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ABSTRACT.  We define a new type of multivariable multiple hypergeometric functions in this paper, which is
inspired by Exton’s multiple hypergeometric functions given by in [13]. Then, for these functions, we obtain
some certain type linear generating functions. After that, we derive a variety classes of multilinear and multilateral
generating functions for a family of the multivariable multiple hypergeometric functions. In addition, by employing
the Erkus-Srivastava polynomials (see [11]) and the fourth type multivariable Horn functions (see [13]), we have
also provided some of its conclusions.
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1. INTRODUCTION

The generalized hypergeometric series ,F, with an arbitrary number of p numerator and ¢ denominator parameters
(p,q € Ny = {0} UN) defined by [29]

Ay ey X (@ . (a'p)n Z
F, P = ,F s W3 By een B3 2 1.1
’ ‘1[ Bio By Z] pFo (oo 1 By ) Z B - By !’ (b
where the Pochhammer symbol is denoted by (1), which is defined (in terms of gamma function) by
I'(A+v) _
A, =—— (1 Z 1.2
(D o) (1€ C\Zy) (1.2)
1 if v=0; 1€ C\{0}
AA+1D..A+n-1), ifv=neN; 1€C,

I'(1) is Gamma function, and Z; denotes the set of non-positive integers. If we set p = 2, ¢ = 11in (1.1), we get a
hypergeometric function following,

S (@B 2

2oF 1 (a,B5732) = T
= (Y n!
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and if we also set p = 1, ¢ = 1, we get a confluent hypergeometric function as follow,

® = 1F1(ﬁ;)’;Z)=Z@Z—

2t (1.3)

In addition, in (1.1), the absence of parameters p or ¢ is emphasized by a dash (interpreting an empty product as 1).
For example, if no numerator or denominator parameters are present, i.e., p = g = 0, the result is

00

Zl’l
oFo(=—2=) —.
!
Similarly if p = 0 and ¢ = 1, then
(o9 Zn
Fi (=2 = , 1.4
0F1 (=3:2) ;w)nn! (14)
and finally if p = 1 and ¢ = 0, then
(@) z
1Fo(;—32) = ,
n!

n=0
The second type of Appell functions, the first type of Lauricella functions, the fourth type of Horn functions, and the
fourth type of multivariable Horn functions are, respectively [13,16,21,29],

C m r xrn xr
Fo (@, 1,823 Y1, Y23 X1, X2) = Z (a')m+r(ﬁl) (B2): T1 %3

—_— = (1.5)
=0 (71)m(72)r m! r!
where  |xi]| + |x2| < 1, and
% By Br)m, X1 K
FX) (@, By oo By Vi oo Vs X1y ooy Xp) = Z (a)m1+.“+mru%"' ! g (1.6)
Myt =0 (71)ml (yr)m, mi. my!
where  |xi|+ ...+ |x,| <1, and
> (@) )r X] X5
Hy(@ By ysnm = Y, Qe Or D5 (1.7)
=0 (71)m(72)r m:r.
where 2 V/|x1| + |x3| < 1, and
(k)H4(r) (a’ﬁk+l’ "'9ﬁr;719 seey 7r7 X5 eens Xy Xkt 15 vees xr)
_ i (0)2(m1+.4.+mk)+mk+1+..4+m, (Bk+1)mk+1-~'(ﬂr)in, iml me' (1 8)

(71)m1~~~(yr)m, my!  m,!

where  2(V[xi[+ ... + VIxeD) + [xes1] + .. + x| < 1.

The multivariable multiple hypergeometric functions are highly significant in special functions theory, used in a
wide range of applications, such as integral representations, generating functions, recurrence relations, finite and in-
finite sums, analytic continuation, asymptotic behaviour and some special formulas (linear transformation, quadratic
transformation, decomposition, reduction, limit and differentiation) [1,4-7, 10, 13,16,21]. Additionally, various types
of extensions (g-analogue, k-analogue, finite field analogue, matrix extension, p-extension) of these functions are de-
fined, and similar features are extensively researched [2, 3,9, 12, 14, 15, 18-20, 23, 30]. Besides from these studies,
they are also utilized in theories such as perturbation theory (in numerical analysis) and quantum theory (in modern
physics) [17,24]. Studies of generating functions for polynomial sequences, on the other hand, are widely investigated,
which typically comprise ordinary, multilinear and multilateral generating functions [8, 11,22,25,26,28].

