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Abstract

In this paper, we have investigated the heat transfer in a circular cylindrical pipe for Hagen-Poiseuille �ow
and used MATLAB as a scienti�c tool to plot the graphs. The calculations for the axial heat conduction and
the temperature gradient have been performed for both upstream and downstream �ows. In this experiment,
the results are plotted graphically for the di�erent �uids like Air, Water, Milk, Glycerin and Mercury. The
physical trends of the plotted curves represent the values of heat transfer that were di�erent in Hydrogen and
Air; on the contrary rest of the �uids were behaving similarly when temperature was taken as an exponential
function and for sinusoidal function all the �uids were behaving in a similar manner.
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z: Horizontal Distance
R: Radius of Cylinder
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cv: Speci�c Heat at constant volume
κ: Coe�cient of thermal conductivity
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Nu: Nusselt Number
T: Temperature
r: Distance of �uid particle from the axis of the cylinder
(vz)m: Maximum Velocity of �uid
a: Constant

1. Introduction

G.H.L. Hagen, a German hydraulician and a French physiologist J.L.M. Poiseuille have discovered the
fundamental law of laminar �ow in pipes. This experiment is diversely used in the �eld of science and
technology where laminar �ow through pipes occurs and widely used to know the blood �ow through veins
and arteries, and for liquids of a large range of viscosities. Laminar �ow in pipes is well illustrated for
agreement of theory and experiment in classical physics which is studied by students worldwide. The English
physicist O. Reynolds [9] gave a detailed examination on its limits at the transition to turbulent �ow. With
extensive research, the result of �ow was linearly stable for all Reynolds numbers i.e. non-axisymmetric
modes. The numerical calculations (see for reference) are the basis of the statement on the stability of the
�ow. Von Kerczek and Tozzi [7] studied a slight change in the Hagen-Poiseuille setting, i.e. small oscillations
superpose to the stationary pressure gradient. This resulted in �nding that oscillations can have stabilizing
and destabilizing e�ects. Catherine Loudon and Katherine Mcculloh [8] described the use of Hagen-Poiseuille
Equation to �uid feeding through short tubes. Erdogan [2] obtained the exact solutions for the motion of
viscous �uid due to sine and cosine oscillations of a vertical plate. T. Hayat Ehal [5] interpreted the exact
solutions of �ve problems including time-periodic poiseuille �ow due to an oscillating pressure gradient. Hayat
et. al. and Fetecau et. al. [3][4] further extended the study of motion of �uids in various geometrical scenarios
for sine oscillations, cosine oscillations, longitudinal and torsional oscillations, etc. Harold Salwen et. al. [10]
[11] studied the stability of Poisuelle �ow in a pipe of circular cross-sector to the horizontal angular distance
from a certain direction together with axisymmetric disturbance through a matrix di�erential equation and
showed that pipe �ow is stable to in�nitesimal disturbances for all taken values, then Salwen and Grosch
made corrections in matrix elements and new results con�ned the stability. J.L. Bansal [1] studied the Hagen
Poiseuille �ow in a circular pipe for both velocity and temperature distribution assuming the temperature
of the wall to be constant and varying uniformly.

The early research was concentrated on the stability of Hagen-Poiseuille �ow with reference to the choice
of boundary conditions. In spite of extensive research on the stability of the �ow with the no-slip boundary
condition, in order to understand the stability of �uid �ows, Kang C et.al [6] had pioneered these experiments
with the support of Hagen-Poiseuille �ow. The main focus of current study is to analyze the relation between
temperature distribution and the length of the pipe for di�erent �uids such as air, hydrogen, water, milk,
mercury, glycerin and study them graphically where temperature is a transcendental variable.

Schematic �gure of the problem

Navier Stockes equations for viscous in-compressible �uid with constant �uid properties in cylindrical
system are
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In our case there is laminar �ow without body forces and motion is due to pressure gradient along the
axis of the pipe i.e. Z-axis. Let r denote the radial distance and θ denote the angle, then due to axial
symmetry
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and vz is the only non zero component of velocity. Thus the above set of equations reduce to
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2. Heat transfer in a circular pipe with wall

2.1. When temperature is increasing exponentially:

In any circular pipe if wall temperature is an exponential function eaz of characteristics length of the pipe
, then the temperature of the wall of pipe will increase exponentially. The heat transferred can be obtained
with the help of energy equation. Due to axial symmetry:
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From the Navier- Stocks equations the velocity distribution is vz = (vz )m

[
1 −

(
r
R

)2 ]
, where R = Radius of

the cylinder and (vz )m = −R2

4µ
dp
dz and it is the maximum value of velocity at r = 0 . Consider temperature

to be exponential function of z, i.e.
T = Aeaz + g(r). (12)

where g is any function of r and is independent from z.
Substituting equation (12) in (11) and neglecting the heat due to dissipation, we get
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On solving this di�erential equation under the boundary conditions r=0: g= �nite; r=R: g=0, we get
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4
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On putting the value in equation (12)
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For maximum temperature (r = 0 )
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Nusselt number is given by
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Using equation (11,15) where T =Aez
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2.2. When the temperature is sinusoidal function of length:

