
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 51 (3) (2022), 800 – 816

DOI : 10.15672/hujms.954555

Research Article

Some results on Kenmotsu statistical manifolds

Yan Jiang, Feng Wu, Liang Zhang∗

School of Mathematics and Statistics, Anhui Normal University, Wuhu 241000, Anhui, China

Abstract
In this paper, we first investigate the Kenmotsu statistical structures built on a Kenmotsu
space form and determine some special Kenmotsu statistical structures under two cur-
vature conditions. Secondly, we show that if the holomorphic sectional curvature of the
hypersurface orthogonal to the structure vector in a Kenmotsu statistical manifold is con-
stant, then the ϕ−sectional curvature of the ambient Kenmotsu statistical manifold must
be constant −1, and the constant holomorphic sectional curvature of the hypersurface is
0. In addition, some non-trivial examples are given to illustrate the results of this paper.
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1. Introduction
In 1969, S. Tanno showed that the maximal dimension of the automorphism group

of (2m + 1)−dimensional connected almost contact Riemannian manifolds is (m + 1)3.
When the maximum is attained, the manifolds are classified in three classes[18]. One
of the three classes in Tanno’s classification is given by the warped product of a Kähler
manifold with the real line. In 1972, K. Kenmotsu investigated the properties of this
warped product and characterized it by tensor equations[9], nowadays called Kenmotsu
geometry. This is a branch of differential geometry with many applications in geometrical
optics, thermodynamics and geometric quantization[13, 14]. In [9], K. Kenmotsu proved
that the sectional curvature of the Kenmotsu manifold of constant ϕ−sectional curvature
is constant −1. We state it as follows:

Theorem 1.1. [9] Let (M, ϕ, ξ, η, g) be a Kenmotsu manifold and ∇0 be the Levi-Civita
connection of g. Denote the curvature tensor field of ∇0 by R0. If M is of constant
ϕ−sectional curvature c, that is,

R0(X, Y )Z =c − 3
4

{g(Y, Z)X − g(X, Z)Y } + c + 1
4

{η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ},

(1.1)
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for any X, Y, Z ∈ C∞(TM), then c = −1. Furthermore, M is of constant sectional
curvature −1 as well.

The notion of statistical structure was initially introduced from the treatment of statis-
tical inference problems in information geometry by S. Amari in 1985[1]. From then on,
the geometry of statistical manifolds has developed in close relations with affine differential
geometry[11] and Hessian geometry[15]. By definition, a Riemannian structure is a trivial
statistical structure with the difference tensor field K = 0. Recently, some of the classical
Riemann manifolds have been generalized to the corresponding statistical manifolds by
endowing them with some suitable statistical structures. For example, in [4], a holomor-
phic statistical manifold was obtained by endowing a Kähler manifold with a holomorphic
statistical structure; in [7], a Sasakian statistical manifold was obtained by endowing a
Sasakian manifold with a Sasakian statistical structure; and in [6], a Kenmotsu statistical
manifold was obtained by endowing a Kenmotsu manifold with a Kenmotsu statistical
structure. Moreover, I. K. Erken focused on almost cosymplectic statistical manifolds in
[3], G. E. Vîlcu investigated statistical manifolds endowed with almost product structures
in [20].

Since statistical structures can be considered as a generalization of the Riemannian
structures, it is natural to consider whether some of the classical results in Riemannian
geometry still hold in the geometry of statistical manifolds or not. For example, H.
Furuhata[6] generalized Theorem 1.1 to Kenmotsu statistical manifolds and proved the
following theorem:

Theorem 1.2. [6] Let (M, ϕ, ξ, η, g, ∇) be a Kenmotsu statistical manifold and S be the
statistical curvature tensor field of M . If M is of constant ϕ−sectional curvature c, that
is,

S(X, Y )Z =c − 3
4

{g(Y, Z)X − g(X, Z)Y } + c + 1
4

{η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ},

(1.2)

for any X, Y, Z ∈ C∞(TM), then c = −1.

Note that several curvature properties of statistical submanifolds in Kenmotsu statistical
manifolds of constant ϕ−sectional curvature were recently obtained by Y. J. Suh et al.
[17] and S. Decu et al. [2].

In addition, H. Furuhata found a special Kenmotsu statistical structure on the odd
dimensional hyperbolic space H2n+1 of constant sectional curvature −1 such that the
ϕ−sectional curvature with respect to the statistical curvature tensor field S is −1 as well.

Example 1.3. [6] (Hyperbolic space H2n+1 ) Set H2n+1 = {(x1, . . . , xn, y1, . . . , yn, z) ∈
R2n+1 | z > 0}.
(i) H2n+1 can be endowed with the classical Kenmotsu structure (ϕ, ξ, η, g̃, ∇̃0) as follows:

g̃ = 1
z2

{
(dx1)2 + · · · + (dxn)2 + (dy1)2 + · · · + (dyn)2 + (dz)2

}
, (1.3)

ξ = −z
∂

∂z
, ϕ

∂

∂xi
= ∂

∂yi
, ϕ

∂

∂yi
= − ∂

∂xi
, ϕ

∂

∂z
= 0. (1.4)

It can be verified that H2n+1 is of constant sectional curvature −1 with respect to the
above Riemannian metric. Certainly, H2n+1 is of constant ϕ−sectional curvature −1 as
well.
(ii) Set K̃(X, Y ) = λη(X)η(Y )ξ, where X, Y ∈ C∞(TH2n+1), λ ∈ C∞(H2n+1,R). Then
(∇̃ = ∇̃0 + K̃, g̃) is a Kenmotsu statistical structure on H2n+1, and its ϕ−sectional cur-
vature with respect to the statistical curvature tensor field S̃ is also the constant −1.
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Remark 1.4. In fact, the above Kenmotsu statistical structure can be built on any Ken-
motsu space form, and the ϕ−sectional curvature with respect to the statistical curvature
tensor field is constant −1 as well.

In view of the above example, the first question we consider in this paper is whether
the Kenmotsu statistical structure of constant ϕ−sectional curvature built on a Kenmotsu
space form is unique. We give an affirmative answer to this question in Theorem 3.2. Then
we show that under a stronger curvature condition, i.e., when the ϕ−curvature is constant,
the Kenmotsu statistical structure built on a Kenmotsu space form must be trivial (see
Theorem 3.6). Moreover, we give an example to show that Theorem 3.2 and Theorem 3.6
do not hold for Kenmotsu statistical structures built on a non-Kenmotsu space form.