In this paper, we described a new type of multivariable multiple hypergeometric functions that are general forms of
the fourth type multivariable Horn functions ®H |, the first kind Lauricella F, the second kind Appell F, and the
fourth type Horn Hy functions. A similar idea was followed by Exton in [13] to study the generating functions of the
fourth type multivariable Horn functions. Our objective is to derive obtaining certain linear generating functions and
several families of multilinear and multilateral generating functions, as well as their conclusions, for these multivariable
multiple hypergeometric functions.
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2. GENERATING FUNCTIONS

We obtain certain linear generating function relations after defining a new type of multivariable multiple hyperge-
ometric functions in this section of the study. Below is a definition of a new type of multivariable multiple hypergeo-
metric functions.

Definition 2.1. We define a new type multivariable multiple hypergeometric function as below:

00

OED (@, Bry1s s By X)) = Y (@) Bretmese o, X 57 )
sPkals s Prs Vi wees Vs X1s ooes X)) i o(my +...+my)+mye 1 +...+m, (71 )ml “'(’y”)mr m 1 mr‘ P .
where p (Vixi] + ... + V) + x| + ..+ [x] < 1, p > 0.
In (2.1), if we take k = 1,7 = 2, we have two-variable multiple hypergeometric functions as follow
00 xm] xmz
DE® (@, B3 71,72: 31, 32) = E (@, By 715723 31, %2) = @y e 25 2.2)
( 2 1> /2 ) ( 2 1> /2 ) Z oy +my ('}/I)ml(')/Z)mg m | mz!

my mp=0

For the functions given (2.1), some generating function relations have been established in various ways, as well as
some results.

Theorem 2.2. We have the following generating function for the multivariable multiple hypergeometric function WE
defined by (2.1):

(D) B}
2 = VE D A Bty B Yo s Vi X1 X) 1= (1= )7 23)
n=0 '

x| Xk Xir1 X, )
9’

x O ©O| s BV s Vol ey , -

where 1 € C, |t < 1.

Proof. Let T denote the first member of assertion (2.3),

oo 1 )
T = Z Dn OF O+ 1, By o Bri Vs evon Yy X vor ) 1
n=0 n!

= - Br+1)m " ---(IBr)m, ()™ (x)" 1
= Z Z WD (A + n)p(m]+...+mk)+...+mk+1+...+m,- e : -

. 24
=0 my,...my=0 (71)m| (Yr)m, mI! mr! n!
Using the identity [27, page 87]
(D A+ 1) = Wik = e A+, 2.5)
with k = p(my + ... + my) + ... + My + ... + m, in (2.5), we have
(/l)n (/l + n)p(ml+...+mk)+...+mk+|+..4+m,.
= (/l)ner(m]+.A.+mk)+...+mk+|+.A.+m,.
= (/l)p(ml+...+mk)+...+mk+1+...+m, (+ p(ml ot mg) Mgy M),
Thus, we can write (2.4)
- (ﬁk+l)mk |---(Br)m,
T = (ﬂ) M+ oA+ Ay oA, —_— (26)
mzn;o S CZ) NG
o ()™ m(x,.)m’ i A+ p(my + ... + my) + Mgy + ... +my), "
my! m,! — n!
Using the identity [27, page 58]
e (O
(1-n*=> g 2.7

n=0
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with c = A+ p(m; + ... + my) + Mgy + ... + m, in (2.7), we obtain

Z 1 +p(m1 + ...+ mkrf'+ M1 + .. + M), /= (1- t)—/l—,o(ml+--~+mk)—mk+1—---—mr ) (2.8)
n=0 :

Thus, we can write (2.6) as follows,

- - (Bk+1)mv+ ---(ﬂr)m,
T = (1 - t) /lml,;r: (/l)p(ml+...+mk)+...+mk+1+...+m, m
% X1 " Xk " Xk+1 Mt Xr " 1 1
A-0| 1A -¢r 1-9 “fa=-o m!  m
If we apply the definition (2.1), we get the desired equality, and the proof is complete. O

If we take k = 1,7 = 2 in Theorem 2.2), we have the following conclusion for the two-variable multiple hypergeo-
metric functions given by Equation (2.2).

