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Abstract

We study monotone enriched nonexpansive mappings and present some new existence and convergence
theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Kras-
nosel'ski�� iterative method to approximate �xed points of enriched nonexpansive under di�erent conditions.
This way a number of results from the literature have been extended, generalized and complemented.
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1. Introduction

Let (B, ‖.‖) be a Banach space and C a nonempty subset of B. A mapping ξ : C → C is said to be
nonexpansive if for each pair of elements ϑ, ν ∈ C, we have

‖ξ(ϑ)− ξ(ν)‖ ≤ ‖ϑ− ν‖.

A point ϑ† ∈ C is said to be a �xed point of ξ if ξ(ϑ†) = ϑ†. The class of nonexpansive mapping need not
have a �xed point in the case of general Banach spaces. However, in 1965, Browder [7], Göhde [12] Kirk
[13], independently proved the �rst �xed point result for nonexpansive mappings in Banach spaces having
ceratin geometrical properties. After these results, a number of nonlinear mappings have been appeared
in the literature to enlarge the class of nonexpansive mappings [11, 15, 9, 25, 18] (see also the references
therein).
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Very recently, Berinde [3] introduced a new class of nonexpansive mappings known as enriched nonex-
pansive mappings which generalizes nonexpansive mappings. It is shown in [3, 4] that this class of mappings
has strong connection with the nonexpansive mappings.

On the other hand, a number of �xed point theorems have appeared in the literature where the non-
expansive condition on mapping needs to satisfy only for comparable elements in partially ordered spaces.
The motivation behind this approach is to determine the nature of the solution whether it is positive or
negative and this approach has fruitful applications. Ran and Reurings obtained the solution of matrix
equations through a generalization of the Banach contraction principle, see [19]. Nieto and Rodríguez-López
[16] applied similar type of �xed point theorem to �nd the solution of some di�erential equations, for more
applications of the �xed point theory for monotone mappings, see [8]. Thereafter, many authors developed
a metric �xed point theory for monotone nonexpansive mappings, see [6, 5, 23, 22, 21, 2, 24].

Motivated by Berinde [3, 4] and others, we extend the class of enriched nonexpansive mappings in
the setting of ordered Banach spaces and establish some existence and convergence results for enriched
nonexpansive mappings. We employ Krasnosel'ski�� iterative method to approximate the �xed points in
ordered Banach spaces under certain assuptions. Our results complement, extend, and generalize certain
results from [3, 4, 5, 24, 2].

2. Preliminaries

Let B be a Banach space with a partial order � compatible with the linear structure of B, that is,

ϑ � ν implies ϑ+ ζ � ν + ζ,

ϑ � ν implies λϑ � λν

for every ϑ, ν, ζ ∈ B and λ ≥ 0. It follows that all order intervals [ϑ,→] = {ζ ∈ B : ϑ � ζ} and [←, ν] =
{ζ ∈ B : ζ � ν} are convex. Moreover, we will assume that each [ϑ,→] and [←, ν] is closed. We will say that
(B, ‖ · ‖,�) is an ordered Banach space.

A sequence {ϑn} is said to be an approximate �xed point sequence (a.f.p.s. for short) for a mapping ξ if
‖ξ(ϑn)− ϑn‖ → 0 as n→∞. A sequence {ϑn} is monotone increasing if ϑ1 � ϑ2 � ϑ3 � · · · . We shall use
the following observation (see [5, Lemma 3.1]). Assume that {ϑn} is a monotone sequence that has a cluster
point, i.e., there is a subsequence {ϑnj} that converges to g (with respect to the strong or weak topology).
Since the order intervals are (weakly) closed, we have g ∈ [ϑn,→) for each n, that is, g is an upper bound
for {ϑn}. If g1 is another upper bound for {ϑn}, then ϑn ∈ (←, g1] for each n, and hence g � g1. It follows
that {ϑn} converges to g = sup{ϑn}. If {ϑn} is a monotone increasing (resp. monotone decreasing) sequence
which converges to p, then ϑn � p (resp. p � ϑn). We say that ϑ, ν ∈ B are comparable whenever ϑ � ν or
ν � ϑ.

