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Abstract: In this survey, some methods of extraction of thorium such as selective extraction of thorium
using  phosphorodiamidate,  selective  cloud  point  extraction  of  thorium,  extraction  of  thorium  from
sulfuric acid baking and leaching of monazite, extraction of thorium from chloride solution using Schiff
base  were  discussed.  The  decomposition  of  monazite  was  manifested  by  sulfuric  acid  baking  and
leaching at an elated temperature. The recovery of thorium (Th) from various sources of rare earth and
some selective extraction of thorium by using phosphorodiamidate as an extractant was also reported.
Using a special synthesized surface-active ionic liquid extractant (SAIL), the cloud point extraction of
thorium was  analyzed.  A  synthesized  Schiff  base was applied for  the  extraction  of  thorium in  the
strategic solvent extraction method. Thorium, using α-amino phosphate extractant from bastnaesite,
recovery by using Cyanex 572 and N1923, recovery of Th from industrial residues and recovery of Th
from radioactive waste by using IREPO and monazite leached solution were discussed. In this study, the
recovery of thorium from the industrial residue as well as from radioactive residue was also discussed.
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INTRODUCTION

The history of human development is often told by
the various form of energy. At first, it was muscle,
and later when humans learned to control fire, it
was heat energy. Eventually using coal and oil, the
world  was  industrialized.  With  a  growing
population,  the consumption of  energy has been
increased.  This  growing  energy  demand  is  met
when a human entered into this atomic era. The
energy harvested from the splitting of  a nucleus
has made humans the most advanced species on
earth.  When  the  demand  for  nuclear  energy
increased, the demand for nuclear fuel like thorium
(Th)  and  uranium  (U)  is  also  increased.  Even
though  thorium  is  not  fissile,  it  is  referred  to
nuclear energy since it is three to four times more

abundant on the surface of the earth than uranium
and it also provides the most promising options for
nuclear power generation in terms of fuel efficiency
and  economy  (1).  Lots  of  researches  had  been
conducted to find a source of energy that would
substitute  the  place  of  earth’s  energy  resources
that  has  been depleting  rapidly  day-by-day.  The
very promising and environment-friendly approach
for  meeting  the  ever-growing  energy  demand is
nuclear energy with the least amount of nuclear
waste. One of the greenest energy productions is
the  thorium  reactor  (2,  3).  The  possibility  of
thorium being  the  nuclear  fuel,  has  given  more
importance to the production of thorium worldwide
and  Thorium is  a  naturally  occurring  radioactive
material (4, 5). 
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Figure 1: Production of uranium from Thorium (1).

Normally  thorium  isotopes  exist  as  thorium-232
(232Th) and its half-cycle is around 14 billion years.
232Th  is  a  fertile  material  that  doesn’t  undergo
fission reaction by itself. But a fissile material, i.e.,
uranium,  is  produced  from  its  two-beta  decay
reaction of thorium with a neutron (Figure 1). Out
of all nuclear fuels, thorium(IV) oxide (ThO2) has
more advantages compared to uranium because of
its  lower  thermal  expansion  than  uranium(VI)
oxide (UO2) and despite having a similar isometric
structure,  it  is  relatively  inert  (3,  4).  The  high
thermal conductivity of ThO2 makes it better fuel
for  nuclear  reactors  and  the  thorium  fuel  is
considered  an  efficient  fuel  because  of  its  lower
hazard  nuclear  reaction  accidents  as  well  as  its
lower  nuclear  by-products.  In  the  reactor,  there
will  be  no  need  for  fuel  reprocessing.  The
increasing awareness of fuel resources is changing
its attitude towards the use of thorium as a fuel
resource  (5-7).  The  role  of  thorium in  futuristic
green energy production, gives rise to the demand
for thorium extraction. There are various methods