Corollary 2.3. If we take k = 1,r = 2 in Theorem 2.2, then the two-variable multiple hypergeometric functions in
Equation 2.2 have the following relation:

- (/l)n . . no_ -1 . . X1 X2
;WE(/H"’,Bz,)’p)’z’xl,xz)t U= E\ LBy T T )

where A € C and |t| < 1.

If we set p = 2in (2.1), we clearly see that the multivariable multiple hypergeometric functions are a generalization
of the fourth kind multivariable Horn functions (k)Hf{) [13]:

OF O, Brsts B Vis oo Vi X1 o Xp) = OH ir) (@ Brsts s Brs Vs vees Vs X1y ves X1) -
Corollary 2.4. If we take p = 2 in Theorem 2.2, then we have the following relation for the fourth kind multivariable
Horn functions [13]:

" (D ; -
Z n_'" (k)H4()) (/l + nsﬁk+1s -~'9ﬁr; Yiseeos Vs X5 ooy xr) "= (1 - t) 1
n=0 :

x| X Xkt 1 Xy )
b

&) ¢y (1) B,y Vs —
X H /l, 2y L1 S v ’ T
4 ( ﬁk+1 1 (1 t)Z (1 _ t)2 (1 [) (l [)

where 1 € C and |t] < 1.

If we choose k = 1, r = 2 in Corollary 2.4, we immediately have the following conclusion for the fourth kind Horn
functions [16,29].

Remark 2.5. We have

0o(/l)n ) X1 X2
Hy(A+n,By1ysx,x) 0" = (L= " Hy | LBy v o —— |»
;n! s (A+nBiyysx,x)tt =0 -0 Ha | LBy, 72 -2 -0

where 4 € Cand |f] < 1.

If we set k = 0 in Corollary 2.4, we have the following relation for the first kind Lauricella functions in [21,29].

Remark 2.6. We have

" i . . n_ A ) . N Xr
HZ:(;TFA (/l+n,ﬁl,...,ﬁ,,yl,...,y,,x],...,x,)t —(l—t) FA A,,Bl,...,ﬁr,’y],...,’yr,m,...,m ,

where 4 € Cand [f| < 1.

If we choose k = 0, r = 2 in Corollary 2.4, we immediately have the following conclusion for the second kind
Appell functions [21,29].
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Remark 2.7. We have the following generating function for the second kind Appell functions:

Z( )an(/l+n[3],,82,)/1,72,x1,x2)t =1-9 AFz(/l ,31,,32,71,72,( t) (lx_zt))

where 1 € Cand [f| < 1.

Theorem 2.8. We have the following generating function for the multivariable multiple hypergeometric functions
BED defined by (2.1):

O (D v -
Z n! (k)E()(_naﬁk+l7~-~7ﬁr;yl7~-~77r;xla~~» xr)tn = (1 - t) * (29)
n=0 ’
® g @) . A L G L
X E 4, seeesPrs Vs eees Vs 20t ’ v ’
Brsts s Brs Vis eV, -1y (1= (1=0"""(U=0

where 1 € C, |t < 1.

Proof. Let S denote the first member of assertion (2.9). Then,

(D . n
Z © E D (0Bt B Y1 Y E e X )T (2.10)
n=0
oo p(my+..4m)+myy +...4m,<n (ﬂ ) (ﬁ ) (x )ml (x )m, tn
= Z (/l)n(_n)p(ml+...+mk)+mk+]+‘..+m, el e P ] - -
=0 Mmooy =0 (yl)ml---(yr)m, m1! mr! n!
Using the idendity [27, page 58]
(-n)y _ (=D
nl (m—-k)!’ 21D
with k = p(my + ... + my) + mpy + ... + m, in (2.11), we get
(_n)p(ml+...+mk)+m/‘+1+...+m, B (_1)p(m|+..4+mk)+mk+1+...+m, (2 12)
n! T (n—p(my + .+ M) — Mgy — . —my)! ’
Thus we can rewrite (2.10)
S _ ip(mH- +mk)+i\+]+ +m,.<n (/l)n(ﬂkJrl)mkH (Br)mr (xl)m] (xr)m,
=0 1y =0 YOmy - Yrdm, mi! " my!
(_1)p(m1+...+mk)+mk+]+...+m,- tn
(n—p(my + ... + my) — Mgy — ... —m,)!’
where we have used the relation [29, p.102]
oo miky+...+m.k.<n o )
O (ky, ..., k; Z O (ky,....ksn+mky + ... +mk,), (2.13)
n=0  ky,...k=0 n=0 k... k,=0

withn — n+ p(m; + ... + my) + My + ... + m, and we get

B+ Dy B, (x ()™
S Z Z (/l)n+p(m1+ A )My oMy (;1) L ](7 ) r:ll' m | (214)
my - \Yr)m, . 7o

