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INTRODUCTION 
On a cellular scale, cancer is formed by transforming 
normal cells into abnormal cells which are called 

tumorigenesis. In other words, cancer basically 
occurs by the collapse of the perfectly functioning 
mechanism due to alterations or mutations that 

ABSTRACT 
Objective: Cancer which is one of the most challenging health problems overall the world is composed of 
various processes: tumorigenesis, angiogenesis, and metastasis. Attempting to understand the truth 
behind this complicated disease is one of the common objectives of many experts and researchers from 
different fields. To provide deeper insights any prognostic and/or diagnostic scientific contribution to this 
topic is so crucial. In this study, the avascular tumor growth model which is the earliest stage of tumor 
growth is taken into account from a mathematical point of view. The main aim is to solve the mathematical 
model of avascular tumor growth numerically. 
Methods: This study has focused on the numerical solution of the continuum mathematical model of the 
avascular tumor growth described by Sharrett and Chaplin. Unlike the existing recent literature, the study 
has focused on the methods for the temporal domain. To obtain the numerical schemes the central 
difference method has been used in the spatial coordinates. This discretization technique has reduced the 
main partial differential equation into an ordinary differential equation which will be solved successively by 
two alternative techniques: the 4th order Runge-Kutta method (RK4) and the three-stage strongly-stability 
preserving Runge-Kutta method (SSP-RK3). 
Results: The model has been solved by the proposed methods. The numerical results are discussed in 
both mathematical and biological angles. The biological compatibility of the methods is depicted in various 
figures. Besides biological outputs, the accuracies of the methods have been listed from a mathematical 
point of view. Furthermore, the rate of convergence of the proposed methods has also been discussed 
computationally. 
Conclusion: All recorded results are evidence that the proposed schemes are applicable for solving such 
models. Moreover, all exhibited figures have proved the biological compatibility of the methods. It is 
observed that the quiescent cells which are one of the most mysterious cells in clinics tend to become 
proliferative for the selected parameters. 
Keywords: Avascular tumor growth, numerical simulation, mathematical biology, three-stage strongly-
stability preserving Runge-Kutta method, 4th-order Runge-Kutta Method. 
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occurred in DNA. Even though the exact cause of 
these alterations and/or mutations are, in general, 
because of heritable and/or environmental, it is still 
unknown. Moreover, the mutations can also vary by 
the located tissue and the propagation rate of the 
disease can vary individually. These characteristics 
make the disease more complicated. Besides all 
these facts, the disease is, furthermore, one of the 
most threatening diseases globally due to its mortality 
and morbidity rates. Therefore, cancer has a great 
deal of importance among many researchers not only 
from medicine or biology but also from applied 
sciences as well as governments. 
The stages of tumor growth are avascular, 
angiogenesis, and metastatic. That is, all tumors are 
mainly formed by an avascular phase of growth. The 
transition of the process can be summarized as 
follows: a small (avascular) tumor growth is originated 
from the uncontrolled cell division. As long as it is not 
supported by the angiogenesis or it is not intervened 
by the immune system, the avascular tumor growth 
will be inactive, (1). Otherwise, it continues to expand 
up to a small size due to inadequate nutrients and 
oxygen. However, likewise the normal cells, tumor 
cells also need surrounding tissue for supplying 
nutrients and oxygen by diffusion, (2, 3). Thus, tumor 
cells stimulate the blood vessels by signals, and 
angiogenesis, one of the hallmarks of tumor 
progression, has begun. The vascularization of the 
host tissue helps to feed it and to increase its size 
rapidly. Thus, tumors are capable to invade the tissue 
and spreading to another tissue when the tumor is 
malignant. This means that the tumor is called a 
metastatic phase which makes cancer fatal.  
Due to the compelling characteristics of cancer, any 
theoretical, experimentally, or clinically research 
plays a key role to understand the dynamics of cancer 
cells and their interactions. Thus, studying this 
subject is an interest not just in biology or medicine 
but in applied sciences, as well. Of course, as a guide, 
both experimental and clinical studies have much 
attention and impact in medicine. However, both 
studies have their own challenges. In experimental 
studies, on one hand, biological variations can affect 
the results. Moreover, laboratory experiments need 
enormous costs. Clinical studies, on the other hand, 
take a very long time to provide reliable and 
meaningful data. All the mentioned aspects are 
biological. However, in-silico studies can be used to 
enrich a deep understanding of such compelling 
disease and to make predictions and, provide insights 

