
Proceedings of International Mathematical Sciences

ISSN:2717-6355, URL: https://dergipark.org.tr/tr/pub/pims

Volume III Issue 1 (2021), Pages 38-49.

DOI: https://doi.org/10.47086/pims.956201

DERIVATION OF BLACK-SCHOLES EQUATION USING ITÔ’S
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Abstract. The Black-Scholes Equation is arguably the most influential fi-

nancial equation, as it is an effective example of how to eliminate risk from
a financial portfolio by using a hedged position. Hedged positions are used

by many firms, mutual funds and finance companies to increase the value of
financial assets over time. The derivation of the Black-Scholes equation is of-

ten considered difficult to understand and overly complicated, when in reality

most confusion arises from misunderstandings in notation or lack of intuition
around the mathematical processes involved. This paper aims to take a simple

look at the derivation of the Black-Scholes equation as well as the reasoning

behind it.

1. Introduction

1.1. A Brief History of Black-Scholes Equation. The Black-Scholes Equation
is a partial differential equation that gives the theoretical price of a European-style
option for a certain security. First derived in 1968 by Fischer Black and Myron
Scholes, it was revolutionary in presenting ideas of how to eliminate unpredictable
terms from mathematical models.

Their results were published in the Journal of Political Economy in 1973 as
an article title “The Pricing of Options and Corporate Liabilities”. Fischer Black
unfortunately passed away in 1995. Myron Scholes is still alive and would go on to
win the Nobel Prize in economics in 1997 along with contributor Robert C. Merton
[6] for their work, however Black would be recognized for his contributions by the
Nobel Committee. [2]

1.2. A Brief History of Itô/Stochastic Calculus. Keyosi Itô was a Japan-
ese mathematician who pioneered many of the mathematical concepts behind the
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Figure 1. Myron Scholes and Fischer Black[8]

Figure 2. Kiyosi Itô at Kyoto University in 1995[1]

Black-Scholes Equation, the most important of which is Itô’s Lemma. His insightful
techniques allowed for the creation of his own field of calculus, Itô Calculus. In this
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field of mathematics, he explored stochastic processes, processes that are based in
randomness and could not be quantified by normal arithmetic means. As stated
by the National Academy of Science, “If one disqualifies the Pythagorean Theorem
from contention, it is hard to think of a mathematical result which is better known
and more widely applied in the world today than “Ito’s Lemma.” This result holds
the same position in stochastic analysis that Newton’s fundamental theorem holds
in classical analysis. That is, it is the sine qua non of the subject.” His work has
implications across other fields such as stochastic control theory in engineering,
conformal form theory in physics, modeling of population genetics in biology and
more. [1] Kiyosi Itô unfortunately passed away in 2008 at the age of 93.

2. Intuition of Stochastic Processes

In this section, we aim to cover the basic intuition behind a stochastic process,
enough to understand an Itô Process and Itô’s Lemma. We are only going to
cover Standard Brownian Motion to understand the theoretical processes behind
stochastic calculus. Standard Brownian motion is sometimes referred to as a Wiener
Process.

2.1. Basic Definitions of Standard Brownian Motion. There are a few basic
definitions that we should cover to begin:

(1) We define Brownian Motion at time t as Bt

(2) Standard Brownian Motion begins at the origin. Written in our notation,
B0 = 0

(3) The difference of Brownian Motion from time t1 to time t2 can be written
as B2 − B1 where B1 is the Brownian Motion at time t1 and B2 is the
Brownian Motion at time t2

(4) B2 −B1 is normally distributed with a µ = 0 and a σ = t2 − t1
(5) The derivative of Bt can be written as dBt and the integral (without limits

of integration) of dBt can be written as Bt

2.2. Intuition of Brownian Motion. In Figure 3 we can see an example of
f ′(x), a real valued continuous function. There are many things we can do with
this function. We are able to integrate f ′(x) from point a to point b, we can take
the derivative of f ′(x) at any point and we can show f ′(x) is continuous at any
point.

Now let’s take a look at Brownian Motion. Using computer software, it is possible
to simulate 2-dimensional Brownian Motion from one time period to another. In
Figure 4, we examine a single simulated Brownian Motion walk with standard
parameters from time 0 to time 1. This motion does not follow typical or predictable
paths compared to the path of a function. Here, our sample points fluctuate in an
unpredictable and random way, based on the normal distribution. Furthermore,
this motion will be different every time we simulate it. In theory, it should be
impossible to replicate the same motion more than once[7]. This leads us into
several problems. We are no longer able to quantify the motion using a function,
we cannot prove that the motion is continuous from point a to point b, we cannot
integrate via Newtonian means with respect to time from point a to point b and
we cannot take the derivative with respect to time at any point.
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Figure 3. A real valued function f ′(x) with a smooth curve[3]

Figure 4. Graph of Standard Brownian Motion from t = 0 to t = 1[5]

An interesting thing to note is that while single simulations of Brownian Motion
do not yield any sort of pattern, multiple simulations do. As the number of simu-
lations increases we start to see the emergence of the normal distribution curve, all
be it horizontally.