De�nition 2.1. [10]. A Banach space B is said to be uniformly convex if for every ε ∈ (0, 2] there is some
δ > 0 so that, for any ϑ, ν ∈ B with ‖ϑ‖ = ‖ν‖ = 1, the condition ‖ϑ− ν‖ ≥ ε implies that

∥∥ϑ+ν
2

∥∥ ≤ 1− δ.

De�nition 2.2. Let (B, ‖ · ‖,�) be an ordered Banach space.

• [17]. A space B satis�es weak-Opial property if, for every weakly convergent sequence {ϑn} with weak
limit ϑ ∈ B it holds:

lim inf
n→∞

‖ϑn − ϑ‖ < lim inf
n→∞

‖ϑn − ν‖

for all ν ∈ B with ϑ 6= ν.

• [1] A space B satis�es the monotone weak-Opial property if, for every monotone weakly convergent
sequence {ϑn} with weak limit ϑ ∈ B it holds:

lim inf
n→∞

‖ϑn − ϑ‖ < lim inf
n→∞

‖ϑn − ν‖

for all ν ∈ B and ν is greater or less than all the elements of the sequence {ϑn}.
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All �nite dimensional Banach spaces, all Hilbert spaces and `p (1 ≤ p < ∞) satisfy the weak-Opial
property. But Lp([0, 1]), for p > 1 do not have the Opial property [10]. In [1], it is proved that Lp([0, 1]), for
p > 1, satisfy monotone weak-Opial property.

De�nition 2.3. [10]. A mapping ξ : C → C is said to be quasi-nonexpansive if for all ϑ ∈ C and ϑ† ∈ F (ξ) 6=
∅,

‖ξ(ϑ)− ϑ†‖ ≤ ‖ϑ− ϑ†‖.

where F (ξ) is the set of all �xed points of ξ.

It is well known that a nonexpansive mapping with a �xed point is quasi-nonexpansive. However the
converse need not to be true.

De�nition 2.4. [20]. The mapping ξ : C → C with F (ξ) 6= ∅ satis�es Condition (I) if there is a nondecreasing
function f : [0,∞)→ [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that ‖ϑ− ξ(ϑ)‖ ≥ f(d(ϑ, F (ξ))) for
all ϑ ∈ C, where d(ϑ, F (ξ)) = inf{‖ϑ− y‖ : ν ∈ F (ξ)}.

Let C be a convex subset of a Banach space B and ξ : C → C a monotone nonexpansive mapping. The
following iteration process is known as the Krasnosel'ski��-Mann iteration process (see [14]):{

ϑ1 ∈ C
ϑn+1 = αnϑn + (1− αn)ξ(ϑn)

(1)

where {αn} is a sequence in [a, b] with a, b ∈ (0, 1).

Lemma 2.5. [5]. Let C be a nonempty bounded closed convex subset of an ordered Banach space (B, ‖ · ‖,�)
and ξ : C → C a monotone nonexpansive mapping. Suppose that {ϑn} is a sequence de�ned by (1) and
ϑ1 � ξ(ϑ1). Then lim

n→∞
‖ϑn − ξ(ϑn)‖ = 0.

Lemma 2.6. [5]. Let C be a nonempty closed convex subset of an ordered convex space (B, ‖ · ‖,�) and
ξ : C → C a monotone mapping. Suppose that {ϑn} is a sequence de�ned by (1) and ϑ1 � ξ(ϑ1). Then

ϑn � ϑn+1 � ξ(ϑn)

for all n ∈ N.

Lemma 2.7. Let C a nonempty convex subset a Banach space B. Let ξ : C → C be a mapping, de�ne
S : C → C as follows:

S(ϑ) = (1− λ)ϑ+ λξ(ϑ)

for all ϑ ∈ C and λ ∈ (0, 1). Then F (S) = F (ξ).

De�nition 2.8. Let C be a nonempty subset of a Banach space B.

• A mapping ξ : C → C is said to be compact if ξ(C) has a compact closure.

• A mapping ξ : C → C is said to be weakly compact if ξ(C) has a weakly compact closure.