In 2009, H. Furuhata showed in [6] that a hypersurface orthogonal to the structure
vector in Kenmotsu statistical manifold has a natural holomorphic statistical structure,
and the hypersurface must be totally umbilical. Furthermore, if the ϕ−sectional curvature
of the ambient Kenmotsu statistical manifold is constant, then the holomorphic sectional
curvature of the hypersurface is constant 0. Inspired by H. Furuhata’s result, we consider
the converse problem and prove that if the holomorphic sectional curvature of the hyper-
surface is constant, then the ϕ−sectional curvature of the ambient Kenmotsu statistical
manifold must be constant −1, and the constant holomorphic sectional curvature of the
hypersurface is 0 (see Theorem 4.3). In addition, we show some examples to illustrate this
result.

2. Preliminaries
Let (M, g) be a Riemannian manifold and ∇0 be the Levi-Civita connection of g on

M . Throughout this paper, we denote the set of all smooth tangent vector fields on M
by C∞(TM) and the set of all smooth normal vector fields on M by C∞(T ⊥M). Besides,
C∞(M,R) denotes the set of all smooth functions on M .

2.1. Statistical manifold
Definition 2.1. [5] Let ∇ be an affine connection on a Riemannian manifold (M, g). The
affine connection ∇∗ is called the dual connection of ∇ with respect to g if

Zg(X, Y ) = g(∇ZX, Y ) + g(X, ∇∗
ZY ) (2.1)

for any X, Y, Z ∈ C∞(TM).

Obviously, (∇∗)∗ = ∇. Moreover, if ∇ and ∇∗ are both torsion free, then[11]

∇ + ∇∗ = 2∇0, (2.2)

where ∇0 is the Levi-Civita connection of g on M .

Definition 2.2. [11] Let (M, g) be a Riemannian manifold and ∇ be an affine connection
on M . The pair (∇, g) is called a statistical structure or a Codazzi structure, if ∇ is
torsion free and the Codazzi equation

(∇Xg)(Y, Z) = (∇Y g)(X, Z)

holds for any X, Y, Z ∈ C∞(TM). In this case, (M, ∇, g) is said to be a statistical manifold
or a Codazzi manifold.

By definition, a Riemannian structure (∇0, g) is a special statistical structure, which is
called a Riemannian statistical structure or a trivial statistical structure[4]. In fact, the
Levi-Civita connection ∇0 is self-dual with respect to the Riemannian metric g. Besides,
if (∇, g) is a statistical structure on M , so is (∇∗, g).
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Proposition 2.3. [7] Let (M, ∇, g) be a statistical manifold and ∇0 be the Levi-Civita
connection of g on M . For any X, Y, Z ∈ C∞(TM), the tensor field K of type (1, 2)
defined by K := ∇ − ∇0 satisfies:

KXY = KY X, g(KXY, Z) = g(KXZ, Y ). (2.3)

Conversely, if a (1, 2)−tensor field K on M satisfies (2.3), then (M, ∇0+K, g) is a statistical
manifold.

Remark 2.4. K := ∇ − ∇0 is called the difference tensor field of the statistical manifold.
For simplicity, we also write KXY by K(X, Y ). The Riemannian structure, as a trivial
statistical structure, has the difference tensor field K = 0.

Definition 2.5. [7] Let (M, ∇, g) be a statistical manifold and ∇∗ be the dual connection
of ∇ with respect to g. Denote the curvature tensor field of ∇(resp. ∇∗) by R(resp. R∗),
i.e., for any X, Y, Z ∈ C∞(TM),

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

R∗(X, Y )Z = ∇∗
X∇∗

Y Z − ∇∗
Y ∇∗

XZ − ∇∗
[X,Y ]Z.

Define
S(X, Y )Z = 1

2
{R(X, Y )Z + R∗(X, Y )Z}, (2.4)

and call S the statistical curvature tensor field of (M, ∇, g).

Obviously, the statistical curvature tensor of the Levi-Civita connection ∇0 is the clas-
sical Riemann curvature tensor field R0. Furthermore, one can verify that the statistical
curvature tensor field S satisfies[5]:

g(S(X, Y )Z, W ) + g(S(Y, X)Z, W ) = 0, (2.5)

g(S(X, Y )Z, W ) + g(S(X, Y )W, Z) = 0, (2.6)

g(S(X, Y )Z, W ) − g(S(Z, W )X, Y ) = 0, (2.7)

S(X, Y )Z + S(Y, Z)X + S(Z, X)Y = 0. (2.8)

Remark 2.6. [5] R does not have enough symmetries like the statistical curvature tensor
field S. In fact, for any X, Y, Z, W ∈ C∞(TM),

g(R(X, Y )Z, W ) = −g(R∗(X, Y )W, Z). (2.9)

Proposition 2.7. [4] Let (M, ∇ = ∇0 + K, g) be a statistical manifold, denote the cur-
vature tensor field of ∇(resp. ∇0) by R(resp. R0). Then the following formula holds:

R(X, Y )Z = R0(X, Y )Z + (∇0
XK)(Y, Z) − (∇0

Y K)(Z, X) + [KX , KY ]Z, (2.10)

where X, Y, Z ∈ C∞(TM), [KX , KY ] = KXKY − KY KX .

Proposition 2.8. [7] Let (M, ∇ = ∇0 + K, g) be a statistical manifold, and S be the
statistical curvature tensor field. Denote the curvature tensor field of ∇0 by R0. Then the
following formula holds:

S(X, Y )Z = R0(X, Y )Z + [KX , KY ]Z, (2.11)

where X, Y, Z ∈ C∞(TM).

In 1990, T. Kurose[10] defined the statistical manifold of constant curvature in terms of
the curvature tensor field R. In 2016, Furuhata[5] introduced the concept of the statistical
manifold of constant sectional curvature in terms of the statistical curvature tensor field
S.
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Definition 2.9. [10] A statistical manifold (M, ∇, g) is said to be of constant curvature
c ∈ R if

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y } (2.12)
for any X, Y, Z ∈ C∞(TM), where R is the curvature tensor field of ∇.

Definition 2.10. [5] A statistical manifold (M, ∇, g) is said to be of constant sectional
curvature c ∈ R if

S(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y } (2.13)
for any X, Y, Z ∈ C∞(TM), where S is the statistical curvature tensor field on M .

According to (2.9), if (M, ∇, g) is a statistical manifold of constant curvature c, then
(M, ∇∗, g) is of constant curvature c as well. Further, by (2.4), (M, ∇, g) is of constant
sectional curvature c.

