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Abstract. Our aim in this paper is to introduce some idea about general-

ized relative Nevanlinna order (α, β) and generalized relative Nevanlinna type
(α, β) of an analytic function with respect to another analytic function in the

unit disc where α and β are continuous non-negative functions on (−∞,+∞).

So we discuss about some growth properties relating to the composition of two
analytic functions in the unit disc on the basis of generalized relative Nevan-

linna order (α, β) and generalized relative Nevanlinna type (α, β) as compared

to the growth of their corresponding left and right factors.

1. Introduction

A function g which is analytic in the unit disc U = {z : |z| < 1} is said to
have finite Nevanlinna order [1] if there exists a number µ for which the Nevanlinna

characteristic function Tg (r) of g satisfies Tg (r) < (1− r)
−µ

for all r in 0 < r0 (µ) <
r < 1 where Tg (r) is defined as

T (r, g) =
1

2π

2π∫
0

log+
∣∣g (reiθ)∣∣ dθ

where log+ r = max(0, log r).
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The infimum of all such numbers µ is called the Nevanlinna order of g. Hence
the Nevanlinna order ρ(g) of g is formulated as

ρ(g) = lim sup
r→1

log Tg (r)

− log (1− r)
.

Similarly, the Nevanlinna lower order λ(g) of g is formulated as

λ(g) = lim inf
r→1

log Tg (r)

− log (1− r)
.

Now let L be a class of continuous non-negative functions α defined on (−∞,∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ ∞ as x → ∞. Also through-
out the present paper we take α, β ∈ L. Considering the above, Sheremeta [5]
introduced the concept of generalized order (α, β) of an entire function. During the
past decades, several authors made close investigations on the properties of entire
functions related to generalized order (α, β) in some different directions. For the
purpose of further applications, Biswas et al. [2] have introduced the definitions
of the generalized Nevanlinna order (α, β) and generalized Nevanlinna lower order
(α, β) of an analytic function g in the unit disc U which are as follows:

Definition 1. [2] The generalized Nevanlinna order (α, β) denoted by ρ(α,β)[g]

and generalized Nevanlinna lower order (α, β) denoted by λ(α,β)[g] of an analytic
function g in the unit disc U are defined as:

ρ(α,β)[g] = lim sup
r→1

α(exp(Tg(r)))

β
(

1
1−r

) and λ(α,β)[g] = lim inf
r→1

α(exp(Tg(r)))

β
(

1
1−r

) .

Clearly ρ(log log r,log r)[g] = ρ (g) and λ(log log r,log r)[g] = λ (g) .
Now we can introduce the definitions of the generalized relative Nevanlinna order

(α, β) and generalized relative Nevanlinna lower order (α, β) of an analytic function
g with respect to another entire function w in the unit disc U which are as follows:

Definition 2. The generalized relative Nevanlinna order (α, β) denoted by ρ(α,β)[g]w
and generalized relative Nevanlinna lower order (α, β) denoted by λ(α,β)[g]w of an
analytic function g with respect to another entire function w in the unit disc U are
defined as:

ρ(α,β)[g]w = lim sup
r→1

α
(
T−1
w (Tg(r))

)
β
(

1
1−r

) and λ(α,β)[g]w = lim inf
r→1

α
(
T−1
w (Tg(r))

)
β
(

1
1−r

) .

The previous definitions are easily generated as particular cases, e.g. if w = z,
then Definition 2 reduces to Definition 1, and if α(r) = β(r) = log r and w(z) =
exp z, then ρ(α,β)[g]w = ρ(g) and λ(α,β)[g]w = λ(g).

Now one may give the definitions of generalized relative Nevanlinna hyper order
(α, β) and generalized relative Nevanlinna logarithmic order (α, β) of an analytic
function g with respect to another entire function w in the unit disc U in the
following way:
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Definition 3. The generalized relative Nevanlinna hyper order (α, β) denoted by
ρ(α,β)[g]w and generalized relative Nevanlinna hyper lower order (α, β) denoted by

λ(α,β)[g]w of an analytic function g with respect to entire function w in the unit
disc U are defined as:

ρ(α,β)[g]w = lim sup
r→1

α(log
(
T−1
w (Tg(r))

)
)

β
(

1
1−r

) and λ(α,β)[g]w = lim inf
r→1

α(log
(
T−1
w (Tg(r))

)
)

β
(

1
1−r

) .