for production of Thorium like extraction of thorium
by  using  phosphorodiamidate  as  extractant,
selective  cloud  point  extraction  of  Th,  selective
extraction  of  Th  by  sulfuric  acid  baking  and
leaching  of  monazite,  extraction  of  Th  using  a
Schiff base etc. (8-12). The extraction behaviors of
U(VI) and Th(IV) were investigated by Tan et al.
(13)  using  di(1-methyl-heptyl)  methyl
phosphonate  (DMHMP)  as  an  extractant  and
kerosene  as  a  diluent.  Some  novel  extractants
were synthesized for the separation of thorium and
rare earth (RE) by Dong et al.  (14).  Among the
synthesized neutral organophosphorus extractants,
n-octyl  phosphate  diphenyl  (ODP)  revealed
excellent extraction efficiencies and selectivities for
Th(IV).The extraction mechanisms of uranium and
thorium  were  studied  by  Nasab  (12).  Taguchi’s
method (12) was used to determine the optimum
conditions  for  the  separation  of  uranium  and
thorium  using  neutral  extractants.  In  solvent
extraction method, this method has been proposed
as powerful method of experimental design (12)

(S /N )i=−10(1n∑i ( 1y i2))  (1)

Where the signal to noise (S/N) ratio is  used to
determine the best experimental  conditions,  yi is
the  experimental  value  and  n  is  the  number  of
tests  in  the  experiment.  In  recent  years,  the
extraction and recovery of thorium ions and their
separations  from  various  geological  rare  earth
minerals have gained vital significance due to their
wide  applications  in  industries.  The  different
extraction processes of thorium in a single review
paper were not found in literatures and thus we
have attempted to analyze the processes herewith.

METHODS OF EXTRACTION

Selective  Extractions  from  Rare  Earth  by
Using Phosphorodiamidate as an Extractant
In this method of extraction, an extractant named
phosphorodiamidate was synthesized. To separate
thorium  from  rare  earth,  the  medium  for  the
extraction  chosen  was  nitrate  medium.  The
molecular structure for this extractant is given in
Figure 2.
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Figure 2: Molecular structure of phosphorodiami-
date ligand, designated as L (8). 

The  molecular  formula  for  this  extractant  is  2-
Ethylhexyl-N,  N -di(2-ˊ ethylhexyl)  phosphorodi-
amidate. The above extractant was added with a
required concentration in n-heptane. The standard
solution with concentrated nitric acid was prepared
by dissolving corresponding oxides. The prepared
solution  was  diluted  with  distilled  water.  The
experiment  was  carried  out  in  a  temperature-
controlled  shaker  bath  at  298  K.   For  higher
efficiency,  nitrate  medium  with  acidity  ranging
from  0.01  mol/L  to  7  mol/L  was  taken  in  the
extraction process. The extraction of thorium in a
different acidic medium generally decreases by the
increase  in  hydration  energy  of  their  ions  and
decrease  in  hydrophobicity  of  the  extracted
complex.  The maximum loading capacity of Th in
this  method  was  about  48.56  g  Th  per  liter  of
working  solution  with  0.69  mol/L  of
phosphorodiamidate  at  a  2.1 mol/L  concentrated

nitrate medium. The extraction of Th(IV) and U(VI)
from dilute nitric acid solution by several neutral
phosphorus-based extractants has been studied as
a function of temperature in the range of 0–50 °C
by  Kalina  et  al.  (15).  The  order  of  extraction
capacity of Th from the different medium: H2SO4 <
HCl< HNO3 (16-18). (16-18). In case of phosphoric
acid, when the concentration is increased from 1
mol/ L to 6.5 mol/L, the thorium stripping becomes
40  % to  70  %.  When  the  concentration  of  the
extractant  (L)  is  increased,  the  extraction
efficiency  of  thorium has been  found more than
REs.  To  reach  higher  extraction  efficiency,  the
thorium  extraction  was  studied  with  the  acid
concentration ranging from 0.01 mol/L to 7 mol/L
in different acid medium (8, 16). The stripping of
thorium by nitric  acid confirmed that  the loaded
thorium can not be stripped even at high nitric acid
concentration.  There are maximum value for the
stripping efficiency at about 1.5 mol/L for H2SO4

and 2.4 mol/L for HCl (8, 16). (8, 16). The higher
acid concentration is more helpful for separation of
REs. In this method, thorium is extracted in ionic
form,  Th(IV).  The extraction  is  spontaneous and
exothermic. 