2.2. Kenmotsu statistical manifold
We first introduce the knowledge of Kenmotsu manifold.

Definition 2.11. [9] Let M be an odd dimensional Riemainian manifold, g be the Rie-
mannian metric on M and ϕ, ξ, η respectively represent a (1, 1)−tensor field, a vector field
and a 1−form on M . If the following equations hold for any X, Y ∈ C∞(TM):

ϕ2X = −X + η(X)ξ, η(X) = g(X, ξ), (2.14)

ϕξ = 0, η(ξ) = 1, η(ϕX) = 0, (2.15)

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), (2.16)
then the quadruple (ϕ, ξ, η, g) is called an almost contact metric structure, and (M, ϕ, ξ, η, g)
is called an almost contact metric manifold.

Definition 2.12. [6] Let (M, ϕ, ξ, η, g) be an almost contact metric manifold, and ∇0 be
the Levi-Civita connection of g on M . For any X, Y ∈ C∞(TM), if

(∇0
Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (2.17)

then (ϕ, ξ, η, g, ∇0) is called a Kenmotsu structure, (M, ϕ, ξ, η, g, ∇0) is called a Kenmotsu
manifold, and ξ is called the structure vector field.

Remark 2.13. [6] If (M, ϕ, ξ, η, g, ∇0) is a Kenmotsu manifold, then for any X ∈ C∞(TM),
we have

∇0
Xξ = X − η(X)ξ. (2.18)

Definition 2.14. [9] Let (M, ϕ, ξ, η, g, ∇0) be a Kenmotsu manifold, and R0 be the cur-
vature tensor field of ∇0. Then (M, ϕ, ξ, η, g, ∇0) is said to be of constant ϕ−sectional
curvature c ∈ R if

R0(X, Y )Z =c − 3
4

{g(Y, Z)X − g(X, Z)Y } + c + 1
4

{η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ}

(2.19)

for any X, Y, Z ∈ C∞(TM).

A Kenmotsu manifold of constant ϕ−sectional curvature is usually called a Kenmotsu
space form.
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Proposition 2.15. [8] Let (M, ϕ, ξ, η, g, ∇0) be a Kenmotsu manifold, and R0 be the
curvature tensor field of ∇0. Then the following formulas hold:

R0(X, Y )ξ = η(X)Y − η(Y )X, (2.20)

R0(ξ, X)Y = η(Y )X − g(X, Y )ξ, (2.21)

R0(ξ, X)ξ = X − η(X)ξ, (2.22)
where X, Y ∈ C∞(TM).

H. Furuhata[6] introduced the notion of Kenmotsu statistical manifold by endowing a
Kenmotsu manifold with a suitable statistical structure.

Definition 2.16. [6] Let (M, ϕ, ξ, η, g, ∇0) be a Kenmotsu manifold, (∇ = ∇0 + K, g)
be a statistical structure on M . Then (M, ϕ, ξ, η, g, ∇) is called a Kenmotsu statistical
manifold if

K(X, ϕY ) + ϕK(X, Y ) = 0 (2.23)
for any X, Y ∈ C∞(TM).

Definition 2.17. [6] Let (M, ϕ, ξ, η, g, ∇) be a Kenmotsu statistical manifold, S be the sta-
tistical curvature tensor field. Then (M, ϕ, ξ, η, g, ∇) is said to be of constant ϕ−sectional
curvature c ∈ R if

S(X, Y )Z =c − 3
4

{g(Y, Z)X − g(X, Z)Y } + c + 1
4

{η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ}

(2.24)

for any X, Y, Z ∈ C∞(TM).

2.3. Holomorphic statistical manifold
We first review the notion of Kähler manifold.

Definition 2.18. [22] Let (M, g) be an even dimensional Riemannian manifold, ∇0 be
the Levi-Civita connection of g, and J be a (1, 1)−tensor field on M . If

J2 = −I, g(JX, JY ) = g(X, Y ), ∇0
XJY = J∇0

XY (2.25)

for any X, Y ∈ C∞(TM), then (M, J, g, ∇0) is called a Kähler manifold.

H. Furuhata[4] introduced the notion of holomorphic statistical manifold by endowing
a Kähler manifold with a suitable statistical structure.

Definition 2.19. [4] Let (M, J, g, ∇0) be a Kähler manifold and (∇, g) be a statistical
structure on M . Then (M, J, g, ∇) is called a holomorphic statistical manifold if the
difference tensor field K satisfies

K(X, JY ) + JK(X, Y ) = 0 (2.26)

for any X, Y ∈ C∞(TM).

Definition 2.20. [5] A holomorphic statistical manifold (M, J, g, ∇) is said to be of con-
stant holomorphic sectional curvature c ∈ R if its statistical curvature tensor field satisfies

S(X, Y )Z = c

4
{g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ}

(2.27)

for any X, Y, Z ∈ C∞(TM).
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2.4. Statistical submanifold
Now we review some basics of statistical submanifolds.

Definition 2.21. [12] Let (M̃, ∇̃, g̃) be a statistical manifold and f : M → M̃ be an
immersion. Denote the tangent mapping and the pullback mapping of f by f∗ and f∗,
respectively. Define g and ∇ on M by

g = f∗g̃, g(∇XY, Z) = g̃(∇̃Xf∗Y, f∗Z).

Then the pair (∇, g) is a statistical structure on M , which is called the induced statistical
structure by f from (∇̃, g̃).

Definition 2.22. [12] Let (M, ∇, g) and (M̃, ∇̃, g̃) be two statistical manifolds. An im-
mersion f : M → M̃ is called a statistical immersion if (∇, g) coincides with the induced
statistical structure by f from (∇̃, g̃). Also, (M, ∇, g) is called a statistical submanifold
of (M̃, ∇̃, g̃).

Similar to the theory of Riemannian submanifolds, the statistical submanifolds also
have the Gauss and Weingarten formulas[16]. Let (M, ∇, g) be a statistical submanifold
of (M̃, ∇̃, g̃), then we have:

∇̃XY = ∇XY + h(X, Y ), ∇̃∗
XY = ∇∗

XY + h∗(X, Y ), (2.28)

∇̃XN = −AN X + ∇⊥
XN, ∇̃∗

XN = −A∗
N X + ∇∗⊥

X N, (2.29)
where X, Y ∈ C∞(TM), N ∈ C∞(T ⊥M). In the above formulas, h and h∗ are the
second fundamental forms with respect to ∇̃ and ∇̃∗, respectively; A and A∗ are the
shape operators with respect to ∇̃ and ∇̃∗, respectively; ∇⊥ and ∇∗⊥ are the normal
connections with respect to ∇̃ and ∇̃∗, respectively. Besides we have the following[21]:

h(X, Y ) = h(Y, X), h∗(X, Y ) = h∗(Y, X), (2.30)

g(AN X, Y ) = g̃(h∗(X, Y ), N), g(A∗
N X, Y ) = g̃(h(X, Y ), N). (2.31)

In addition, the statistical submanifolds also have the Gauss, Codazzi and Ricci equa-
tions.