Definition 4. The generalized relative Nevanlinna logarithmic order (α, β) denoted
by ρ

(α,β)
[g]w and generalized relative Nevanlinna logarithmic lower order (α, β)

denoted by λ(α,β)[g]w of an analytic function g with respect to entire function w in
the unit disc U are defined as:

ρ
(α,β)

[g]w = lim sup
r→1

α
(
T−1
w (Tg(r))

)
β
(
log

(
1

1−r

)) and λ(α,β)[g]w = lim inf
r→1

α
(
T−1
w (Tg(r))

)
β
(
log

(
1

1−r

)) .

Now in order to refine the growth scale namely the generalized relative Nevan-
linna order (α, β), we introduce the definitions of another growth indicators, called
generalized relative Nevanlinna type (α, β) and generalized relative Nevanlinna
lower type (α, β) respectively of an analytic function g with respect to entire func-
tion w in the unit disc U which are as follows:

Definition 5. The generalized relative Nevanlinna type (α, β) and generalized rel-
ative Nevanlinna lower type (α, β) of an analytic function g with respect to entire
function w in the unit disc U having finite positive generalized relative Nevanlinna

order (α, β)
(
0 < ρ(α,β)[g]w < ∞

)
are defined as :

σ(α,β)[g]w = lim sup
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))ρ(α,β)[g]w

and σ(α,β)[g]w = lim inf
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))ρ(α,β)[g]w
.

It is obvious that 0 ≤ σ(α,β)[g]w ≤ σ(α,β)[g]w ≤ ∞.

Analogously, to determine the relative growth of two analytic functions in the
unit disc U having same non zero finite generalized relative Nevanlinna lower order
(α, β), one can introduced the definition of generalized relative Nevanlinna weak
type (α, β) and generalized relative Nevanlinna upper weak type (α, β) of an ana-
lytic function g with respect to entire function w in the unit disc U of finite positive
generalized relative Nevanlinna lower order (α, β) , λ(α,β)[g]w in the following way:

Definition 6. The generalized Nevanlinna upper weak type (α, β) and generalized
Nevanlinna weak type (α, β) of an analytic function g with respect to entire function
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w in the unit disc U having finite positive generalized relative Nevanlinna lower
order (α, β)

(
0 < λ(α,β)[g]w < ∞

)
are defined as :

τ (α,β)[g]w = lim sup
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))λ(α,β)[g]w

and τ (α,β)[g]w = lim inf
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))λ(α,β)[g]w
.

It is obvious that 0 ≤ τ (α,β)[g]w ≤ τ (α,β)[g]w ≤ ∞.
In this paper we study some growth properties relating to the composition of two

analytic functions in the unit disc on the basis of generalized relative Nevanlinna
order (α, β), generalized relative Nevanlinna hyper order (α, β), generalized relative
Nevanlinna logarithmic order (α, β), generalized relative Nevanlinna type (α, β)
and generalized relative Nevanlinna weak type (α, β) as compared to the growth
of their corresponding left and right factors. Also the standard definitions and
notations relating to the theory of entire functions are not explained here, as those
are available in [1], [3] and [4].

2. Main Results

In this section, the main results of the paper are presented.

Theorem 1. Let g be an analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < λ(α,β)[g(h)]w ≤ ρ(α,β)[g(h)]w < ∞ and

0 < λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞. Then

λ(α,β)[g(h)]w

ρ(α,β)[g]k
≤ lim inf

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤ min

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}

≤ max

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}
≤ lim sup

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w

λ(α,β)[g]k
.

Proof. From the definitions of λ(α,β)[g(h)]w, ρ(α,β)[g(h)]w, λ(α,β)[g]k, ρ(α,β)[g]k and

we have for arbitrary positive ε and for all sufficiently large values of 1
1−r that

α
(
T−1
w (Tg(h)(r))

)
⩾

(
λ(α,β)[g(h)]w − ε

)
β((1− r)−1), (1)

α
(
T−1
w (Tg(h)(r))

)
≤

(
ρ(α,β)[g(h)]w + ε

)
β((1− r)−1), (2)

α
(
T−1
k (Tg(r))

)
⩾

(
λ(α,β)[g]k − ε

)
β((1− r)−1) (3)

and α
(
T−1
k (Tg(r))

)
≤

(
ρ(α,β)[g]k + ε

)
β((1− r)−1). (4)

Again for a sequence of values of 1
1−r tending to infinity,

α
(
T−1
w (Tg(h)(r))