2.3. Derivatives with Respect to Brownian Motion. Intuitively Bt is not
differentiable, at least not in a normal sense. But if we examine Bt in a similar
sense to Newtonian calculus, we can arrive at some interesting results.
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Figure 5. 5000 sample paths of Standard Brownian Motion[7]

In Newtonian calculus, we can take the derivative of a function

g(t) = g(0)ert

very easily. The derivative is

dg

dt
= g(0)ert ∗ r

Now if we add a Brownian Motion with a scalar beta term to g(t) to create a
new equation s(t)

s(t) = s(0)ert+βBt

Upon attempting to differentiate s(t) we find

ds

dt
= [r + β

dBt

dt
]s(0)ert+βBt = [r + β

dBt

dt
]s(t) = rs(t) + βs(t)

dBt

dt
However, at this time, we have no way of quantifying

dBt

dt
We can further attempt at a separation of variables

ds

dt
= rs(t) + βs(t)

dBt

dt
Becomes

ds = rs(t)dt+ βs(t)
dBt

dt
dt

The dt′s cancel in the second term to give us

ds = rs(t)dt+ βs(t)dBt



DERIVATION OF BLACK-SCHOLES EQUATION USING ITÔ’S LEMMA 43

Once again we have a term we are unfamiliar with

dBt

So as of now, it does not appear we can take the derivative of a process involving
a Brownian Motion term. We will return to this discussion later.

2.4. Integration with Respect to Brownian Motion. Since we cannot take
the derivative of terms with Brownian Motion, or a stochastic process, let’s examine
how integration with respect to Brownian Motion theoretically should behave.

2.4.1. Integration of a Constant Function. Let x(t) = k a constant. If we wish to
take the integral from 0 to some time t1 with respect to Standard Brownian Motion
we can write this as ∫ t1

0

x(t)dBt

Evaluating this integral via Newtonian means,

∫ t1

0

x(t)dBt =

∫ t1

0

kdBt = k

∫ t1

0

dBt = k[Bt

∣∣∣t1
0
] = k[Bt1 −B0] = kBt1

Here we see that integrating a constant with respect to Brownian Motion gives us
the constant multiplied by the Brownian Motion at the upper limit of the integral.

2.4.2. Integration of a Step Function. Let Φ(t) be a step function with n steps. Let
ki be the value of the step function at i = 1, 2, 3, ...., n Taking the integral of a
step function is effectively taking the the sum of the integral of each constant with
respect to Brownian Motion. So we can write

∫ b

a

ϕ(t)dBt

as

n∑
i=1

∫ b

a

kidBt

Evaluating this as a sum of all of the integrals of each constant ki we can see

n∑
i=1

∫ b

a

kidBt =

n∑
i=1

ki[Bb −Ba]

and from our definitions we know that

[Bb −Ba] ∼ N (0, (b− a))

Leading us to the result that the integral of a function with a term involving
Brownian Motion will have a distribution.
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2.4.3. Integration of a Well-Behaved Function. Normally in Newtonian calculus,
integration begins with a Riemann sum. If we have a continuous real valued function
f(t) and we wish to find the area underneath the curve from a to b, the Riemann
sum can be written as

Area =

b∑
a

f(t) ∗∆t

If we send the length of the partitions of this sum, ∆t, to zero

lim
∆t→0

b∑
a

f(t) ∗∆t =

∫ b

a

f(t)dt

The result is our standard Newtonian integration. We can apply this concept
to Brownian Motion in a similar way. With a step function, our integral could be
defined as ∫ b

a

ϕ(t)dBt =

n∑
i=1

ki[Bb −Ba]

Where

[Bb −Ba] ∼ N (0,K2(b− a))

Effectively if we wanted to evaluate an integral of f(t) with respect to Brownian
Motion, we can again partition our function f(t) into sections with widths of ∆t.
A well-behaved function evaluated via Riemann sum can be compared to a step
function being evaluated by our process in 2.4.2. By the same process as before, if
we wish to evaluate ∫ b

a

f(t)dBt

We can approximate it to a step function, and partition f(t) into n partitions,
each with length ∆t. As we take smaller and smaller partitions, we will get a closer
and closer approximation of the function. In theory then,

lim
∆t→0

∫ b

a

f(t)dBt ≈
∫ b

a

f(t)dt ∼ N (0,

∫ b

a

[f(t)]2dt)

However, because it is impossible to fully quantify a function to Brownian Mo-
tion, this will only give us an approximation of the integral.