Lemma 2.9. [26] For given r > 0. A Banach space B is uniformly convex if and only if there exists a
continuous strictly increasing function ϕ : [0,∞)→ [0,∞), ϕ(0) = 0, such that

‖λϑ+ (1− λ)ν‖2 ≤ λ‖ϑ‖2 + (1− λ)‖ν‖2 − λ(1− λ)ϕ(‖ϑ− ν‖) (2)

for all λ ∈ [0, 1] and ϑ, ν ∈M with ‖ϑ‖ ≤ r, ‖ν‖ ≤ r.
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3. Main Results

Recently, Berinde [3] introduced the following class of nonlinear mappings.

De�nition 3.1. Let (B, ‖.‖) be a Banach space. A mapping ξ : B → B is said to be b-enriched nonexpansive
mapping if there exists b ∈ [0,∞) such that for all ϑ, ν ∈ B

‖b(ϑ− ν) + ξ(ϑ)− ξ(ν)‖ ≤ (b+ 1)‖ϑ− ν‖. (3)

It is shown that every nonexpansive mapping ξ is a 0-enriched mapping. The classes of b-enriched
nonexpansive mappings and that of quasi-nonexpansive mappings are independent in nature. The following
two examples illustrate this fact.

Example 3.2. [3]. Let C =
[
1
2 , 2
]
⊂ R and ξ : C → C be a mapping de�ned as ξ(ϑ) = 1

ϑ . Then F (ξ) = {1}
and ξ is a 3

2 -enriched nonexpansive mapping. On the other hand at ϑ = 1
2

|ξ(ϑ)− 1| = |2− 1| = 1 >
1

2
= |ϑ− 1|.

Thus ξ is not a quasi-nonexpansive mapping.

Example 3.3. Let C = [0, 4] ⊂ R and ξ : C → C be a mapping de�ned as

ξ(ϑ) =

{
0, if ϑ 6= 4

3, if ϑ = 4.

Then F (ξ) = {0} and ξ is a quasi-nonexpansive mapping. On the other hand at ϑ = 3 and ν = 4, ξ is not a
b-enriched nonexpansive mapping for any b ∈ [0,∞).

The following useful de�nition is due to [6]:

De�nition 3.4. Let (B, ‖.‖,�) be an ordered Banach space and C a nonempty subset of B. A mapping
ξ : C → C is said to be monotone if

ϑ � ν implies ξ(ϑ) � ξ(ν),

where ϑ, ν ∈ C.

Now, we extend De�nition 3.1 in the setting of partially ordered Banach spaces as follows:

De�nition 3.5. Let (B, ‖.‖,�) be an ordered Banach space and C a nonempty subset of B. A mapping
ξ : C → C is said to be monotone b-enriched nonexpansive mapping if ξ is monotone and there exists
b ∈ [0,∞) such that

‖b(ϑ− ν) + ξ(ϑ)− ξ(ν)‖ ≤ (b+ 1)‖ϑ− ν‖ (4)

for all ϑ, ν ∈ C with ϑ and ν are comparable.

It can be seen that every monotone nonexpansive mapping ξ is a monotone 0-enriched mapping.

Theorem 3.6. Let (B, ‖.‖,�) be an ordered uniformly convex Banach space and C a nonempty bounded
closed convex subset of B. Let ξ : C → C be a monotone b-enriched nonexpansive mapping. Suppose that there
exists a point ϑ1 in C such that ϑ1 and ξ(ϑ1) are comparable. Then F (ξ) 6= ∅.

Moreover, for given λ ∈
(
0, 1

b+1

)
the sequence {ϑn} de�ned by (Krasnosel'ski�� iterative method)

ϑn+1 = (1− λ)ϑn + λξ(ϑn) (5)

converges weakly to a point in F (ξ).
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Proof. By the de�nition of monotone b-enriched nonexpansive mapping, we have

‖b(ϑ− ν) + ξ(ϑ)− ξ(ν)‖ ≤ (b+ 1)‖ϑ− ν‖ (6)

for all ϑ � ν. Take µ = 1
b+1 ∈ (0, 1) and put b = 1−µ

µ in (6) then the above inequality is equivalent to

‖(1− µ)(ϑ− ν) + µ(ξ(ϑ)− ξ(ν))‖ ≤ ‖ϑ− ν‖. (7)

De�ne the mapping S as follows:

S(ϑ) = (1− µ)ϑ+ µξ(ϑ) for all ϑ ∈ C.