(_ 1 )p(m| +oH )My +. My, tn+p(m1 Fo Ay )My F A,

n=0 my,...,m,=0

n!

Using (2.5) with k = p(m; + ... + my) + myyp + ... + m,, we have

(Dntpm +..tmp)+mpe +ootmy, = (/l)p(ml+...+mk)+..‘+mk+|+...+m, (A+p(my + ...+ m) + Mgy + .o+ M),
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and we can write (2.14)

N (ﬂk+l)mk 1-~-(ﬁr)m
§ = () o b bty
m,,Zn;,:o () +.Amy )+ My +.Am, (yl)ml-u()’r)m,

x1 (P [ (P T (= )™ [,
ny 'mk' M1 ‘mr‘

" i A+ p(my + ... + M) + My + ... + M),

o L

ljl
gy n!
where using (2.8) and we have
_ % (ﬁk+1)mk 1-“(;8r)m.
S=1-n* (Dpimy +..ctmp)+. by,
ml’%:’:o UMb I e M b (71)ml (’Yr)m,

o [T G e R e N I A T
(1—[)p (1—[)’0 (l—[) (1—[) ml‘mr'

_ x1 (=) X (=1 —xpe1t —X,t
=(1-1) 1 Op® (/l,ﬁk+1, s B Vs eees Vi * =,

-0 7" A=t A-0"""(1-1
which completes the proof. O

Theorem 2.9. We have the following generating function for the multivariable multiple hypergeometric functions
WE O defined by (2.1):

Z OE O (<1, Brys coos Bri V1o coos Vs X1 s X prie e oF 1 (= yi;x1 (=) . oF 1 (=, yis xi (—0))
n=0 .

X O (Brrts Yir1; —Xk+18) .. @ By, v —X01) (2.15)

where |t| < 1 and @ is confluent hypergeometric function and oFy is hypergeometric series, given by (1.3) and (1.4),
respectively.

Proof. Let S denote the first member of assertion (2.15). Then,

= "
E k . .
S = ( )E ® (—n,ﬁk+1, ...,ﬂr,’yl, ...,’)/r, X1y eees Xr) E
n=0 '

(my +...+my )+ My +...+mp <
S Brr Dy --Brdm, )™ (x)™ 1"
(_n)p(m1+...+mk)+mk+1+...+m,

Rt | —'
=0 My oatity=0 (71)m1-~-(7r)m, m. my. n.

and using (2.12)

[ i +1+.+m<
S _ Zp<ml+ L S (ﬁk+l)mk+1 '"(ﬁr)m, (xl)m] (xr)mr
(71)m1 (yr)m, ml! mr!

n=0 my,...,m,=0

(_ 1)p(m| +oHmy )My +.tm, I

(n—plmy + ... +my) — Mgy — ... —m)!’
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and using (2.13) withn — n + p(m; + ... + my) + M4 + ... + m, and we have

0 O BB, [x1 COPT™ [ (0P =X 1] [ ] < 1
S=2, 2 2

e B YDmy - Yr)m, my ! my!.m,! o n!
= et —(ﬁk+l)mk+l~-~(ﬁr)m,- [x1 (—t)p]ml [Xk (_f)p]mk [_)Cchrll‘]mk+1 [_xrt]mr e
| |
Mooty =0 (yl)lnl (’)/r)m, mp. My
=¢ i ! [x1 (—2y]" [ (=0)P]™ =
= YDy o 04 l)mk !
1 (o)
Z (ﬁk+1)mk+] X]H,]t]mk“ ) (ﬁr)m, [ x,t]'"’ _‘
e =0 ('yl)mkﬂ mk+1 =0 (’)/r)mr my.