Cloud Point Extraction (CPE)
It is an eco-friendly method of extraction (9, 19-
26). This method of extraction is considered noble
because it is inexpensive, fast, selective, precise,
and accurate. The procedure is considered green
extraction  as  this  method consumes  a  minimum
amount of toxic organic solvents. Figure 3 shows
how the  cloud  point  extraction  of  metal  can  be
done.

Figure 3: Cloud point extraction method (19).

In  the  experiment,  a  known amount  of  thorium
was mixed with an Arsenazo III solution of 0.001
mol/L  concentration  in  a  10  mL centrifuge tube.
Then  in  the  Th-Arsenazo  III  complex,  the
solutions: 1.0 mL of Triton X-100, 0.5 mL of KI
(0.01  mol/L),  and  2.5  mL  of  newly  synthesized
tetra-cationic  surface-active  ionic  liquid  (SAIL)

based  on  tetraazonia-tricyclodecane  derivative
(0.001  mol/L)  were  added  respectively  with  an
adjusted pH of 5.0. After taking the solution with
deionized  water  to  the  mark,  it  was  left  in  a
thermostatic  bath  (353.15  K)  for  30  min  to  an
induced separation. Since the surfactant is denser
than water, the solution gets separated into two
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phases  and  the  surfactant-rich  phase  settled
through  the  aqueous  phase.  Then  the  tube  was
cooled down in an ice bath and centrifuged at 6000
rpm  for  10  min.  Then  the  aqueous  phase  was
decanted leaving the surfactant-rich phase at the
bottom of the tube.  The surfactant-rich phase is
then  diluted  with  methanol  to  decrease  the
viscosity.  After  that,  the  extracted  sample  is
moved to the quartz cell for a spectrophotometric
determination as shown in Figure 4.

As per the work of Z F Akl and M. A. Hegazy (26),
the highest extraction efficiency was achieved at

pH 5.0 with 2.5 x 10-3 mol/L SAIL and 1.0% (v/v)
Triton X -  100.  At  the  optimized conditions,  the
developed method exhibited a linear working range
from 10 to  100 ng/mL with  a  detection limit  of
0.77  ng/mL.  0.77  ng/mL.  The  temperature  also
plays  a  vital  role.  For  efficient  extraction,  the
optimum temperature is 80°C. When the sample is
spiked with preconcentrated Th(IV) by a factor 20,
then  the  extraction  percentage  of  thorium
increases more than 98%. This work reported the
development of a green, sensitive, selective, and
inexpensive method for extraction Th(IV).

Figure 4: Spectrophotometric determination after cloud point extraction of Th (25).

Selective  Extraction  of  Th  by  Sulfuric  Acid
Baking and Leaching of Monazite
Monazite is one of the major sources of thorium
and many rare earth  elements (REE). In sulfuric
acid  baking,  the  rare  earth  elements  were
converted  into  sulfates  and  those  sulfates  get
dissolved in water leaching process. Monazite was
either processed by sulfuric acid baking or alkaline
digestion (10). In this process of extraction, at first
monazite-sulfuric acid mixture was digested in the
stirred  reactor  at  200 °C  to  246 °C.   Then  the
baking  was  carried  out  at  various  temperatures
between 200 °C and 800 °C (27). After the baking,
the heated sample was removed from the heated
furnace and cooled. The cooled sample was ground
to  a  fine  powder  before  it  was  leached at  40:1
liquid to solid ratio  at 20 °C to 29 °C in 0.9 M
sulfuric acid for two hours. Then the separation of
solid and liquid was done by vacuum filtration. The
monazite  bearing  different  concentrates  have
different bake temperatures. Individual rare earth
is not easy to separate from each other because of
their  similar  chemical  and  physical  properties.
Before  the  advancement  in  industrial  solvent
extraction,  ion  exchange  techniques  were
prominent.  In  environmental  and  high-tech
applications, rare earths are non-replaceable and
indispensable  because  of  their  unique  electro-
chemical, luminescent and magnetic properties. To
satisfy the diverse application of rare earth, it is
mined, screened, and leached for separating it into
proper feed materials (28). (28). In this method,
one of the influencing factor is precipitation pH. It