)
≤

(
λ(α,β)[g(h)]w + ε

)
β((1− r)−1), (5)
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α
(
T−1
w (Tg(h)(r))

)
⩾

(
ρ(α,β)[g(h)]w − ε

)
β((1− r)−1), (6)

α
(
T−1
k (Tg(r))

)
≤

(
λ(α,β)[g]k + ε

)
β((1− r)−1) (7)

and α
(
T−1
k (Tg(r))

)
⩾

(
ρ(α,β)[g]k − ε

)
β((1− r)−1). (8)

Now from (1) and (4) it follows for all sufficiently large values of 1
1−r that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
λ(α,β)[g(h)]w − ε

ρ(α,β)[g]k + ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
λ(α,β)[g(h)]w

ρ(α,β)[g]k
, (9)

which is the first part of the theorem.
Combining (5) and (3) , we have for a sequence of values of 1

1−r tending to infinity
that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
λ(α,β)[g(h)]w + ε

λ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary it follows that

lim inf
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
λ(α,β)[g(h)]w

λ(α,β)[g]k
. (10)

Again from (1) and (7), for a sequence of values of 1
1−r tending to infinity, we

get

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≥
λ(α,β)[g(h)]w − ε

λ(α,β)[g]k + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≥
λ(α,β)[g(h)]w

λ(α,β)[g]k
. (11)

Now, it follows from (3) and (2) , for all sufficiently large values of 1
1−r that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w + ε

λ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w

λ(α,β)[g]k
. (12)

Which is the last part of the theorem.
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Now from (2) and (8) , it follows for a sequence of values of 1
1−r tending to

infinity that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w + ε

ρ(α,β)[g]k − ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w

ρ(α,β)[g]k
. (13)

So combining (4) and (6) , we get for a sequence of values of 1
1−r tending to

infinity that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
ρ(α,β)[g(h)]w − ε

ρ(α,β)[g]k + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
ρ(α,β)[g(h)]w

ρ(α,β)[g]k
. (14)

So, the second part of the theorem follows from (10) and (13) ,the third part is
trivial and fourth part follows from (11) and (14) .

Thus the theorem follows from (9) , (10) , (11), (12) , (13) and (14) . □

Remark 1. If we take “0 < λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” instead of “0 <

λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞” and other conditions remain same, the conclusion

of Theorem 1 remains true with “λ(α,β)[g]k”, “ρ(α,β)[g]k” and “α
(
T−1
k (Tg(r))

)
”

replaced by “λ(α,β)[h]k”, “ρ(α,β)[h]k” and “α
(
T−1
k (Th(r))

)
” respectively in the de-

nominator.

Theorem 2. Let g be an analytic function and h,w and k be non-constant en-
tire functions in the unit disc U such that 0 < λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞ and

λ(α,β)[g(h)]w = ∞. Then

lim
r→1

α(T−1
w (Tg(h)(r)))

α(T−1
k (Tg(r)))

= ∞.

Proof. If possible, let the conclusion of the theorem does not hold. Then we can
find a constant ∆ > 0 such that for a sequence of values of 1

1−r tending to infinity

α(T−1
w (Tg(h)(r))) ≤ ∆ · α(T−1

k (Tg(r))). (15)

Again from the definition of ρ(α,β)[g]k, it follows for all sufficiently large values of
1

1−r that

α(T−1
k (Tg(r))) ≤ (ρ(α,β)[g]k + ϵ)β(

1

1− r
). (16)
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From (15) and (16), for a sequence of values of r tending to 1,we have

α(T−1
w (Tg(h)(r))) ≤ ∆(ρ(α,β)[g]k + ϵ)β(

1

1− r
)

i.e.,
α(T−1

w (Tg(h)(r)))

β( 1
1−r )

≤ ∆(ρ(α,β)[g]k + ϵ)

i.e., lim inf
r→1

α(T−1
w (Tg(h)(r)))

β( 1
1−r )

= λ(α,β)[g(h)]w < ∞.

This is a contradiction. □

Thus the theorem follows.

Remark 2. If we take “0 < λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” instead of “0 <

λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” and other conditions remain same, the conclusion

of Theorem 2 remains true with “α(T−1
k (Tg(r)))” replaced by “α(T−1

k (Th(r)))” in
the denominator.

Remark 3. Theorem 2 and Remark 2 are also valid with “limit superior” instead
of “limit” if “λ(α,β)[g(h)] = ∞” is replaced by “ρ(α,β)[g(h)] = ∞” and the other
conditions remain the same.