If the hypergeometric series in (1.4) and confluent hypergeometric function in (1.3) are used,

S =€ oF1 (= y1; %1 (=0) c.0F1 (=, vk Xk (=0)) @ Bra1, Vs 15 —Xps 1) . @ By Vs =x,0)

which completes the proof. O

Lemma 2.10. The following relation is provided for the Pochhammer symbol given by (1.2)
A+n-1
( . ) (1= )y,

A-m+n-1
n

Proof. On the left side of Equation 2.16, if the definition of the Pochhammer symbol is applied, we get
(1-A2-n), =0-2-n@2-A-n..(1-A-n+m —1)
=(1-2-nN@2-A2-n)..(m —A—-n)
D" A+n-1DA+n-2)..A+n-m)A+n—-m —1)!
- A+n—my — D)
D™ @A+n-DIn! A=m; - D! A-1)!
T Qan—m-Dinl Q—m-1)! A-D)!

A+n-1 m
( n ) (A-D! (=1

(/l—m]+n—1

(1-A-n), = (2.16)

n

) (A=my; = 1)!

( /HZ_I )(/“_1)(/1‘2)-~~(/1—1—(ml—1))(/1—1—;111)!(_1)’"l

(/l—m1n+n—1 )(/l—ml—l)!
(“Z‘l )(1—/1)(2—/1)...(1—/l+m1—1)
- A—-m+n-1

n

A+n-1
_( n )(]_/l)ml
A—-m+n-1 ’

n

which completes the proof. O
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Theorem 2.11. We have the following generating function for the multivariable multiple hypergeometric functions
WE O defined by (2.1):

Z ( A+n-1 ) ®F® (@, Bists s Brs L = A=Y, s Vs X1y vy X)) 1 22.17)

n=0 n
=(1-n1tRE® (@, Brs1s B 1 = A, v0, sy x1 (1 = 0) X2, 00y X,)
where A € C, |t| < 1.

Proof. Let T denote the first member of assertion (2.17). Then,

SRS A+n—1
T = Z Z ( n ) (a)p(m1+...+mk)+mk+1+...+m,.

n=0 my,...,m,=0
(ﬂk+l)mk+1 m(ﬁr)m,- ()C] )m1 (xr)mr ln

SO U S o W oY% WY By

Using the Lemma 2.10

SRS A=my+n—1
T = Z Z ( n (Q)p(m1+...+mk)+mk+]+4..+m,.

(Bk+1 )mkH -~-(ﬂr)m, (x1 )m1 (xr)m’ o
(1= Dy YDy Y, 2! my!

- A=-m;+n-1)!
= Z Z m(a)p(ml+...+mk)+mk+1+...+m,.

Bres Dy - Br)im, )™ (x,)™ ﬁ

. (2.18)
(1 - /l)ml (72)m2~-~(yr)m,- ml! mr! n!
Using the idendity
I'(n)=m-1D
and the definition of Pochhammer symbol given by (1.2), we have
A=-my+n-1)! T A-m +n)
= == ml)n .
A=m - 1)! r@-m)
Thus, we can rewrite (2.18)
AN Bics D B, )™ (o)™ (A= 1m1)
T= m m - . g
2 mz,;‘o @pinscompsmerecn, G T T 24
Using the equation (2.7) with ¢ = A — m;, we get
DR Brs Dy - Bdm, — Lxr (L=0]™  [x,]™
T=(1-n" , m kol -
=07 D, @pmommesseon T o O T
=(1=t*PED (@B 1s il = L yg ey X1 (1= 1), X2, oo X,
which completes the proof. O

In the next theorem, let ¥, denote the following special functions W E .
k ) .
W, = OED (@, Brys Bl = A= 10,70, s Vi X1y e X))

Theorem 2.12. The following generating function for the multivariable multiple hypergeometric functions ¥,, holds
true:

Z( L )‘Pm X1 x) = (L= 7 (1 (1= 1), X, 1) (2.19)
n
n=0
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Proof. Let T denote the first member of assertion (2.19). Then,

S (A+m+n—1
T = Z( men )\Pern (xls-"’xr)tn
n=0 n

o (A+m+n—1
= Z ( ) O © (@, Brs1s By 1 = A=mM—1,Y5, e Vs Xy s X)) 1
n
n=0

From Theorem 2.11,

T=0-0""PED(a,B 1, 0Bl = A=1m,75, 0y, X1 (1 = 1), X2, 000r X,
= (=07, (e (1= 1), 02,0, 1)

which completes the proof. O

Similar to Corollaries 2.3, 2.4 and Remarks 2.5, 2.6 and 2.7, we also get the following corollary for Theorems 2.8,
2.9,2.11 and 2.12.