is ranging from 2.5 to 5.5 for thorium. But now-a-
days  solvent  extraction  is  accepted  as  the  most
appropriate  technique  for  separating  rare  earth
commercially  (29,  30).  In  this  method  of
extraction, the behaviors of rare earth play a vital
role.  The  separation  of  uranium and  thorium in
pure  products  can  be  achieved  by  this  method
using sulfuric acid liquor and one of the important
variables  to  be  considered  in  the  process  is  the
dosage of acid and dilution (31-33). In sulfuric acid
baking  of  rare  earth,  uranium  and  thorium  get
converted  into  soluble  sulfate  (34).  In  the  HCl
leaching system, the issue of acid consumption is
more  pronounced.  For  mineral  decomposition  in
industry, sulfuric acid baking is one of the major
processes. This process is responsible for 81% of
the  world’s  rare-earth  production.  There  are
numerous techniques to investigate the extraction
of rare earth metals, but only a few of them are
found to be effective and successful. Sulfuric acid
baking and leaching are one of them (27, 35-37).
The  flow  chart  of  sulfuric  acid  decomposition  of
monazite  is  displayed  in  Figure  5.  Various
conditions  for  the  baking  of  minerals,  e.g.
monazite,  have  been  presented  by  numerous
researchers (27,35-57). This extraction method is
exothermic process. The baking of monazite with
sulfuric acid gives an enthalpy of – 171 kJ/ mol. J.
Demol et al. (27) found that the sulfation reaction
of monazite with acid resulting in more than 90%
solubilization of rare earth elements phosphate and
thorium.  Their  result  shows  the virtual  complete
dissolution of rare earth, phosphate, and thorium
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during  leaching  after  250  °C  bake.  A  thorium
phosphate  type  precipitate  was  formed  during
leaching  after  baking  at  300  °C  and it  leads  to
sharp  decrease  in  extraction  of  phosphate  and

thorium.  This  method  requires  high  temperature
and excessive acids for digestion which involves a
number of risk factors while handling the steps.

Figure 5: Sulfuric acid treatment of a rare earth mineral concentrate (37).

Extraction  of  Thorium  (IV)  from  Chloride
Solution using Schiff Base
In this strategic method of solvent extraction for
thorium selective group extractants such as neutral
phosphate  (12),  amines  (12,  58),  oximes  (59),
phosphoric acid (60, 61) and, Schiff base (11, 62,
63) were employed. In this process of extraction,

initially,  a  synthesized  Schiff  base  (AcPh)  was
applied for the extraction of thorium from standard
solution (1000 mg/L of Th IV) which was prepared
by dissolving 2.535 g of thorium nitrate in acidified
distilled  with  10  mL  of  concentrated  HCl.  The
preparation of the Schiff base is shown in Figure 6.

Figure 6: Preparation of the Schiff base (AcPh) (11).

After adding AcPh, then the sample mixture was
dissolved  in  a  mixture  of  diethyl  ether  and
chloroform at the ratio of 2:3. After that sodium
malonate  was  added  to  the  sample  containing
Th(IV)  in  chloride  form.  A  dilute  solution  of
HCl/NaOH was  added  to  obtain  the  desired  pH.
Then the sample was equilibrated by shaking it for
about  7  minutes  in  a  glass  with  an  appropriate