We may now state the following theorem without proof based on Definition 3.

Theorem 3. Let g be an analytic function and h,w and k be non-constant en-
tire functions in U such that 0 < λ(α,β)[g(h)]w ≤ ρ(α,β)[g(h)]w < ∞ and 0 <

λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞. Then

λ(α,β)[g(h)]w

ρ(α,β)[g]k
≤ lim inf

r→1

α(log
(
T−1
w

(
T

g(h)
(r)

))
)

α(log
(
T−1
k (Tg(r)

)
))

≤ min

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}

≤ max

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}
≤ lim sup

r→1

α(log
(
T−1
w

(
T

g(h)
(r)

))
)

α(log
(
T−1
k (Tg(r)

)
))

≤
ρ(α,β)[g(h)]w

λ(α,β)[g]k
.

Remark 4. If we take “0 < λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” instead of “0 <

λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞” and other conditions remain same, the conclusion of

Theorem 3 remains true with “λ(α,β)[g]k”, “ρ(α,β)[g]k” and “α(log
(
T−1
k (Tg(r)

)
))”

replaced by “λ(α,β)[h]k”, “ρ(α,β)[h]k” and “α(log
(
T−1
k (Th(r)

)
))” respectively in the

denominator.

We may now state the following theorem without proof based on Definition 4.

Theorem 4. Let g be an analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < λ(α,β)[g(h)]w ≤ ρ

(α,β)
[g(h)]w < ∞ and

0 < λ(α,β)[g]k ≤ ρ
(α,β)

[g]k < ∞. Then
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λ(α,β)[g(h)]w

ρ
(α,β)

[g]k
≤ lim inf

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤ min

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ
(α,β)

[g(h)]w

ρ
(α,β)

[g]k

}

≤ max

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ
(α,β)

[g(h)]w

ρ
(α,β)

[g]k

}
≤ lim sup

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ
(α,β)

[g(h)]w

λ(α,β)[g]k
.

Remark 5. If we take “0 < λ(α,β)[h]k ≤ ρ
(α,β)

[h]k < ∞” instead of “0 <

λ(α,β)[g]k ≤ ρ
(α,β)

[g]k < ∞” and other conditions remain same, the results of The-

orem 4 remain true with “λ(α,β)[g]k”, “ρ(α,β)[g]k” and “α
(
T−1
k (Tg(r))

)
” replaced

by “λ(α,β)[h]k”, “ρ(α,β)[h]k” and “α
(
T−1
k (Th(r))

)
” respectively in the denominator.

Theorem 5. Let g be an analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < σ(α,β)[g(h)]w ≤ σ(α,β)[g(h)]w < ∞, 0 <
σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞ and ρ(α,β)[g(h)]w = ρ(α,β)[g]k. Then

σ(α,β)[g(h)]w

σ(α,β)[g]k
≤ lim inf

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤ min

{
σ(α,β)[g(h)]w

σ(α,β)[g]k
,
σ(α,β)[g(h)]w

σ(α,β)[g]k

}
≤ max

{
σ(α,β)[g(h)]w

σ(α,β)[g]k
,
σ(α,β)[g(h)]w

σ(α,β)[g]k

}
≤ lim sup

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
.

Proof. From the definitions of σ(α,β)[g]k, σ(α,β)[g]k, σ(α,β)[g(h)]w and σ(α,β)[g(h)]w,

we have for arbitrary positive ε and for all sufficiently large values of 1
1−r that

exp(α(T−1
w

(
Tg(h)(r))

)
) ≥

(
σ(α,β)[g(h)]w − ε

)
(exp(β((1− r)−1)))ρ(α,β)[g(h)]w , (17)

exp(α(T−1
k (Tg(r)))) ≤

(
σ(α,β)[g]k + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (18)

exp(α(T−1
k (Tg(r)))) ≥

(
σ(α,β)[g]k − ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (19)

exp(α(T−1
w

(
Tg(h)(r))

)
) ≤

(
σ(α,β)[g(h)]w + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g(h)]w . (20)

Again for a sequence of values of 1
1−r tending to infinity, we get that

exp(α(T−1
w

(
Tg(h)(r))

)
) ≤

(
σ(α,β)[g(h)]w + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g(h)]w , (21)

exp(α(T−1
k (Tg(r)))) ≤

(
σ(α,β)[g]k + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (22)

exp(α(T−1
k (Tg(r)))) ≥

(
σ(α,β)[g]k − ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (23)

exp(α(T−1
w

(
Tg(h)(r))