Proposition 2.23. [5] Let (M, ∇, g) be a statistical submanifold of (M̃, ∇̃, g̃). Denote
the curvature tensor field of ∇⊥(resp. ∇∗⊥) by R⊥(resp. R∗⊥). Set S⊥ = 1

2{R⊥ + R∗⊥},
then the following equations hold for any X, Y, Z ∈ C∞(TM), and N ∈ C∞(T ⊥M):

2[S̃(X, Y )Z]⊤ = 2S(X, Y )Z + Ah(X,Z)Y − Ah(Y,Z)X

+ A∗
h∗(X,Z)Y − A∗

h∗(Y,Z)X,
(2.32)

2[S̃(X, Y )Z]⊥ =(∇̃Xh)(Y, Z) − (∇̃Y h)(X, Z)
+ (∇̃∗

Xh∗)(Y, Z) − (∇̃∗
Y h∗)(X, Z),

(2.33)

2[S̃(X, Y )N ]⊤ =(∇̃Y A)(N, X) − (∇̃XA)(N, Y )
+ (∇̃∗

Y A∗)(N, X) − (∇̃∗
XA∗)(N, Y ),

(2.34)

2[S̃(X, Y )N ]⊥ = 2S⊥(X, Y )N + h(Y, AN X) − h(X, AN Y )
+ h∗(Y, A∗

N X) − h∗(X, A∗
N Y ),

(2.35)

where [·]⊤ and [·]⊥ are the tangent component and the normal component of the vector
field “ · ”, respectively.

Remark 2.24. Equation (2.32) is the Gauss equation, (2.33), (2.34) are the Codazzi
equations, (2.35) is the Ricci equation.
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Remark 2.25. If M is a statistical hypersurface of M̃ and N is the unit normal vector
field on M , then the Gauss equation can be written as

2[S̃(X, Y )Z]⊤ = 2S(X, Y )Z + g(A∗X, Z)AY − g(A∗Y, Z)AX

+ g(AX, Z)A∗Y − g(AY, Z)A∗X,
(2.36)

where we respectively denote AN and A∗
N by A and A∗ for simplicity.

3. Statistical structures on Kenmotsu space forms
In this section, we investigate the Kenmotsu statistical structures built on a Kenmotsu

space form and determine the Kenmotsu statistical structures under two curvature con-
ditions. First we consider the Kenmotsu statistical structures of constant ϕ−sectional
curvature on a Kenmotsu space form. Before stating and proving the main theorems, we
prove the following lemma first.

Lemma 3.1. Let (M, ϕ, ξ, η, g, ∇) be a Kenmotsu statistical manifold, and K be the dif-
ference tensor field on M . Then

K(X, ξ) = λη(X)ξ (3.1)
holds for any X ∈ C∞(TM), where λ = g(K(ξ, ξ), ξ) ∈ C∞(M,R).

Proof. Put Y = ξ in (2.23), then ϕK(X, ξ) = 0. Letting ϕ act on both sides of it, by
(2.14), we have

K(X, ξ) = g(K(X, ξ), ξ)ξ. (3.2)
In particular,

K(ξ, ξ) = λξ,

where λ = g(K(ξ, ξ), ξ) ∈ C∞(M,R). Thus by (3.2) and (2.3), we have
K(X, ξ) = g(K(ξ, ξ), X)ξ = λη(X)ξ.

�
Theorem 3.2. Let (M, ϕ, ξ, η, g, ∇0) be a Kenmotsu space form, and (∇ = ∇0 + K, g) be
a Kenmotsu statistical structure on M . If the ϕ−sectional curvature of (M, ϕ, ξ, η, g, ∇ =
∇0 + K) is constant, then

K(X, Y ) = λη(X)η(Y )ξ, (3.3)
where X, Y ∈ C∞(TM), λ ∈ C∞(M,R).

Proof. Let (∇ = ∇0 + K, g) be a Kenmotsu statistical structure of constant ϕ−sectional
curvature on a Kenmotsu space form (M, ϕ, ξ, η, g, ∇0). We denote the statistical curvature
tensor field of M by S, and the curvature tensor field of ∇0 by R0. By Theorem 1.1 and
Theorem 1.2, we have

S(X, Y )Z = − {g(Y, Z)X − g(X, Z)Y } , (3.4)
R0(X, Y )Z = − {g(Y, Z)X − g(X, Z)Y } , (3.5)

where X, Y, Z ∈ C∞(TM). Thus by using (2.11), we have
[KX , KY ]Z = 0. (3.6)

Taking the inner product of both sides of (3.6) with any tangent vector field W , one gets
g(K(X, K(Y, Z)), W ) − g(K(Y, K(X, Z)), W ) = 0. (3.7)

From (2.3), (3.7) is equivalent to
g(K(X, W ), K(Y, Z)) − g(K(X, Z), K(Y, W )) = 0. (3.8)

By Lemma 3.1, for U ∈ C∞(TM), U ⊥ ξ, we have
K(U, ξ) = 0. (3.9)
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Taking X = Z = U, Y = W = ϕU, U ⊥ ξ in (3.8) and applying (2.3) and (3.9), we obtain
K(U, U) = 0. (3.10)

Further, taking X = Z = U, Y = W = V, U ⊥ ξ, V ⊥ ξ in (3.8) and applying (3.10), we
get

K(U, V ) = 0. (3.11)
Finally for any X, Y ∈ C∞(TM), X, Y can be decomposed orthogonally as: X = U +
η(X)ξ, Y = V + η(Y )ξ, thus from (3.9), (3.11) and Lemma 3.1, we get (3.3) immediately.

�
Now we consider the curvature tensor field R of a Kenmotsu statistical manifold (M, ϕ, ξ,

η, g, ∇) and introduce the following concept.