2.4.4. Integration of a Random Variable. Let Yt be a random variable defined by:

Yt =

{
y0 0 < t < t1

y1 t1 < t < 1

Integrating this random variable with respect to Brownian Motion, if t < t1 then∫ t

0

YtdBt = y0Bt

If t > t1 then our integral is
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∫ t

0

YtdBt = y0Bt1 + y1(Bt +Bt1)

Combining these results, out entire integral can be written over our interval (0,1)
as ∫ 1

0

YtdBt =

{
y0Bt 0 < t < t1

y0Bt + y1(B1 +Bt) t1 < t < 1

And we are able to quantify our integral with respect to Brownian Motion of a
random variable.

3. Itô Calculus[1]

The ideas and processes of all of these examples highlight a reoccurring theme.
That theme is that each process much be broken into a section we can evaluate via
Newtonian means and one that must be evaluated by stochastic means. This comes
from applying a discrete scenario where we can effectively separate the randomness
of our Brownian Motion terms with the certainty of our t terms. This idea of
separation is the methodology and thought process behind the Itô Process.

3.1. Itô Process. An Itô Process is an advanced technique that separates a sto-
chastic process xt into a a sum of two integrals, one with respect to time and one
with respect to Brownian Motion.

xt = x0 +

∫ t

0

σtdBt +

∫ t

0

µtdt

Where x0 is a constant term, σ is a process contingent on time that can be integrated
with respect to Brownian Motion, and µ is a process contingent on time that can
be integrated with respect to time.

3.2. Itô Differential Equation. Taking the ”derivative” of the Itô Process gives
us the following differential equation:

dxt = µtdt+ σtdBt

However, this is only an equation, it cannot be evaluated since we cannot take the
derivative with respect to Brownian Motion by normal means. This will serve as
our derivative of a stochastic process for the sake of making the calculations we
intend to do.

3.3. Itô’s Lemma Pre-Remarks. Itô’s Lemma is an equation that can be com-
pared to the ”chain rule” of Newtonian calculus. The formal proof of Itô’s Lemma
is beyond the the scope of this paper, however, I have included an informal proof
using a Taylor power series approximation that provides the contextual intuition
behind the formal proof.

3.3.1. Itô’s Lemma. If f(t, xt) is a twice differentiable scalar function, where xt is
defined as an Itô Process. Then

df = (µt
∂f

∂x
+

∂f

∂t
+

1

2

∂2f

∂x2
σ2
t )dt+

∂f

∂x
σtdBt

Itô’s Lemma is essential in the derivation of the Black-Scholes Equation.
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3.3.2. Taylor Series Approximation of Itô’s Lemma. Let xt be an Itô Process that
satisfies our requirements for an Itô Differential Equation.

dxt = µtdt+ σtdBt

Normally, if f(t, x) is a two-variable and twice differentiable scalar function, we
can write its Taylor expansion as

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2

If we equate xt for x and µtdt+ σtdBt for dx, we can rewrite df as

df =
∂f

∂t
dt+

∂f

∂x
(µtdt+ σtdBt) +

1

2

∂2f

∂x2
(µ2

tdt+ 2µtσtdtdBt + σ2
t dB

2
t )

which means

df =
∂f

∂t
dt+

∂f

∂x
µtdt+

∂f

∂x
σtdBt +

1

2

∂2f

∂x2
µ2
tdt+

∂2f

∂x2
µtσtdtdBt +

1

2

∂2f

∂x2
σ2
t dB

2
t

Taking the limit of df as dt → 0, dt2 and dtdBt will tend to zero faster than dt
and dB2

t , leading us to the result

lim
dt→0

df =
∂f

∂t
dt+

∂f

∂x
µtdt+

∂f

∂x
σtdBt + 0 + 0 +

1

2

∂2f

∂x2
σ2
t dB

2
t

If we replace dB2
t with dt (from the quadratic variance of a Wiener process)[9]

df =
∂f

∂t
dt+

∂f

∂x
µtdt+

∂f

∂x
σtdBt +

1

2

∂2f

∂x2
σ2
t dt

Finally factoring out our dt and dBt terms, and separating them

df = (µt
∂f

∂x
+

∂f

∂t
+

1

2

∂2f

∂x2
σ2
t )dt+

∂f

∂x
σtdBt

We arrive at Itô’s Lemma.

4. Black-Scholes Model

The Black-Scholes Model is sometimes referred to the Black-Scholes-Merton
Model because of the contributions made by American mathematician Robert C.
Merton. He had built upon the ideas presented originally by Myron Scholes and
Fischer Black in 1968, adding further mathematical implications and applications
to the model. This specific derivation of the equation comes from Hull[4].

4.1. Assumptions of the Model. The following assumptions are made in the
Black-Scholes Model:

(1) The short term interest rate, r, is known and constant through time. All
securities share this short term interest rate

(2) The stock price follows Brownian Motion and the variance rate of return
on the stock is constant.