Since ξ is monotone, for all ϑ � ν

S(ϑ) = (1− µ)ϑ+ µξ(ϑ) � (1− µ)ϑ+ µξ(ν) � (1− µ)ν + µξ(ν) = S(ν)

and S is monotone. Then from (7), we get

‖S(ϑ)− S(ν)‖ ≤ ‖ϑ− ν‖

for all ϑ � ν. Thus S is a monotone nonexpansive mapping. Since ϑ1 � ξ(ϑ1)

ϑ1 = (1− µ)ϑ1 + µϑ1 � (1− µ)ϑ1 + µξ(ϑ1) = S(ϑ1).

Thus all the assumptions of [6, Theorem 4.1] are satis�ed and S has a �xed point in C. From Lemma 2.7,
F (S) = F (ξ) 6= ∅.

Next, for given ϑ1 ∈ C and any λ ∈ (0, 1), consider the sequence

ϑn+1 = (1− λ)ϑn + λS(ϑn). (8)

From Lemma 2.6 (with λ = αn for all n ∈ N)

ϑn � ϑn+1 � S(ϑn)

for all n ∈ N. Again from Lemma 2.5
lim
n→∞

‖ϑn − S(ϑn)‖ = 0.

Therefore {ϑn} is an a.f.p.s. for a monotone nonexpansive mapping S and all the assumptions of [24, Theorem
1] are ful�lled. Hence {ϑn} converges weakly to a �xed point of S. But F (S) = F (ξ) and

(1− λ)ϑ+ λS(ϑ) = (1− λµ)ϑ+ λµξ(ϑ)

for all ϑ ∈ C. Since λ ∈ (0, 1) and µ = 1
b+1 . This implies that λµ ∈

(
0, 1

b+1

)
. Therefore for any λ ∈

(
0, 1

b+1

)
,

the sequence {ϑn} de�ned by (5) converges weakly to a point in F (ξ).

Theorem 3.7. Let (B, ‖.‖,�) be an ordered uniformly convex Banach space and C a nonempty bounded
closed convex subset of B. Let ξ : C → C be a monotone b-enriched nonexpansive mapping. Suppose that there
exists a point ϑ1 in C such that ϑ1 and ξ(ϑ1) are comparable. Then F (ξ) 6= ∅.

Moreover, the sequence {ϑn} de�ned by

ϑn+1 =

(
1− 1

b+ 1

)
ϑn +

1

b+ 1
ξ(ϑn)

converges weakly to a point in F (ξ).
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Proof. Following the same proof technique as in Theorem 3.6, we can de�ne a mapping S : C → C as follows:

S(ϑ) =

(
1− 1

b+ 1

)
ϑ+

1

b+ 1
ξ(ϑ) for all ϑ ∈ C

and S is a monotone nonexpansive mapping with ϑ1 � S(ϑ1). Then all the assumptions of [24, Theorem 5]
are satis�ed, hence {Sn(ϑ1)} converges weakly to a �xed point of S. But F (S) = F (ξ) and

Sn(ϑ1) =

(
1− 1

b+ 1

)
ϑn +

1

b+ 1
ξ(ϑn)

for all n ∈ N. This completes the proof.

Remark 3.8. In Theorem 3.7, we extend the value of λ to 1
b+1 . In [4, Theorem 3.2], the value of λ lies in(

0, 1
b+1

)
.

Theorem 3.9. Let (B, ‖.‖,�) be an ordered Banach space having the weak-Opial property and C a nonempty
weakly compact convex subset of B. Let ξ : C → C be a monotone b-enriched nonexpansive mapping. Suppose
that there exists a point ϑ1 in C such that ϑ1 and ξ(ϑ1) are comparable. Then F (ξ) 6= ∅.

Moreover, for given λ ∈
(
0, 1

b+1

)
the sequence {ϑn} de�ned by (Krasnosel'ski�� iterative method)

ϑn+1 = (1− λ)ϑn + λξ(ϑn)

converges weakly to a point in F (ξ).