Definition 3.3. Let (M, ϕ, ξ, η, g, ∇) be a Kenmotsu statistical manifold, R be the cur-
vature tensor field of ∇. (M, ϕ, ξ, η, g, ∇) is said to be of constant ϕ−curvature c ∈ R
if

R(X, Y )Z =c − 3
4

{g(Y, Z)X − g(X, Z)Y } + c + 1
4

{η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ},

(3.12)

where X, Y, Z ∈ C∞(TM).

Remark 3.4. For other types of statistical manifolds, there are similar concepts. For
example, T. Kurose[10] define the statistical manifold of constant curvature in terms of R
(see Definition 2.9); H.Furuhata[4] define the holomorphic statistical manifold of constant
holomorphic curvature in a similar way.

Lemma 3.5. Let (M, ϕ, ξ, η, g, ∇) be a Kenmotsu statistical manifold of constant ϕ−
curvature c, then (M, ϕ, ξ, η, g, ∇) is a Kenmotsu statistic manifold of constant ϕ−sectional
curvature c as well.

Proof. Denote the curvature tensor fields of ∇, ∇∗ by R, R∗ and the statistical curvature
tensor field of M by S, respectively. Since M is of constant ϕ−curvature c, we have

R(X, Y )Z =c − 3
4

{g(Y, Z)X − g(X, Z)Y } + c + 1
4

{η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ},

(3.13)

where X, Y, Z ∈ C∞(TM). Taking the inner product of both sides of (3.13) with any
tangent vector field W and applying (2.9), one gets

g(R∗(X, Y )W, Z)

=c − 3
4

{g(X, Z)(Y, W ) − g(Y, Z)g(X, W )}

+ c + 1
4

{η(Y )η(Z)g(X, W ) − η(X)η(Z)g(Y, W )

+ g(Y, Z)η(X)η(W ) − g(X, Z)η(Y )η(W )
+ g(ϕX, Z)g(ϕY, W ) − g(ϕY, Z)g(ϕX, W ) + 2g(ϕX, Y )g(ϕZ, W )},

(3.14)

which implies

R∗(X, Y )W =c − 3
4

{g(Y, W )X − g(X, W )Y } + c + 1
4

{η(X)η(W )Y

− η(Y )η(W )X + g(X, W )η(Y )ξ − g(Y, W )η(X)ξ
+ g(ϕY, W )ϕX − g(ϕX, W )ϕY − 2g(ϕX, Y )ϕW}.

(3.15)
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Thus (M, ϕ, ξ, η, g, ∇∗) is also of constant ϕ−curvature c. Further by (2.4), M is of constant
ϕ−sectional curvature c as well. �

Now we prove that a Kenmotsu statistical structure of constant ϕ−curvature built on
a Kenmotsu space form must be trivial.

Theorem 3.6. Let (M, ϕ, ξ, η, g, ∇0) be a Kenmotsu space form, and (∇ = ∇0 + K, g) be
a Kenmotsu statistical structure on M . If the ϕ−curvature of (M, ϕ, ξ, η, g, ∇ = ∇0 + K)
is constant, then K = 0.

Proof. Let (M, ϕ, ξ, η, g, ∇0) be a Kenmotsu space form, and (∇ = ∇0 + K, g) be a
Kenmotsu statistical structure of constant ϕ−curvature c ∈ R on M . Denote the curvature
tensor fields of ∇, ∇∗, ∇0 by R, R∗, R0, respectively, and denote the statistical curvature
tensor field of M by S. According to Theorem 1.1,

R0(X, Y )Z = − {g(Y, Z)X − g(X, Z)Y } . (3.16)
Since M is of constant ϕ−curvature c, by Lemma 3.5, M is of constant ϕ−sectional
curvature c as well. It follows from Theorem 1.2 that c = −1. By Theorem 3.2, we know
that

K(X, Y ) = λη(X)η(Y )ξ. (3.17)
On the other hand, substituting c = −1 into (3.12) we obtain

R(X, Y )Z = − {g(Y, Z)X − g(X, Z)Y } . (3.18)
From (2.10), (3.16) and (3.18), one gets

(∇0
XK)(Y, Z) − (∇0

Y K)(Z, X) + [KX , KY ]Z = 0. (3.19)
From (3.17), it is easy to see that [KX , KY ]Z = 0. Thus (3.19) is reduced to

(∇0
XK)(Y, Z) − (∇0

Y K)(Z, X) = 0. (3.20)
Taking the inner product of the two sides of (3.20) with any tangent vector W , we obtain

Xg(K(Y, Z), W ) − g(K(Y, Z), ∇0
XW ) − g(K(∇0

XY, Z), W ) − g(K(Y, ∇0
XZ), W )

− Y g(K(Z, X), W ) + g(K(Z, X), ∇0
Y W ) + g(K(∇0

Y Z, X), W ) + g(K(Z, ∇0
Y X), W )

= 0.
(3.21)

Taking X = Z = U, Y = W = ξ, U ⊥ ξ in (3.21) and applying (2.3) and (3.17), we have
g(K(ξ, ξ), ∇0

U U) = 0. (3.22)
From (3.17), the above equation is just reduced to λg(ξ, ∇0

U U) = 0, i.e.,

λ(Ug(ξ, U) − g(∇0
U ξ, U)) = 0. (3.23)

Substituting (2.18) into (3.23) and noting that U ⊥ ξ, we get
λg(U, U) = 0, (3.24)

which implies that λ = 0. This together with (3.17) gives that K = 0. �
Remark 3.7. The following example shows that Theorem 3.2 and Theorem 3.6 do not
hold for Kenmotsu statistical structures built on a non-Kenmotsu space form.

Example 3.8. Let M̃ =
{
(x, y, z) ∈ R3|x > 0, y > 0

}
, then we can define a Kenmotsu

structure (ϕ, ξ, η, g̃) on M̃ whose ϕ−sectional curvature is not constant as follows:

g̃ = xe2z
{

(dx)2 + (dy)2
}

+ (dz)2,

ξ = ∂

∂z
, η(X) = g̃(X, ξ),
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ϕ
∂

∂x
= ∂

∂y
, ϕ

∂

∂y
= − ∂

∂x
, ϕ

∂

∂z
= 0.