(3) The parameters µ and σ are contingent on S, the stock price
(4) The stock does not pay dividends or other distributions
(5) Short selling is allowed
(6) There are no arbitrage opportunities and all security trading is continuous



DERIVATION OF BLACK-SCHOLES EQUATION USING ITÔ’S LEMMA 47

(7) The option has a maturity at time period t (European Option)

4.2. Black-Scholes Equation. If S is a stock price that follows an Itô Process,
then the value of an option, f , of S is quantified by the following equation:

∂f

∂t
+ rS

∂f

∂S
+

1

2

∂2f

∂x2
σ2S2 = rf

4.3. Derivation. Let S be a stock price that follows an Itô Process. Thus S has
a Itô Differential Equation of

dS = µSdt+ σSdz (4.1)

Suppose f is a twice differentiable function of the price of a call option or other
derivative contingent on S. Using Itô’s Lemma we can write df as

df = (µS
∂f

∂S
+

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)dt+

∂f

∂S
σSdz (4.2)

Notice how µ and σ are no longer contingent on t, but are contingent on S. (1)
and (2) can also be written discretely over a time period ∆t as

∆S = µS∆+ σS∆z (4.3)

and

∆f = (µS
∂f

∂S
+

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)∆t+

∂f

∂S
σS∆z (4.4)

respectively.

(1) Now S and f both follow the same Itô Process. Thus, if we select a port-
folio, we can eliminate the Itô Process and effectively price an option. The
portfolio we select will consist of short 1 derivative and long δf

δS shares of
stock. It will become clear shortly why we select this portfolio.

(2) We define Π as the value of our portfolio. By definition,

Π = −f +
∂f

∂S
S (4.5)

We can also write our the discrete version of this equation over the time interval
∆t as

∆Π = −∆f +
∂f

∂S
∆S (4.6)

Now we will substitute our (3) and (4) into (6).

∆Π = −[(µS
∂f

∂S
+

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)∆t+

∂f

∂S
σS∆z] +

∂f

∂S
[µS∆+ σS∆z]

Distributing everything out,

∆Π = −∂f

∂x
µS∆t− ∂f

∂t
∆t− 1

2

∂2f

∂S2
σ2S2∆t− ∂f

∂S
σS∆z +

∂f

∂S
µS∆t+

∂f

∂S
σS∆z

Canceling out like terms,

∆Π = −∂f

∂t
∆t− 1

2

∂2f

∂S2
σ2S2∆t
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Factoring out a ∆t,

∆Π = (−∂f

∂t
− 1

2

∂2f

∂S2
σ2S2)∆t (4.7)

Without a ∆z term (stochastic variable), this portfolio is effectively riskless
during the time period ∆t. Since there are no arbitrage opportunities, security
trading is continuous and all securities share the same short term constant interest
rate, our portfolio we have created will earn instantaneous rates of return over the
time period ∆t. Thus we can write ∆Π as

∆Π = rΠ∆t (4.8)

Now we can substitute our (5) and (7) into (8) and the result is the following
equation

(−∂f

∂t
− 1

2

∂2f

∂S2
σ2S2)∆t = r(−f +

∂f

∂S
S)∆t

Canceling out a ∆t on both sides of the equation and multiplying through by -1,

∂f

∂t
− 1

2

∂2f

∂S2
σ2S2 = r(f − ∂f

∂S
S)

which when rearranged becomes

∂f

∂t
+ rS

∂f

∂S
+

1

2

∂2f

∂x2
σ2S2 = rf (4.9)

and our derivation is complete.

4.4. Verification of the Model. Now that we have our equation, does it actually
work? Let’s see through an example. This specific example comes from Hull, John
C. (2008) of page 332.

4.4.1. Example. A forward contract (option) on a non dividend paying stock is a
derivative dependent on the stock. We can define the value of the forward contract,
f , at a general time t in terms of the stock price S as

f = S −Ke−r(T−t) (4.10)

Where K is our delivery price of the option, and the interest on the stock com-
pounds continuously. Now recall our equation (9)

∂f

∂t
+ rS

∂f

∂S
+

1

2

∂2f

∂x2
σ2S2 = rf

We need to find our ∂f
∂t ,

∂f
∂S , and

∂2f
∂S2 in order to verify this equation. Taking the

partial derivative of (10) with respect to t we find

∂f

∂t
= −rKe−r(T−t)

When we take the partial derivative of (10) with respect to S we find

∂f

∂S
= 1

and taking the second partial of this we find
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∂2f

∂S2
= 0

When we substitute these results into the left side of (9) the equation becomes

−rKe−r(T−t) + rS

Factoring out an r our result is

r(S −Ke−r(T−t)) (4.11)

We can clearly see that equation (11) is simply rf . Thus our equation (9), the
Black-Scholes Equation, holds.
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