zbq

(
n∏
i=1

χ (〈ci, vi〉) zdwGL(vi)/te

)
=

n∏
i=1

∑
vi∈Zbq

χ (〈ci, vi〉) zdwGL(vi)/te

.
Here, ci is fixed and the sum

∑
vi∈Zbq

χ (〈ci, vi〉) zdwGL(vi)/te runs over all vi ∈ Zbq.
Therefore, we categorize the components of vi with respect to the fixed vector ui in
the following way. Let βki,0, β

k
i,1, ..., β

k
i,q−1 be the numbers of components of vi with

value zero, one,...,q−1 respectively that share the same index with the components
of ci whose number equals to αi,k.

For example, let c = (0, 0, 1, 5, 4, 4, 0, 3, 5, 5, 3, 2) ∈ Z12
6 with b = 4. Suppose

that v = (0, 0, 1, 3, 4, 0, 0, 1, 2, 2, 3, 2) ∈ Z12
6 , where v1 = (0, 0, 1, 3) , v2 = (4, 0, 0, 1) ,

and v3 = (2, 2, 3, 2) . Then, the corresponding values of v1 are β1
1,0 = 2, β1

1,1 =

1, β5
1,3 = 1, and all other cases are equal to zero. The corresponding values of v2

are β4
2,4 = 1, β4

2,0 = 1, β0
2,0 = 1, β3

2,1 = 1, and the remaining values are equal to

zero. Finally, the corresponding values of v3 are β5
3,2 = 2, β3

3,3 = 1, β2
3,2 = 1, and

the remaining values are equal to zero.
The inner product defined in (2.1) can be interpreted as∑b

j=1
cijvij =

∑q−1

k=0

(
k
∑q−1

l=0
l.βki,l

)
.

However, the generalized Lee weight of vi given in (1.2) is equal to
∑q−1
k=0

(∑q−1
l=0 |l| .βki,l

)
.
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Next, we can split the sum according to the index set of each fixed b− byte
components ci and by interpreting the inner sum accordingly, we have

f̃ (c) =

n∏
i=1

q−1∏
k=0

∑
q−1∑
l=0

βki,l=αi,k

(
αi,k!

βki,0!βki,1!...βki,q−1!

)(
e

2πi
q

)(k q−1∑
l=0

l.βki,l

)
z

⌈(
q−1∑
l=0

|l|.βki,l

)/
t

⌉
.

Corollary 2.1. The MacWilliams identity given in [10] is a special case of Theorem
2.1.

Proof. If we take q = 4 in Theorem 2.1, the proof is complete.

Corollary 2.2. Theorem 2.1 coincides with the MacWillams identity given in [11]
over Z2 and Z3.

Proof. Since the generalized Lee weight (distance) coincides with Hamming
weight (distance) over Z2 and Z3, the proof is complete.

Example 2.1. Let

G =

(
1 0 0 0 0 0
0 3 0 0 0 0

)
be the generator matrix of a linear code C over Z6. C has 12 codewords. The dual
code of C is a linear code over Z6 and it has 3888 codewords.

Now, we first demonstrate how to apply the formulae. It is clear that the code-
word c = (1, 3, 0, 0, 0, 0) belongs to C. Let b = 3 and t = 2. Then, c = (c1, c2) .
The generalized Lee weight distribution vectors corresponding to c1 and c2 are
S (c1) = (1, 1, 0, 1, 0, 0) and S (c2) = (3, 0, 0, 0, 0, 0) , respectively. The generalized
Lee weight distribution vectors of the codewords in the code C, and polynomials

V
(2,6)
S for t = 2 and q = 6 are shown in Table 1 for the necessary computations to

apply to the main theorem.
By Eq. (1.4), we obtain the m−spotty generalized Lee weight enumerator of C

as

(2.7) W (z) = 1 + 4z + 4z2 + 3z3.

By Theorem 2.1 and Table 1, we get

W⊥ (z) =
1

|C|
∑
c∈C

2∏
i=1

(
V

(2,6)
S (z)

)(2.8)

= 1 + 30z + 236z2 + 799z3 + 1317z4 + 1058z5 + 388z6 + 57z7 + 2z8.

In Table 1, a = 1+24z+83z2+83z3+24z4+z5, b = 1+4z+z2−z3−4z4−z5, c =
1+16z+19z2−19z3−16z4−z5, d = 1−z2−z3 +z5, e = 1+6z−7z2−7z3 +6z4 +z5,
and f = 1− 2z + z2 − z3 + 2z4 − z5.

3. Conclusion

In this paper, we prove a MacWilliams type identity for m−spotty generalized
Lee weight enumerators over Zq. Further, we show that this identity is a general
case of the identities given in [10] and in [11] over Z2 and Z3. Finally, we conclude
the paper by giving an illustration of the main theorem.
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Codewords S (c1) , S (c2) V
(2,6)
S (z) = V

(2,6)
S(c1) (z)V

(2,6)
S(c2) (z)

(0, 0, 0, 0, 0, 0) (3, 0, 0, 0, 0, 0) , (3, 0, 0, 0, 0, 0) a2

(0, 3, 0, 0, 0, 0) (2, 0, 0, 1, 0, 0) , (3, 0, 0, 0, 0, 0) ba
(1, 0, 0, 0, 0, 0) (2, 1, 0, 0, 0, 0) , (3, 0, 0, 0, 0, 0) ca
(1, 3, 0, 0, 0, 0) (1, 1, 0, 1, 0, 0) , (3, 0, 0, 0, 0, 0) da
(2, 0, 0, 0, 0, 0) (2, 0, 1, 0, 0, 0) , (3, 0, 0, 0, 0, 0) ea
(2, 3, 0, 0, 0, 0) (1, 0, 1, 1, 0, 0) , (3, 0, 0, 0, 0, 0) fa
(3, 0, 0, 0, 0, 0) (2, 0, 0, 1, 0, 0) , (3, 0, 0, 0, 0, 0) ba
(3, 3, 0, 0, 0, 0) (1, 0, 0, 2, 0, 0) , (3, 0, 0, 0, 0, 0) da
(4, 0, 0, 0, 0, 0) (2, 0, 0, 0, 1, 0) , (3, 0, 0, 0, 0, 0) ea
(4, 3, 0, 0, 0, 0) (1, 0, 0, 1, 1, 0) , (3, 0, 0, 0, 0, 0) fa
(5, 0, 0, 0, 0, 0) (2, 0, 0, 0, 0, 1) , (3, 0, 0, 0, 0, 0) ca
(5, 3, 0, 0, 0, 0) (1, 0, 0, 1, 0, 1) , (3, 0, 0, 0, 0, 0) da

Table 1. The codewords and their corresponding expressions.
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