Furthermore, define the affine connection ∇̃ on M̃ as follows:

∇̃ ∂
∂x

∂

∂x
= 2 −

√
2

4x

∂

∂x
+ 1

2
√

2x

∂

∂y
− xe2zξ, ∇̃ ∂

∂x

∂

∂y
= 1

2
√

2x

∂

∂x
+ 2 +

√
2

4x

∂

∂y
,

∇̃ ∂
∂y

∂

∂x
= 1

2
√

2x

∂

∂x
+ 2 +

√
2

4x

∂

∂y
, ∇̃ ∂

∂y

∂

∂y
=

√
2 − 2
4x

∂

∂x
− 1

2
√

2x

∂

∂y
− xe2zξ, (3.25)

∇̃ ∂
∂x

ξ = ∇̃ξ
∂

∂x
= ∂

∂x
, ∇̃ ∂

∂y
ξ = ∇̃ξ

∂

∂y
= ∂

∂y
, ∇̃ξξ = 0.

Then (ϕ, ξ, η, g̃, ∇̃) is the Kenmotsu statistical structure of constant ϕ−curvature −1 and
constant ϕ−sectional curvature −1, but the difference tensor field is different from the one
defined by (3.3).

Proof. Write e1 = ∂
∂x , e2 = ∂

∂y for simplicity. According to the definition of g̃,

g̃(e1, e1) = g̃(e2, e2) = xe2z, g̃(ξ, ξ) = 1,

g̃(e1, e2) = g̃(e1, ξ) = g̃(e2, ξ) = 0.
(3.26)

Obviously, (ϕ, ξ, η, g̃) satisfies (2.14)-(2.16), thus (M̃, ϕ, ξ, η, g̃) is an almost contact metric
manifold.

Denote the Levi-Civita connection on M̃ by ∇̃0. By using Koszul’s formula[19]:

2g̃(∇̃0
XY, Z) = Xg̃(Y, Z)+Y g̃(Z, X)−Zg̃(X, Y )− g̃(X, [Y, Z])+ g̃(Y, [Z, X])+ g̃(Z, [X, Y ]),

we get:

∇̃0
e1e1 = 1

2x
e1 − xe2zξ, ∇̃0

e1e2 = 1
2x

e2,

∇̃0
e2e1 = 1

2x
e2, ∇̃0

e2e2 = − 1
2x

e1 − xe2zξ, (3.27)

∇̃0
e1ξ = ∇0

ξe1 = e1, ∇̃0
e2ξ = ∇̃0

ξe2 = e2, ∇̃0
ξξ = 0.

By using the above formulas and the definition of ϕ, one can verify that (ϕ, ξ, η, g̃, ∇̃0)
satisfies (2.17). Hence (M̃, ϕ, ξ, η, g̃, ∇̃0) is a Kenmotsu manifold. Denote the curvature
tensor field of ∇̃0 by R̃0. By (3.27), we calculate

R̃0(e1, e2)e1 = ∇̃0
e1∇̃0

e2e1 − ∇̃0
e2∇̃0

e1e1 − ∇̃0
[e1,e2]e1 = (− 1

2x2 + xe2z)e2.

Comparing the above formula with (2.19), it can be seen that the ϕ−sectional curvature
of (M̃, ϕ, ξ, η, g̃, ∇̃0) is not constant.

Let K̃ = ∇̃ − ∇̃0. By (3.25) and (3.27), we have

K̃(e1, e1) = − 1
2
√

2x
e1 + 1

2
√

2x
e2,

K̃(e2, e2) = 1
2
√

2x
e1 − 1

2
√

2x
e2,

K̃(e1, e2) =K̃(e2, e1) = 1
2
√

2x
e1 + 1

2
√

2x
e2,

K̃(e1, ξ) = K̃(ξ, e1) = K̃(e2, ξ) = K̃(ξ, e2) = K̃(ξ, ξ) = 0.

(3.28)

It is easy to see that K̃ = ∇̃ − ∇̃0 satisfies (2.3) and (2.23), so (∇̃ = ∇̃0 + K̃, g̃) is a
Kenmotsu statistical structure on M̃ . Obviously, K̃ differs from the difference tensor field
defined by (3.3).
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Denote the curvature tensor field of ∇̃ by R̃. By using (3.25), one gets
R̃(e1, e2)e1 = xe2ze2, R̃(e1, e2)e2 = −xe2ze1, R̃(e1, e2)ξ = 0,

R̃(e1, ξ)e1 = xe2zξ, R̃(e1, ξ)e2 = 0, R̃(e1, ξ)ξ = −e1,

R̃(e2, ξ)e1 = 0, R̃(e2, ξ)e2 = xe2zξ, R̃(e2, ξ)ξ = −e2,

R̃(ei, ei)ej = 0.

Combined these formulas with (3.26), R̃ satisfies
R̃(X, Y )Z = − {g̃(Y, Z)X − g̃(X, Z)Y } , (3.29)

which implies (M̃, ϕ, ξ, η, g̃, ∇̃ = ∇̃0 + K̃) is of constant ϕ−curvature −1. By Lemma 3.5,
M̃ is of constant ϕ−sectional curvature −1 as well. �

4. Hypersurfaces in Kenmotsu statistical manifolds
In this section, we study hypersurfaces in Kenmotsu statistical manifolds. H. Furuhata

showed in [6] that the hypersurface orthogonal to the structure vector field in a Kenmotsu
statistical manifold has a natural holomorphic statistical structure, and the hypersurface
must be totally umbilical.

Proposition 4.1. [6] Let (M̃, ϕ, ξ, η, g̃, ∇̃) be a Kenmotsu statistical manifold, M be a
hypersurface in M̃ orthogonal to ξ. Denote the induced metric of g̃ on M by g. Set

JU = ϕU, (4.1)
∇̃U V = ∇U V + α(U, V )ξ, (4.2)

∇̃U ξ = −AU + τ(U)ξ, (4.3)
where U, V ∈ C∞(TM), ∇U V and −AU are the tangent components of ∇̃U V and ∇̃U ξ,
respectively. Then (J, g, ∇) is a holomorphic statistical structure on M , and the following
formulas hold:

α(U, V ) = −g(U, V ), AU = −U, τ(U)ξ = ∇⊥
U ξ.

Furthermore, if the ϕ−sectional curvature of the ambient Kenmotsu statistical manifold
is constant, then according to the Gauss equation and Theorem 1.2, we immediately have
the following interesting result.

Theorem 4.2. [6] Let (M̃, ϕ, ξ, η, g̃, ∇̃) be a Kenmotsu statistical manifold, M be a hy-
persurface in M̃ orthogonal to ξ. Let (J, g, ∇) be the holomorphic statistical structure on
M as in Proposition 4.1. If (M̃, ϕ, ξ, η, g̃, ∇̃) is of constant ϕ−sectional curvature, then
(M, J, g, ∇) is of constant holomorphic sectional curvature 0.