In any circular pipe if wall temperature is sine function, then the temperature of the wall of pipe will
increase and decrease periodically. The heat transferred can be obtained with the help of energy equation.
Due to axial symmetry:

T = ASinz + g(r). (21)

where g is any function of r and is independent from z.
On solving equation (11) and (21) with neglecting the heat due to dissipation, we get
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On solving this di�erential equation under the boundary condition r=0: g= �nite; r=R: g=0, we get

g =
Aρcv(vz)maCosz

4k

(
r2 − r4

4R2
− 3R2

4

)
+ASinz

(R2

4
− r2

4

)
. (23)

On putting the value inn equation (21), we get
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Now on calculating Tmean from equation(17)
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Nusselt number(the coe�cient of heat transfer at the surface of walls) is
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Table 1: List of Various Parameters for di�erent �uids whose comparative studies to be veri�ed

Fluids κ (coe� of thermal conductivity) Density (kg/m3) Cv = (J/Kg◦ C)

Water 0.319 997 4186
Hydrogen 0.1003 0.082 1016
Air 0.014 1.225 721
Glycerin 0.140 1260 2410
Milk 0.560 1033 3930
Mercury 4.74 13593 139

2.3. Result and Discussion

Temperature Distribution for Sinsudial Function: The assumed values for sinusoidal function:
R=1 cm
r=0, 0.3, 0.6, 0.9, 1.0 (in cm)
(vz)m = 2 cm/sec
z = 0, 20, 40, 60, 80, 100 (in cm)
a=1
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Table 2: For Water: Values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T × (10)5 T × (10)5 T × (10)5 T × (10)5 T × (10)5

00 -3.9 -3.8 -3.5 -3.13 -2.9

20 -3.7 -3.6 -3.3 -2.94 -2.8

40 -3.05 -2.9 -2.7 -2.4 -2.2

60 -1.9 -1.9 -1.7 -1.56 -1.4

80 -6.9 -6.7 -0.6 -0.54 -0.5

100 6.9 6.7 0.6 0.54 0.5

Table 3: For Hydrogen: Values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T T T T T

00 -2.5069 -2.4333 -2.2331 -1.9671 -1.8801

20 -1.5006 -1.4469 -1.3049 -1.1319 -1.0827

40 -0.3134 -0.2860 -0.2194 -0.1602 -0.1547

60 0.9116 0.9094 0.8926 0.8308 0.7920

80 2.0267 1.9952 1.8970 1.7216 1.6431

100 2.8973 2.8402 2.6725 2.4048 2.2961

Table 4: For Air Values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T T T T T

00 -3.7095 -3.6008 -3.3045 -2.9108 -2.7822

20 -2.6308 -2.5440 -2.3117 -2.0187 -1.9303

40 -1.2347 -1.1803 -1.0401 -0.8832 -0.8457

60 0.3103 0.3257 0.3569 0.3589 0.3410

80 1.8179 1.7924 1.7109 1.5577 1.4865

100 3.1062 3.0430 2.8586 2.5686 2.2961
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Table 5: For Glycerin: Values of z and T for di�erent values of r

z = 0 z = 0.3 z = 0.6 z = 0.9 z = 1

z T × (10)5 T × (10)5 T × (10)5 T × (10)5 T × (10)5

00 -1.2754 -1.2380 -1.1361 -1.0008 -9.5653

20 -1.1984 -1.1633 -1.0676 -0.9404 -8.9884

40 -9.7698 -9.4833 -8.7029 -0.7666 -7.3273

60 -6.3766 -6.1896 -5.6803 �0.5004 -4.7825

80 -2.2144 -2.1495 -1.9726 -0.1738 -1.6608

100 2.2149 2.1495 1.9726 0.1738 1.6608

Table 6: For Milk: Values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T × (10)5 T × (10)5 T × (10)5 T × (10)5 T × (10)5

00 -6.8203 -6.6203 -6.0755 -5.3517 -5.1152

20 -6.4090 -6.2210 -5.7091 -5.0289 -4.8067

40 -5.2246 -5.0714 -4.6541 -4.0996 -3.9185

60 -3.4101 -3.3101 -3.0377 -2.6758 -2.5576

80 -1.1843 -1.1496 -1.0550 -0.9293 -8.8823

100 1.1844 1.1496 1.0550 0.9293 8.8827
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Table 7: For Mercury: Values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T × (10)5 T × (10)5 T × (10)5 T × (10)5 T × (10)5