volume of  the organic  phase.  After  equilibration,
Th in ionic form was separated from its aqueous
phase  (63,  64).  The  pH  value  (≈  6.5)  and
concentration of Schiff base are influencing factors
for  extraction.  When  the  concentration  of  Schiff
base is increased from 0.001 M to 0.002 M, the
extraction efficiency of Th(IV) increases from 44%
to 96.2% provided the organic phase to aqueous
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phase  is  to  be  1:3.  M.  F.  Cheria  et  al.  (11)
reported that the maximum extraction efficiency of
thorium was obtained at 0.02 M AcPh/chloroform
and  diethyl  ether  mixture,  3:1  aqueous  to  the
organic  ratio  for  5  min  contact  time  at  room
temperature.  The extraction  process  using Schiff
base  in  chloride  medium  gives  an  increased
sensitivity  of  analysis  of  thorium  ions  in  rock
samples.  Using  this  method  thorium  can  be
extracted about 330 mg/kg approximately. When
phophorodiamidate  extractant  used  for  the
extraction, the extraction capacity was found to be
48.55 g per liter  of the sample solution.  sample
solution.  The  efficiency  of  stripping  decreases
gradually with the increase in temperature above
room  temperature.  For  efficient  extraction  the
room  temperature  is  considered  optimum.  This
extractant  is  considered  noble  as  it  makes
selective extraction of Th from rare earth possible.

RECOVERY  OF  THORIUM  USING  DIFFERENT
TECHNIQUES,  EXTRACTANTS,  AND  FROM
RADIOACTIVE WASTE

Recovery  of  Thorium(IV)  by  α-amino
phosphate Extractant in Sulfate Medium and
from Leach Solution with Cextrant 230
In  this  process  of  recovery,  α-aminophosphate
extractant and Cextrant 230 were used to recovery
Th(IV)  in  sulfate  medium  and  by  using  leach
solution respectively.  Here  the use of  the amine
group  in  phosphate  increases  the  extraction  of
Th(IV). Bastnasite leaching can be used, in which
purities of Th were increased by 98%. Due to the
increasing global demand of energy, the recovery

of  Th,  and  U  from various  sources  have  drawn
great  attention  at  present  time  (64,  65).
Bastnasite  ((RE)(CO3)  F),  monazite((RE(PO4),
xenotime (YPO4), and RE-bearing clay have been
used  as  rare  earth  minerals  (65,66).  Recently,
aminophosphate  compounds  have  drawn  the
attraction  of  researchers,  and  have  been
extensively  used  as  extractants,  herbicides,
anticancer  agents,  etc.  It  also  shows  marvelous
extractive  properties  (67-71).  Here  metals  were
analyzed  using  an  inductively  coupled  plasma
optical  emission  spectrometer  (72,  73).  To
determine the pH of an aqueous solution, PHS-3C
digital meter was used. The molecular structure of
Cextrant 230 is shown in Figure 7.

Figure 7: Molecular structure of Cextrant 230
(73).

Cextrant 230 is the most important extractant for
the  recovery  of  radioactive  elements  Th  and  U
from an aqueous solution.  It  contains aluminium
and  iron  in  a  sulfate  medium.  The  extraction
process  of  Th  and  U  with  cextrant  230  is
exothermic (72-74). The flow chart of separating
cerium  (IV)  and  thorium  (IV)  from  bastnaesite
leaching is shown in Figure 8. 

Cextrant230

H2SO4

Ce extraction stage

Feed Stripping agent

Scrubbing stage (I) Stripping stage Scrubbing stage(II) Regeneration

H2O

Raffinate Ce product For leaching bastnasite

Th extraction stage Scrubbing stage Stripping stage Regeneration

Cextrant230
H2SO4 HCl H2O

H2SO4

For single rare earth separation Th product

Cextrant230

H2SO4

Ce extraction stage

Feed Stripping agent

Scrubbing stage (I) Stripping stage Scrubbing stage(II) Regeneration

H2O

Raffinate Ce product For leaching bastnasite

Th extraction stage Scrubbing stage Stripping stage Regeneration

Cextrant230
H2SO4 HCl H2O

H2SO4

For single rare earth separation Th product

Figure 8: Flow chart of separating cerium(IV) and thorium(IV) from bastnaesite leaching (74).
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Figure 9: Th separation with N1923 and REE enrichment with Cyanex®572 (75).