Corollary 2.13. If

) k=1,r=2
(2)p=2
B)p=2,k=1andr=2
4 p=2,k=0

S)p=2,k=0andr=2

are taken in all Teorems 2.8, 2.9, 2.11 and 2.12, generating function relations are found for the functions of two-
variable multiple hypergeometric, fourth kind multivariable Horn, fourth kind Horn, first kind Lauricella and second
kind Appell given by (2.2), (1.8), (1.7), (1.6) and (1.5), respectively.

3. MULTILINEAR AND MULTILATERAL GENERATING FUNCTIONS

In this section, we derive several families of multilinear and multilateral generating function for multivariable mul-
tiple hypergeometric functions defined by (2.1) by using the similar method considered in [11, 19,20].

Theorem 3.1. Corresponding to an identically non-vanishing function Q,(y1,...,ys) of s complex variables yy, ...,y
(s € N) and of complex order y, let

o

A/J,Lﬂ(yh s Yss Z) = Z akQﬂﬂpk(yla ---’ys)é‘k’

k=0
where ar # 0, u, ¥ € C and
Oy (X1 s X3 V1 wens Vi3 )
[n/l’] §k
= ax (1) OF O 41— pk,Brg s oo B Viseoos Vi X1 eons X0) Qi V1 vy Ys) ————.
k n—pk DK, k415 "> ,,71, ,')’r, 15 eees Ap Utk Y15 Vs (}’l— k)'
k=0 pk)!

Then, for p € N, we have

) ’ n B
Z Gﬁ,i (.XI, vy Xy Y1s s Vs t_P) tn = A/J!w(y], ,ys,n)(l - t) 4
n=0

Xk Xir1 Xy

xi
A=t A= (U-0)""(U=0)

x Wg® (/l,B,HI,...,,8,;71,...,7,; (3.1)

provided that each member of (3.1) exists.
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Proof. For convenience, let S denote the first member of the assertion (3.1). Then,
oo [n/p] k sn—pk
k _ , nt
S = ”Z:;) ; Ak Dppie PE O (A4 1= P, Brs coos Bri Vs coos Vs X eoes %) Qg V1, o0y V) PR
Replacing n by n + pk, we may write that
o0 (] tn
S = Z Z ar (), PED A+ 1 Brsts oos Brs Vs oo Vs X oy %) Lk V1,5 ...,ys)r]k—'
n!
n=0 k=0
0 o °°
= Z (D), O ® (A + 1, Brsts eeos Brs Vis wees Vys Xl eoes Xp) i Z ik (1, ...,ys)r]k
n=0 " k=0
=(1-H1*tOE"[ T T N il ey T s M A A e Vi 1),
( ) ﬂk+1 Br Y1 Yr (1 _ t)p (1 _ t)p (1 _ t) (1 _ t) #,w()’l Vs 77)
which completes the proof. O

In a similar manner, we also get the Theorem 3.2 and 3.3 immediately.

Theorem 3.2. Corresponding to an identically non-vanishing function &, (y1, ..., ys) of s complex variables yi, ..., y;
(s € N) and of complex order y, let

oo

ApyOis . ¥s3 ) = Zakaerk(Yh e LK,

k=0
where ar # 0, u, ¥ € C and
@’,fjﬁ (XLs erer X V1 erer Y53 &)
A W o . . &
= kZ:(; akc (Dppi VE (=1 = Pk, Brsts s B Vi oo Vi X ooy X7) gk V15 -0 V) = il
Then, for p € N, we have
DO (10 X1 355 ) = A sy (E = 07 (3.2)
n=0
% Op® (ﬁ,ﬁkw,_,,,Br;yl,...,y,; )(Ci(_g }(C’l‘(_g:: (1xk_+]t)t’""(1 ir;)),
provided that each member of (3.2) exists.
Proof. By using similar method in the proof of Theorem 3.1, we arrive at the desired result. O