00 -2.6868 -2.6080 -2.3934 -2.1082 -2.0151

20 -6.4090 -6.2210 -5.7091 -5.0289 -4.8067

40 -5.2246 -5.0714 -4.6541 -4.0996 -3.9185

60 -3.4101 -3.3101 -3.0377 -2.6758 -2.5576

80 -1.1843 -1.1496 -1.0550 -0.9293 -8.8823

100 1.1844 1.1496 1.0550 0.9293 8.8827
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Table 8: For Water values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T × (10)6 T × (10)6 T × (10)6 T × (10)6 T × (10)6

00 -0.100 -0.088 -0.0562 -0.138 2.000

1 -2.71 -0.240 -0.1529 -0.376 5.4366

2 -7.38 -651 -0.4155 -1.023 14.7781

3 -2.005 -1.770 -1.1295 -2.782 40.1711

4 -5.451 -4.812 -3.0702 -7.561 109.196

5 -14.819 -13.080 -8.3457 -20.554 296.8263



R. Khandelwal, S.K. Agarwal, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 467�481. 476

Table 9: For Hydrogen values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T T T T T

00 1.8733 1.9018 1.9670 2.0081 2.0000

1 5.0921 5.1696 5.3470 5.4585 5.4366

2 13.8418 14.0525 14.5345 14.8378 14.7781

3 37.6259 38.1987 39.5089 40.3333 40.1711

4 102.2779 103.8347 107.3964 109.6372 109.1963

5 278.0202 282.2520 291.9338 298.0247 296.8263
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Table 10: For Air values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T T T T T

00 1.5726 1.6364 1.7977 1.9664 2.000

1 4.2748 4.4482 4.8866 5.3452 5.4366

2 11.6201 12.0914 13.2833 14.5296 14.7781

3 31.5868 32.8679 36.1077 39.4956 40.1711

4 85.8618 89.3442 98.1509 107.3602 109.196

5 233.3966 242.8627 266.8018 291.8354 296.8263

Table 11: For Glycerin values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T × (10)5 T × (10)5 T × (10)5 T × (10)5 T × (10)5

00 -0.319 -0.281 -0.180 -0.0442 2.000

1 -0.867 -0.765 -0.488 -0.1202 5.4366

2 -2.356 -2.079 -1.327 -0.3266 14.7781

3 -6.404 -5.654 -3.606 -0.8878 40.1711

4 -17.407 -15.365 -9.803 -2.4134 109.196

5 -47.317 -41.766 -26.647 -6.5602 296.8263

Table 12: For Milk values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T × (10)6 T × (10)6 T × (10)6 T × (10)6 T × (10)6

00 -0.171 -0.151 0.096 -0.0236 2.000

1 -0.463 -0.409 0.261 -0.0643 5.4366

2 -1.260 -1.112 0.710 -0.1747 14.7781

3 -3.425 -3.023 1.929 -0.4750 40.1711

4 -9.309 -8.217 5.243 -1.2911 109.196

5 -25.305 -22.337 14.252 -3.5096 296.8263

Table 13: For Mercury values of z and T for di�erent values of r

r = 0 r = 0.3 r = 0.6 r = 0.9 r = 1

z T × (10)6 T × (10)6 T × (10)6 T × (10)6 T × (10)6

00 -0.672 -0.593 -0.378 -0.0093 2.000

1 -1.826 -1.612 -1.028 -0.0253 5.4366

2 -4.963 -4.381 -2.795 -0.0688 14.7781

3 -13.491 -11.909 -7.598 -0.1871 40.1711

4 -36.673 -32.371 -20.654 -0.5086 109.196

5 -99.687 -87.994 -56.144 -1.3826 296.8263



R. Khandelwal, S.K. Agarwal, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 467�481. 478



R. Khandelwal, S.K. Agarwal, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 467�481. 479



R. Khandelwal, S.K. Agarwal, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 467�481. 480



R. Khandelwal, S.K. Agarwal, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 467�481. 481

2.4. Conclusions

When T is exponential function �g 2(a,d,e,f) are plotted with increasing temperature function on Y axis and the length
variation of cylindrical pipe on X axis. It can be easily seen from the graphs that the both parameters are inversely proportional
i.e. with the increment in length of pipe there is decrement in temperature and vice versa. In case of Hydrogen and Air �g
2(b,c) there is exception as seen in pipe there is increase in temperature. A similar study can be done for gases where a similar
reaction is found. For liquids (water, milk, glycerin, mercury) the elevating function of the density would show the diminishing
behavior of the temperature gradient function. The same study was done for gasses also which represents that the temperature
gradient was dropped rapidly as compare to liquids with in�ating function of density. We got the same behavior for liquids and
gasses both if we enhance the value of thermal conductivity then the temperature gradient is decreased. When T is sinusoidal
function of z, It has been observed from the �g 1(a)- 1(f) that for all �uids both the parameters are directly proportional i.e.
with the increment in length of pipe there is also an increment in temperature gradient. When density is increased, same
behavior observed but the rate of increment of temperature is small.
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