Th  separation  with  N1923  and  REE  enrichment
with Cyanex®572 is shown in Figure 9. N1923 and
Cyanex®572  can  be  used  for  the  recovery  of
thorium using HCl leachate (75). In the method of
formulating a  high concentration rare  earth  (RE)
feed for individual RE separation, hydrochloric acid
is used to dissolve the RE concentrate to reduce
the  leaching  of  impurities,  about  5%  of  REEs
remains in the dissolved residues (76, 77).

Recovery of Th from Industrial Residues and
Monazite Leach Solution
The  main  chemical  used  for  this  process  was
sulfuric acid digestion followed by water leaching.
The lanthanides group as well as the scandium and
yttrium group come under a rare-earth group, as
the chemical structure of Th and U are similar to
REE. They are found in the residues generated in
REE processing. In monazite minerals, Th is found
in high quantity as compared to U (78, 79). Here
the acid digestion is performed with concentrated
sulfuric  acid  and then adds directly  to the solid.
Sulfuric acid digestion followed by water leaching
was found to be the best method to solubilize the
metal  (80).  To  recover  thorium  from  monazite,
solvent  extraction,  i.e.  liquid-liquid  extraction
process (80, 81). It is one of the strategic methods
and  utmost  reliable  technique  to  reach  out  on
target  metal  recovery  with  enrichment  factor.
Korean  monazite  is  managed  using
hydrometallurgical  techniques  such  as  water
leaching,  sulfation,  double  salt  precipitation  by
using Na2SO4 and acidic leaching by HCl (81,  82).

The flowchart for synthesis of thorium-rich residue
associated  with  minor  quantities  of  rare  earth
elements is shown in Figure 10.

Recovery of Th from Radioactive Waste
There is also removal of thorium using IREPO from
radioactive  waste  (83).  In  this  method,  the
recovery of Th by using IREOPR was analyzed. In
this process, the convenient and effective chemical
treatment of IREORR was to dissolve them with a
mineral  acid  before  recovering  the  valuable
elements.  A process  for  separating Th and REEs
from  IREORR  leachate  using  POAA  has  been
designed  and  illustrated.  Here  the  chemical
composition  of  residues  was  first  analyzed  and
then the leaching factors  such as  acid  type  and
acid  concentration  were  noted  down.  A  cost-
effective process for recovering thorium and rare
earths from radioactive residues is shown in Figure
11.

EXTRACTION  AND  SEPARATION  RESULT
WITH THE OPTIMAL CONDITIONAL ANALYSIS

The extraction process follows different steps with
response  to  various  diluents,  concentration  of
extractants, pH value, temperature, contact time,
acids  (HNO3,  HCl,  H2SO4)  etc.  In  this  study,  we
have higlighted some important works of different
researchers on exraction and separation of thorium
from other metals. The parameters studied in the
above said processes are calculated by using the
following relations (65, 73, 83). 
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Figure 10: Flowchart for the synthesis of thorium-rich residue associated with minor quantities of rare
earth elements (REE) (36).

Figure 11: A cost-effective process for recovering thorium and rare earths from radioactive residues.

Distribution ratio (D) =  (M )O
(M )a

(2)

Separation Factor (β) =
D1
D2

(3)

Stripping percentage (St%) = (M )a
(M)O, i

×100 (4)

Extraction percentage (E%)= (M )O
(M)a , i

×100 (5)
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Where  (M)a and  (M)O represent  the  metal
concentrations in the aqueous and organic phases
at  equilibrium,  respectively.  (M)a,  i and  (M)O,  i

denotes the initial metal ions concentration in the
aquous  phase  and  loaded  organic  phase
respectively.