)
) ⩾ (σ(α,β)[g(h)]w − ε)(exp(β((1− r)−1)))ρ(α,β)[g(h)]w . (24)

Now from (17), (18) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, it follows for

all sufficiently large values of 1
1−r that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

⩾
σ(α,β)[g(h)]w − ε

σ(α,β)[g]k + ε
.
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As ε (> 0) is arbitrary, we obtain from above that

lim inf
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
w (Tg(r))))

⩾
σ(α,β)[g(h)]w

σ(α,β)[g]w
. (25)

Combining (21) and (19) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, we get for

a sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w + ε

σ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (26)

Now from (17), (22) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, we obtain for

a sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≥
σ(α,β)[g(h)]w − ε

σ(α,β)[g]k + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≥
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (27)

In view of the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, it follows from (19) and (20)

for all sufficiently large values of 1
1−r that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w + ε

σ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (28)

Now from (20), (23) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, it follows for a

sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w + ε

σ(α,β)[g]k − ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (29)
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So combining (18) and (24) and in view of the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k,

we get for a sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

⩾
σ(α,β)[g(h)]w − ε

σ(α,β)[g]k + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

⩾
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (30)

Thus the theorem follows from (25) , (26) , (27), (28) , (29) and (30) . □

Remark 6. If we take “0 < σ(α,β)[h]k ≤ σ(α,β)[h]k < ∞”and “ρ(α,β)[g(h)]w =

ρ(α,β)[h]k” instead of “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

ρ(α,β)[g]k” and other conditions remain same, the results of Theorem 5 remain true

with “σ(α,β)[g]k”, “σ(α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “σ(α,β)[h]k”,

“σ(α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.

Remark 7. If we take “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

λ(α,β)[g]k” instead of “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

ρ(α,β)[g]k” and other conditions remain same, the results of Theorem 5 remain

true with “σ(α,β)[g]k” and “σ(α,β)[g]k“ replaced by “τ (α,β)[g]k” and “τ (α,β)[g]k”
respectively in the denominator.

Remark 8. If we take “0 < τ (α,β)[h]k ≤ τ (α,β)[h]k < ∞” and “ρ(α,β)[g(h)]w =

λ(α,β)[h]k” instead of “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

ρ(α,β)[g]k” and other conditions remain same, the results of Theorem 5 remain true

with “σ(α,β)[g]k”, “σ(α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “τ (α,β)[h]k”,

“τ (α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.

Now in the line of Theorem 5 , one can easily prove the following theorem using
the notion of generalized Nevanlinna weak type and therefore the proof is omitted.

Theorem 6. Let g be a analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < τ (α,β)[g(h)]w ≤ τ (α,β)[g(h)]w < ∞, 0 <
τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞ and λ(α,β)[g(h)]w = λ(α,β)[g]k. Then

τ (α,β)[g(h)]w

τ (α,β)[g]k
≤ lim inf

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤ min

{
τ (α,β)[g(h)]w

τ (α,β)[g]k
,
τ (α,β)[g(h)]w

τ (α,β)[g]k

}
≤ max

{
τ (α,β)[g(h)]w

τ (α,β)[g]k
,
τ (α,β)[g(h)]w

τ (α,β)[g]k

}
≤ lim sup

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
τ (α,β)[g(h)]w

τ (α,β)[g]k
.

Remark 9. If we take “0 < τ (α,β)[h]k ≤ τ (α,β)[h]k < ∞” and “λ(α,β)[g(h)]w =
λ(α,β)[h]k” instead of “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =
λ(α,β)[g]k” and other conditions remain same, the results of Theorem 6 remain true
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with “τ (α,β)[g]k”, “τ (α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “τ (α,β)[h]k”,

“τ (α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.

Remark 10. If we take “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =
ρ(α,β)[g]k” instead of “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =

λ(α,β)[g]k” and other conditions remain same, the results of Theorem 6 remain
true with “τ (α,β)[g]k” and “τ (α,β)[g]k” replaced by “σ(α,β)[g]k” and “σ(α,β)[g]k”
respectively in the denominator.

Remark 11. If we take “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =
ρ(α,β)[h]k” instead of “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =

λ(α,β)[g]k” and other conditions remain same, the results of Theorem 6 remain true

with “τ (α,β)[g]k”, “τ (α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “σ(α,β)[h]k”,

“σ(α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.
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