Proof. Following largely the proof of Theorem 3.6, we can de�ne a monotone nonexpansive mapping S with
ϑ1 � S(ϑ1). Thus all the assumptions of [5, Theorem 3.3] are satis�ed and it is guaranteed that S has at
least one �xed point. From Lemma 2.7, F (S) = F (ξ) 6= ∅. For given ϑ1 ∈ C and for any λ ∈ (0, 1), consider
a sequence

ϑn+1 = (1− λ)ϑn + λS(ϑn). (9)

From [5, Theorem 3.3], {ϑn} converges weakly to a �xed point of S. But F (S) = F (ξ), the rest of proof
directly follows from Theorem 3.6.

Theorem 3.10. Let (B, ‖.‖,�) be an ordered Banach space having the monotone weak-Opial property and
C a nonempty bounded closed convex subset of B. Let ξ : C → C be a weakly compact monotone b-enriched
nonexpansive mapping. Suppose that there exists a point ϑ1 in C such that ϑ1 and ξ(ϑ1) are comparable.
Then F (ξ) 6= ∅.

Moreover, for given λ ∈
(
0, 1

b+1

)
the sequence {ϑn} de�ned by (Krasnosel'ski�� iterative method)

ϑn+1 = (1− λ)ϑn + λξ(ϑn)

converges weakly to a point in F (ξ).

Proof. From the proof of Theorem 3.6, we can de�ne a monotone nonexpansive mapping S with ϑ1 � S(ϑ1).
For given ϑ1 ∈ C and for any λ ∈ (0, 1), consider a sequence

ϑn+1 = (1− λ)ϑn + λS(ϑn). (10)

From Lemma 2.6 (with λ = αn for all n ∈ N)

ϑn � ϑn+1 � S(ϑn)

for all n ∈ N. Again from Lemma 2.5
lim
n→∞

‖ϑn − S(ϑn)‖ = 0
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and
lim
n→∞

‖ϑn − ξ(ϑn)‖ = 0. (11)

Since the range of C under ξ is contained in a weakly compact set, there exists a subsequence {ξ(ϑnj )} of
{ξ(ϑn)} converges weakly to ϑ† ∈ C. By (11), the subsequence {ϑnj} converges weakly to ϑ†. Since {ϑn}
is monotone increasing, the sequences {ϑn} and {S(ϑn)} converge weakly to ϑ†. Thus for each n ∈ N,
ϑn � S(ϑn) � ϑ†. By the monotonicity of S, for each n ∈ N, S(ϑn) � S(ϑ†). Suppose that S(ϑ†) 6= ϑ†, by
the monotone weak-Opial property, we get

lim inf
n→∞

‖ϑn − ϑ†‖ < lim inf
n→∞

‖ϑn − S(ϑ†)‖. (12)

By the triangle inequality and using the fact that S is monotone nonexpansive mapping,

‖ϑn − S(ϑ†)‖ ≤ ‖ϑn − S(ϑn)‖+ ‖S(ϑn)− S(ϑ†)‖ ≤ ‖ϑn − S(ϑn)‖+ ‖ϑn − ϑ†‖

and
lim inf
n→∞

‖ϑn − S(ϑ†)‖ ≤ lim inf
n→∞

‖ϑn − ϑ†‖

a contradiction from (12). Thus S(ϑ†) = ϑ†, and the rest of proof directly follows from Theorem 3.6.

Theorem 3.11. Let (B, ‖.‖,�) be an ordered uniformly convex Banach space and C a nonempty closed
convex subset of B. Let ξ : C → C be a monotone b-enriched nonexpansive mapping and ξ satis�es Condition
(I). Suppose that there exists a point ϑ1 in C such that ϑ1 � ξ(ϑ1), F (ξ) 6= ∅ and ϑ1 � ζ for all ζ ∈ F (ξ).
For given λ ∈

(
0, 1

b+1

)
the sequence {ϑn} de�ned by (Krasnosel'ski�� iterative method)

ϑn+1 = (1− λ)ϑn + λξ(ϑn)

converges strongly to a point in F (ξ).

Proof. Following largely the proof of Theorem 3.6, we can de�ne a monotone nonexpansive mapping S with
ϑ1 � S(ϑ1). Let λ ∈ (0, 1) and de�ne

ϑn+1 = (1− λ)ϑn + λS(ϑn). (13)

Since ϑ1 � ζ for all ζ ∈ F (ξ) = F (S) and S is monotone mapping, S(ϑ1) � S(ζ) = ζ and

ϑ2 = (1− λ)ϑ1 + λS(ϑ1) � (1− λ)ϑ1 + λζ � (1− λ)ζ + λζ = ζ

similarly, it can be seen that ϑn � ζ for all ζ ∈ F (S) and n ∈ N.