Theorem 3.3. Corresponding to an identically non-vanishing function &,(y1, ...,ys) of s complex variables yi, ..., y;
(s € N) and of complex order u, let

Mg Ot 35 0) 1= D g1, - 3L,
=0
where ay # 0, u, ¥ € C and
[n/p]
G)’,% (X1 cer X5 V1 ey V3 E) 1= Z ar OE O (=1 = ph, By s s B Vi oo Vs X1 oer Xy
k=0

é;k
X Qi (1, '"’ys)(n——pk)!'
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Then, for p € N, we have

Z o (xl’ o X3 V15 ees Vs g,)f” = Ay 1, o Vs €oF 1 (= y13x1 (=0F) o Fy (=, vis xi (1))
n=0
X DO (Brrt, Yir1s =Xt 1) .. D By, s —x01) (3.3)
provided that each member of (3.3) exists.

Proof. We get the required result by using the generating functions in Theorem 2.9 and the techniques used to prove
Theorem 3.1. ]

Theorem 3.4. Corresponding to an identically non-vanishing function Q,(y1,...,ys) of r complex variables yy, ...,y
(r € N) and of complex order u, let

o)

Am,q(xl, vy Xps Vs eees Vs t) = Z ap lIJm+nq (-xl’ ceey xr) Qy+pn(yls ceey ys)tn’
n=0
where (a, # 0, u € C), ¥, is defined by (2.7) and
[n/4]
NymgOts o V53 2) 1= Z akapk(yh---,ys)zk.
k=0
Then, for every nonnegative integer m,
S (A+m+n—1
Z( n )\Pm+n (xl’-"» xr) le,;lrlt,q(yl’ n-,)’s;Z)ln (34)

n=0

— —-A-m 5 ; th
=(1 =" Apy (x1 (=10, 20, e, X3 Y1, - Y53 - ,)q)’

provided that each member of (3.4) exists.
Proof. Let T denote the left-hand side of equality (3.4). Then we have
[n/4]

N (A+m+n—1
T = Z ( ) \Pm+n (xl, ey xr) Z akQﬂ+pk(y1, ...,yS)Zk[n
n=0 n k=0
(o (A +m+n+gk—1
= (Z ( n 1 ) le+n+qk ()Cl, ceey .Xr) tn] ay Qu+pk()’1’ ...,ys) (th)k
k n=0

Mz I

(L=, (i (1= 1) X2, e ) @ Qs gk (V15 05 ¥5) (229

T
<

oo k
dem zt?
=(1-n" ;ak\PWqu (1 (1-1,x2,..., %) Qu+pk(Y1,--.,Ys)((1_—t)q)

—A—m th
= (1 - t) 4 Am,q (x] (1 - t) 5 X2y eeey xr;y1’ ~--7)’s§ m) 5

which completes the proof. O

4. SpeciAL CASES

As an application of the above Theorems, when the multivariable function €,,yt(y1,....¥s), kK € No, s € N, is
expressed in terms of simpler functions of one and more variables, then we can give further applications of the above
theorems. We first set

(P

§=r, Q/J+l//k(yls ""yr) = uﬂ+lﬂk ar)()’l’ ""yr)
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in Theorem 3.1, where the Erkus-Srivastava polynomials ug,‘“ """ "’)(xl , ..., Xr), generated by [11]

> " s
Zouff“ ’’’’’ ) = [ [ = xamyey. “.1)
n= Jj=1

We are thus led to the following result which provides a class of bilateral generating functions for the ® E® multi-
variable multiple hypergeometric functions and Erkus-Srivastava polynomials respectively defined by (2.1) and gener-
ated by (4.1).

Corollary 4.1. If

00

A1y 0) 1= ) a5 ey
k=0

(ar #0, u,y € C)

then, we have

oo [n/p]

Z Z ar (Dp—pk OE O QA4 1 = Pl Brsgs s Bri Vs oos Vs X1 eomr Xy
n=0 k=0
k n
(@1 ,e0sy) n t
XUk (Yh---,yr)ﬂ,—km
= BEM () B ey V0 al all alsa X
( 9ﬁk+]9 ,ﬂr’yls ,)’r’ (1—t)p’ ,(1—[)p’(1—[), ’(1—[)
X (L= Ay 1y s Y3 1), 4.2)

provided that each member of (4.2) exists.