In this section we consider the converse problem and prove the following Theorem.

Theorem 4.3. Let (M̃, ϕ, ξ, η, g̃, ∇̃) be a (2n+1)−dimensional Kenmotsu statistical man-
ifold, n > 2, M be a hypersurface in M̃ orthogonal to ξ. Let (J, g, ∇) be the holomorphic
statistical structure on M as in Proposition 4.1. If (M, J, g, ∇) is of constant holomorphic
sectional curvature, then (M̃, ϕ, ξ, η, g̃, ∇̃) is of constant ϕ−sectional curvature −1, and
the constant holomorphic sectional curvature of (M, J, g, ∇) is 0.

Proof. Let ∇∗ and ∇̃∗ be the dual connections of ∇ and ∇̃, S and S̃ be the statistical
curvature tensor fields of M and M̃ , respectively. Set

∇̃∗
U ξ = −A∗U + τ∗(U)ξ (4.4)

for any U ∈ C∞(TM), where −A∗U and τ∗(U)ξ = ∇∗⊥
U ξ are the tangent component and

the normal component of ∇̃∗
U ξ, respectively. We first show that
A∗U = −U, τ(U) + τ∗(U) = 0. (4.5)
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In fact, for U, V ∈ C∞(TM), we calculate

g̃(A∗U, V ) = −g̃(∇̃∗
U ξ, V ) = −Ug̃(ξ, V ) + g̃(ξ, ∇̃U V ) = g̃(ξ, α(U, V )ξ) = −g(U, V ), (4.6)

Ug̃(ξ, ξ) = g̃(∇̃U ξ, ξ) + g̃(ξ, ∇̃∗
U ξ) = τ(U) + τ∗(U), (4.7)

where we have used (4.2) in the third equality of (4.6), and we have used (4.3) in the
second equality of (4.7). Then (4.6) and (4.7) yield (4.5) immediately.

Assume that the holomorphic sectional curvature of M is constant c. We will prove
that the ϕ−sectional curvature of M̃ is constant c − 1. By Definition 2.17, that is, for any
X, Y, Z ∈ C∞(TM̃),

S̃(X, Y )Z =c − 4
4

{g̃(Y, Z)X − g̃(X, Z)Y } + c

4
{η(X)η(Z)Y

− η(Y )η(Z)X + g̃(X, Z)η(Y )ξ − g̃(Y, Z)η(X)ξ
+ g̃(ϕY, Z)ϕX − g̃(ϕX, Z)ϕY − 2g̃(ϕX, Y )ϕZ}.

(4.8)

In the following we prove (4.8) in four cases.
Case i. Assume that X = U, Y = V ∈ C∞(TM), Z = ξ. According to the Ricci

equation and noting that AU = −U, A∗U = −U , we have

2[S̃(U, V )ξ]⊥ = 2S⊥(U, V )ξ + h(V, AU) − h(U, AV ) + h∗(V, A∗U) − h∗(U, A∗V )

= 2S⊥(U, V )ξ.
(4.9)

Note that
2S⊥(U, V )ξ = R⊥(U, V )ξ + R∗⊥(U, V )ξ. (4.10)

We calculate
R⊥(U, V )ξ = ∇⊥

U ∇⊥
V ξ − ∇⊥

V ∇⊥
U ξ − ∇⊥

[U,V ]ξ = ∇⊥
U τ(V )ξ − ∇⊥

V τ(U)ξ − τ([U, V ])ξ
= U(τ(V ))ξ − V (τ(U))ξ − τ([U, V ])ξ,

where we have used ∇⊥
U ξ = τ(U)ξ in the second and the third equalities. In the same way,

by using ∇∗⊥
U ξ = τ∗(U)ξ and τ(U) + τ∗(U) = 0, we get

R∗⊥(U, V )ξ = −U(τ(V ))ξ + V (τ(U))ξ + τ([U, V ])ξ.

Substituting the above two equations into (4.10) yields S⊥(U, V )ξ = 0. Thus from (4.9),
we obtain

[S̃(U, V )ξ]⊥ = 0. (4.11)
Furthermore, according to the Codazzi equation and noting that AU = −U, A∗U = −U ,

2[S̃(U, V )ξ]⊤ =(∇V A)U − (∇U A)V + (∇∗
V A∗)U − (∇∗

U A∗)V
+ τ(V )(A∗ − A)U − τ(U)(A∗ − A)V

=∇V AU − A(∇V U) − ∇U AV + A(∇U V )
+ ∇∗

V A∗U − A∗(∇∗
V U) − ∇∗

U A∗V + A∗(∇∗
U V )

= 0.

(4.12)

Combining (4.11) and (4.12), we have

S̃(U, V )ξ = 0. (4.13)

On the other hand, taking X = U, Y = V, Z = ξ in the right-hand side of (4.8), the result
is also 0, which implies that (4.8) holds in Case i.

Case ii. Assume that X = U, Y = V, Z = W ∈ C∞(TM). By using (2.6) and (4.13),
for any W ∈ C∞(TM),

g̃(S̃(U, V )W, ξ) = −g̃(S̃(U, V )ξ, W ) = 0. (4.14)
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By using the Gauss equation (2.36), and noting (2.27), AU = −U and A∗U = −U , we get

2[S̃(U, V )W ]⊤ = 2S(U, V )W − 2{g(V, W )U − g(U, W )V }

= c

2
{g(V, W )U − g(U, W )V + g(JV, W )JU − g(JU, W )JV

− 2g(JU, V )JW} − 2{g(V, W )U − g(U, W )V }.

This together with (4.14) yields that

S̃(U, V )W = c

4
{g(V, W )U − g(U, W )V + g(JV, W )JU − g(JU, W )JV

− 2g(JU, V )JW} − {g(V, W )U − g(U, W )V }.

Since JU = ϕU , η(U) = 0 and η(V ) = 0, the above equation is equivalent to

S̃(U, V )W =c − 4
4

{g(V, W )U − g(U, W )V } + c

4
{η(U)η(W )V

− η(V )η(W )U + g(U, W )η(V )ξ − g(V, W )η(U)ξ
+ g(ϕV, W )ϕU − g(ϕU, W )ϕV − 2g(ϕU, V )ϕW}.

(4.15)

Case iii. Assume that X = ξ, Y = U, Z = V ∈ C∞(TM). By using (2.11), we obtain

S̃(ξ, U)V =R̃0(ξ, U)V + [K̃ξ, K̃U ]V
=R̃0(ξ, U)V + K̃(ξ, K̃(U, V )) − K̃(U, K̃(ξ, V )).