Now, we show that lim
n→∞

d(ϑn, F (S)) = 0. For any ζ ∈ F (S),

‖S(ϑn)− ζ‖ ≤ ‖ϑn − ζ‖ for all n ≥ 1. (14)

Thus

‖ϑn+1 − ζ‖ ≤ (1− λ)‖ϑn − ζ‖+ λ‖S(ϑn)− ζ‖ ≤ ‖ϑn − ζ‖.

Hence the sequences {‖ϑn−ζ‖} and {d(ϑn, F (S))} are monotone nonincreasing and lim
n→∞

‖ϑn−ζ‖, lim
n→∞

d(ϑn, F (S))

exist. Again

‖ϑn+1 − ζ‖2 = ‖(1− λ)(ϑn − ζ) + λ(S(ϑn)− ζ)‖2

≤ (1− λ)‖ϑn − ζ‖2 + λ‖S(ϑn)− ζ)‖2 − λ(1− λ)ϕ(‖ϑn − S(ϑn)‖)
≤ ‖ϑn − ζ‖2 − λ(1− λ)ϕ(‖ϑn − S(ϑn)‖).
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Thus
λ(1− λ)ϕ(‖ϑn − S(ϑn)‖) ≤ ‖ϑn+1 − ζ‖2 − ‖ϑn − ζ‖2 → 0 as n→∞

and
‖ϑn − S(ϑn)‖ → 0 as n→∞. (15)

Since S(ϑ) = (1− µ)ϑ+ µξ(ϑ) for all ϑ ∈ C,

ϑ− S(ϑ) = µ(ϑ− ξ(ϑ)) for all ϑ ∈ C. (16)

Since ξ satis�es Condition (I), and (16), we obtain

‖ϑn − S(ϑn)‖
µ

= ‖ϑn − ξ(ϑn)‖ ≥ f(d(ϑn, F (ξ))) = f(d(ϑn, F (S))).

From (15), lim
n→∞

f(d(ϑn, F (S))) = 0 and

lim
n→∞

d(ϑn, F (S)) = 0. (17)

Now, it can be seen that the sequence {ϑn} is Cauchy. For the sake of completeness we include the argument.
For given ε > 0, in view of (17), there exists a n0 ∈ N such that for all n ≥ n0

d(ϑn, F (S)) <
ε

4
.

In particular,

inf{‖ϑn0 − ζ‖ : ζ ∈ F (S)} <
ε

4
,

and there exists ζ ∈ F (S) such that

‖ϑn0 − ζ‖ <
ε

2
.

Therefore, for all m,n ≥ n0,

‖ϑn+m − ϑn‖ ≤ ‖ϑn+m − ζ‖+ ‖ζ − ϑn‖ ≤ ‖ϑn − ζ‖ < 2
ε

2
= ε,

and the sequence {ϑn} is Cauchy. Since C is a closed subset of B, so {ϑn} converges to a point ϑ† ∈ C and

ϑn � ϑ† for all n ∈ N.

‖ϑ† − S(ϑ†)‖ ≤ ‖ϑ† − ϑn‖+ ‖ϑn − S(ϑn)‖+ ‖S(ϑn)− S(ϑ†)‖
≤ 2‖ϑ† − ϑn‖+ ‖ϑn − S(ϑn)‖

from (15), ϑ† = S(ϑ†). Hence, the sequence {ϑn} converges strongly to a point in F (ξ).

Theorem 3.12. Let (B, ‖.‖,�) be an ordered Banach space and C a nonempty bounded closed convex subset of
B. Let ξ : C → C be a compact monotone b-enriched nonexpansive mapping. Suppose that there exists a point

ϑ1 in C such that ϑ1 � ξ(ϑ1). For given λ ∈
(
0, 1

b+1

)
the sequence {ϑn} de�ned by (Krasnosel'ski�� iterative

method)
ϑn+1 = (1− λ)ϑn + λξ(ϑn)

converges strongly to a point in F (ξ).
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