Remark 4.2. Using the generating relation (4.1) for Erkus-Srivastava polynomials and getting @, = 1, u =0,y = 1 in
Corollary 4.1, we find that

oo [n/p]
Z (D pi OFE O (41— PRy By s oo Bri Vs coon Vs X1 eons Xy)
n=0 k=0
k .n—pk
(@1my) 4
X u 5 eees P ———
N V1505 Y1) = ph)!

X1 Xk Xk+1 Xr

(1=t A= A=-0"""(1-0

=(1-n1*tWE® (/l,ﬁ,m, BV s e Vs
r

x [ T =y .

=1
If we set
Q )= PEO A+ (u+ gk : ; )
gk V15 oo Vi A YR Bists s By Vs oos Vid X1 oy Xy
or
Q}t+l//k(yl7 ""yr) = (k)E « (_(/'l + wk)5ﬂk+la -"’ﬂr;yla -”,’y;r; X1, "',xr)

in Theorem 3.1, 3.2 and 3.3, we have bilinear generating function relations for the multivariable multiple hypergeo-
metric functions.
On the other hand, choosing

S=1, Q;m//k()’hYZ) = (k)Hir) (_ (ll + l//k) 7ﬁk+l9 --~’ﬂr;yla aeey ’}/r’ Xy eens -xr)
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in Theorem 3.2, where the fourth kind multivariable Horn functions [13], generated by

o ()
Zn_'n (k)HA(tr) (_n,ﬂk+l’ --.,ﬁr;yl’ cees 7r; XL oo xr) tn (43)
n=0 ’
_ X1 xf? =Xt — Xt
:(l—t)’l(k)H(r)(/L e B yeees Vs 5 eney ) 5 ensy )7
4 | BBrsts B Vi Ve S A I A T e S )

where |f| < 1.
We are thus led to the following result which provides a class of bilateral generating functions for the multivariable
multiple hypergeometric functions ® E®) and the fourth kind multivariable Horn functions.

Corollary 4.3. If

00

Ayt 3 ) = g OH D (= (4 0k) By o B Vs s Vi V1o ) £
k=0

(ar #0, u, Yy eC)

then, we have

o [n/p]
DD Adepe VE (=1 = P By oo B Vs s Vi s s 57)
n=0 k=0
k .n—pk
) gy ) (_ . . nt
X OH ) (= G ) Bt s Bi Vs Vi ) o
x1 (=t o (=tf —xpat  —xt

1—¢ -1 (k)E (r) 4, wees Brs Vs eees Vs 5 erey P 5 aeny
(1-19) 1Bt s By Vs oo ¥ (1—1p (I-0"A-0""010-0

X Ny, s yri 1), (4.4)
provided that each member of (4.4) exists.

Remark 4.4. Using the generating relation (4.3) for the fourth kind multivariable Horn functions and getting a; = (/f!)k ,

1 =0,y =1, 1in Corollary 4.3, we find that

oo [n/p]
Z Z (e Anepke PE T (=1 = ph.Br 1 oo Bri Vis coon ¥y X1 eons Xp)
n=0 k=0
k 4n—pk
k) gy () ; 5 T
X H4r (_k,ﬁk+la""ﬁr’)/l’""’y"’yl’”-’yr)k!(n—_pk)!

A= A=t (=0 (1 -0
yin VT Ykl —v )
A-2""a-p>A=-p""7"A=-n)

Remark 4.5. If we take p = 2 in (4.4), we have a bilinear generating function relations for the fourth type multivariable
Horn functions.

_ - x1 (—t)f L X (0 =Xt —x, 1
=(1-p" (")E()(ﬂl,ﬁk+l,...,ﬁ,;yl,... ¥V ¢ kel )

x(1=m™OH (/lz»ﬁkw~~-,Br;71,~-,%§

Furthermore, for every suitable choice of the coefficients a; (k € Np), if the multivariable functions €,,,yx(V1, .., Y1),
r € N, are expressed as an appropriate product of several simpler functions, the assertions of Theorems 3.1, 3.2, 3.3
and 3.4 can be applied in order to derive various families of multilinear and multilateral generating functions for the
multivariable multiple hypergeometric functions ® E® defined by (2.1).
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