(4.16)

By using Lemma 3.1, (2.3), and noting that η(U) = 0, η(V ) = 0, we get

K̃(ξ, K̃(U, V )) = λη(K̃(U, V ))ξ = λg̃(K̃(U, V ), ξ)ξ = λg̃(K̃(U, ξ), V )ξ = 0,

K̃(U, K̃(ξ, V )) = 0.

Thus (4.16) gives that
S̃(ξ, U)V = R̃0(ξ, U)V.

This together with (2.21) yields

S̃(ξ, U)V = −g̃(U, V )ξ. (4.17)

On the other hand, taking X = ξ, Y = U, Z = V in the right-hand side of (4.8), the result
is also −g̃(U, V )ξ, which implies that (4.8) holds in Case iii.

Case iv. Assume that X = ξ, Y = U ∈ C∞(TM), Z = ξ. By using (2.11), we have

S̃(ξ, U)ξ =R̃0(ξ, U)ξ + [K̃ξ, K̃U ]ξ
=R̃0(ξ, U)ξ + K̃(ξ, K̃(U, ξ)) − K̃(U, K̃(ξ, ξ)).

(4.18)

From Lemma 3.1 and η(U) = 0, we obtain

K̃(ξ, K̃(U, ξ)) = 0, K̃(U, K̃(ξ, ξ)) = λK̃(U, ξ) = 0.

Thus (4.18) gives that
S̃(ξ, U)ξ = R̃0(ξ, U)ξ.

This together with (2.22) yields
S̃(ξ, U)ξ = U. (4.19)

On the other hand, taking X = ξ, Y = U, Z = ξ in the right-hand side of (4.8), the result
is also U , which implies that (4.8) holds in Case iv.

Thus (4.8) holds for any X, Y, Z ∈ C∞(TM̃). Hence (M̃, ϕ, ξ, η, g̃, ∇̃) is of constant
ϕ−sectional curvature c − 1. Applying Theorem 1.2, we know that c = 0. �
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Example 4.4. Let (ϕ, ξ, η, g̃, ∇̃ = ∇̃0+K̃) be the Kenmotsu statistical structure on H2n+1

as in Example 1.3, whose ϕ−sectional curvature with respect to the statistical curvature
tensor field S̃ is constant −1. Set M =

{
(x1, . . . , xn, y1, . . . , yn, 1) ∈ R2n+1}

. Then M is
a hypersurface in H2n+1 orthogonal to ξ, and the holomorphic sectional curvature of the
induced holomorphic statistical structure is constant 0.

Proof. Denote the induced metric of g̃ on M by g. Then from (1.3),

g = (dx1)2 + · · · + (dxn)2 + (dy1)2 + · · · + (dyn)2. (4.20)

Denote the Levi-Civita connection on M by ∇0, and set

J
∂

∂xi
= ∂

∂yi
, J

∂

∂yi
= − ∂

∂xi
. (4.21)

It is obvious that (M, J, g, ∇0) is just the complex Euclidean space.
Let K be the difference tensor field of (M, J, g, ∇), where ∇ is the induced affine con-

nection of ∇̃ of H2n+1. Then for every X, Y ∈ C∞(TM),

K(X, Y ) = ∇XY − ∇0
XY = (∇̃XY )⊤ − (∇̃0

XY )⊤ = (K̃(X, Y ))⊤, (4.22)

where (·)⊤ denotes the tangent component of “ · ”. Noting that K̃(X, Y ) = λη(X)η(Y )ξ
and M is orthogonal to ξ, thus K = 0, which implies the statistical structure (∇, g) on M is
trivial. Hence the statistical curvature tensor field S of (M, J, g, ∇) is just the Riemannian
curvature tensor field R0 of (M, g). From (4.20), it is obvious that R0 = 0. Therefore the
holomorphic sectional curvature of the induced holomorphic statistical structure is 0.

�

Example 4.5. Let (M̃, ϕ, ξ, η, g̃, ∇̃) be the Kenmotsu statistical manifold as in Example
3.8, whose ϕ−sectional curvature is constant −1. Set M =

{
(x, y, 0) ∈ R3|x > 0, y > 0

}
,

then M is a hypersurface in M̃ orthogonal to ξ, and the holomorphic sectional curvature
of the induced holomorphic statistical structure is constant 0.

Proof. Write e1 = ∂
∂x , e2 = ∂

∂y for simplicity. Denote the induced metric of g̃ on M by
g, it is easy to see that

g = x
{

(dx)2 + (dy)2
}

. (4.23)

Denote the Levi-Civita connection on M by ∇0, then

∇0
e1e1 = 1

2x
e1, ∇0

e1e2 = 1
2x

e2,

∇0
e2e1 = 1

2x
e2, ∇0

e2e2 = − 1
2x

e1.

(4.24)

Set
Je1 = e2, Je2 = −e1. (4.25)

By using (4.23)-(4.25), it can be verified that (J, g, ∇0) satisfies (2.25), thus (M, J, g, ∇0)
is a Kähler manifold.

Denote the induced affine connection of ∇̃ on M by ∇, then

∇e1e1 = 2 −
√

2
4x

e1 + 1
2
√

2x
e2, ∇e1e2 = 1

2
√

2x
e1 + 2 +

√
2

4x
e2,

∇e2e1 = 1
2
√

2x
e1 + 2 +

√
2

4x
e2, ∇e2e2 = −2 +

√
2

4x
e1 − 1

2
√

2x
e2.

(4.26)
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Let K = ∇ − ∇0, according to (4.24) and (4.26), we get

K(e1, e1) = − 1
2
√

2x
e1 + 1

2
√

2x
e2,

K(e2, e2) = 1
2
√

2x
e1 − 1

2
√

2x
e2,

K(e1, e2) = K(e2, e1) = 1
2
√

2x
e1 + 1

2
√

2x
e2.

(4.27)

It is easy to see that K = ∇ − ∇0 satisfies (2.3) and (2.26), thus (J, g, ∇ = ∇0 + K) is a
holomorphic statistical structure on M .

Denote the curvature tensor field of ∇ by R. By using (4.26), we calculate
R(e1, e2)e1 = 0, R(e1, e2)e2 = 0,

thus R = 0. By using (2.4) and (2.9), we get S = 0. Hence the holomorphic sectional
curvature of M is constant 0. �
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