Extractionefficiency=
C M(O)

CM (O )×CM (a)
×100% (6)

Recovery efficiency=
CM (a )×V (a )

CM(a) , i×V (a ) ,i
×100%  (7)

Stripping efficiency=
CM (a)×V (a)

CM (O ) ,i×V (O)
×100% (8)

Where CM(O), CM(a) are the concentration metal ions
in  the  organic  and aqueous phases  respectively;
V(O) and  V(a) are  the  volume  of  organic  and
aqueous phases,  respectively;  V(a),  i is  the  initial
volume of aqueous phase;  CM(O),  i and  CM(a),  i are
the initial concentration of a metal in organic phase
and aqueous phases, respectively.

Y.  Lu et  al.(74)  reported  the  separation  factors
between  Ce(IV)  and  Th(IV)  at  different  acidity
concentration and their work has shown a recovery
of  thorium 98% by  using  α  -aminophosphate  in
acid  concentration of  H2SO4.  X.  Yang et  al.  (73)
found the separation factors between Th(IV) and
other metal ions (RE, Fe and Al) at different acidity
concentrations. The values of separation factor are
higher  than  160  at  1.0  mol/L  of  H+ ion.  So,
Cextrant 230 can be used as a good extractant for
the removal of thorium from a mixed solution of
REs and other metals (Fe, Al etc.). The extraction
capacity of 5% (v/v) cextrant 230 for Th(IV) was
found 4.08 g/L. Again, J. Su et al. (74) reported a
fractional  extraction  experiment  for  separating
thorium and enriching of rare earth elements. They
found the yield of Th is higher than 99.9% and the
concentration of rare earth elements was 183.89
g/L.  Chung  et  al.  (36)  reported  that  2.5  mol/L
acidic conditions was suitable for their work. HCl
and H2SO4 were tested for recovery of the thorium
and HCl showed better results than H2SO4. Higher
molar HCl (5 mol/L, 250 °C) appears to be suitable
for  thorium. As reported by S M Ghag and S D
Pawar  (84),  the  separation  of  Th(IV)  and  U(VI)
from multicomponent mixtures with  cyanex®-923
in  toluene with  specific  concentrations  with  acid,
Th(IV) was found to be 99.3% in a 20 µg sample.
U  (VI)  and  Th(IV)  were  extracted  in  the  acid
concentration range 5 x 10-5 to 1 x 10-4 M and 5 x
10-5 to 5 x 10-3 M respectively.. J C  Amaral et al.
(78)  proposed  a  process  to  recover  Thorium,
Uranium and REs from an industrial residue. Under
the optimized  condition,  the  metal  dissolution  of
81% (using H2SO4) for thorium was obtained. S M

Ibrahim  et  al.  (85),  HDEHDGA  provides  useful
selectivity for Th(IV) over light Ln(III) ions, giving
new  processes  for  actinides-lanthanides
extraction/separation  and  REs  production  in  the
industry. . Sulfuric acid digestion followed by water
action was found to be the simplest technique to
solubilize the metals. 

CONCLUSIONS

The  different  methods  of  extraction  of  thorium
such  as  selective  extraction  of  thorium  using
phosphorodiamidate,  selective  cloud  point
extraction of thorium, extraction of thorium from
sulfuric  acid  baking  and  leaching  of  monazite,
extraction of thorium from chloride solution using
Schiff base were discussed. Out of all the discussed
methods  of  extraction,  cloud  point  extraction  is
considered  the best  of  all  as  it  is  more precise,
accurate,  and  cheap  as  compared  with  other
methods. The method is environmentally friendly
as  it  gives  very  few toxic  by-products.  HCl  and
H2SO4 were  taken  for  recovery  of  the  metallic
element  and  the  former  one  is  showing  better
results over latter one. Later on, high molar HCl (5
mol/L)  seems  to  be  appropriate  for  metallic
element recovery.  The primary aims of  all  these
methods of extractions and recoveries of thorium
are for getting an efficient amount of thorium and
procedure to get high efficiency of thorium.
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