and strategies to treatment of this disease. A 
mathematical model of a biological system or a 
complex disease is a powerful tool and cheap for the 
prognosis. Undoubtedly that each disease has its 
own particular characteristics thus some assumptions 
can be provided to address real-life situations. It is 
worth noting that mathematical models can vary for 
each circumstance and/or assumption.  
From a clinical point of view, indeed, modeling the 
vascular or metastatic tumor growth is more realistic 
and is, furthermore, vital for clinical treatment. 
However, a model such a complex system can lead 
to the loss of its reliability. Thus, studying much 
simpler models like avascular tumor growth can offer 
a deeper perspective and can be more wisely. 
Moreover, avascular tumors can be produced easily 
and cheaply in-vitro multicellular spheroids which 
include in-vivo characteristics such as proliferation or 
nutrient gradients as well as the tumor 
microenvironment, (4). To date, a lot of effort has 
been invested into developing a mathematical model 
for avascular tumor growth. The earliest model of 
avascular tumor growth was originated in 1955 by 
Thomlinson and Gray (5). In the study of Burton, (6), 
the growth of solid tumors is considered as a diffusion 
equation. Greenspan has observed an annulus of 
quiescent cells between proliferative and necrotic 
cells in the multicellular spheroids, (7). Greenspan’s 
study is accepted as the fundamental of mathematical 
oncology. Inspired by (7), many remarkable studies 
have been done, (8-12). The authors promote the 
interested reader on mathematical models of the 
avascular tumor to the descriptive review in (13). 
Additionally, one can be referred to (14) for a brief 
introduction to mathematical oncology.  
Of course, proposing an appropriate solution which is 
also physically compatible is as crucial as modeling 
the situation mathematically. Mathematical models 
can be categorized as continuum models, discrete 
models, and hybrid. There are several studies on the 
numerical solutions of the continuum avascular tumor 
growth in the literature. For instance, conservative 
Galerkin characteristics algorithm combining with the 
trapezium integration has been applied to the 
avascular tumor growth model in (15), a numerical 
solution based on forward time-central space 
discretization has been studied for the case of 
hypoxic cell regulation in avascular tumor growth in 
(16). A couple of nonlinear partial differential 
equations via parallel programming in (17). More 
recently, an adaptive mesh method called moving 
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mesh combining with implicit Euler method is applied 
to an avascular tumor growth model in (18). 
Moreover, another application of the moving mesh 
method combined with forward time discretization has 
been proposed in (19) to solve Sherratt and Chaplin’s 
model of avascular tumor growth. Furthermore, 
avascular tumor growth using Gompertz growth rate 
has been approximated by implementing a finite 
difference method in (20).  
Our main aim is not to underestimate the models or 
methods which are not our consideration in this study 
but to propose alternative numerical methods for 
solving such a continuum avascular tumor growth. To 
do this, the model developed by Sherratt and Chaplin, 
(11), has been taken into account. Central difference 
approximation is used for the spatial domain and the 
temporal domain is solved not only by the 4th order 
Runge-Kutta method (RK4) but also three-stage 
strongly-stability preserving Runge-Kutta method 
(SSP-RK3). To the best of the authors’ knowledge, 
both RK4 and SSP-RK3, (21), are the first time 
applied to solve the specified problem.   
Under the light of the knowledge mentioned above, 
the organization of the present study is as follows: 
Section 2 describes the mathematical model and the 
numerical schemes considered in this study. Results 
and discussions have been provided in Section 3 
which is followed by the Conclusion of the study. 
 
MATERIAL AND METHODS 
Mathematical Model 
As highlighted earlier Sherratt and Chaplin’s 
mathematical model for the avascular tumor has been 
taken into account. The main focus of the current 
study is to suggest some alternative techniques for 
solving the avascular tumor growth model, 
numerically. To do so, a thin disc-shaped domain, 
that is one-dimensional spatial coordinates, has been 
considered. It is important to emphasize that this is 
the most realistic model of tumor growth, conversely, 
two- or three-dimensional models are more realistic. 
However, studying with a simple form of the equation 
is much understandable if the study is descriptive.  
 
The specified model is as follows:  
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where 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡) and 𝑛(𝑥, 𝑡) represent the density 
of proliferating cells, quiescent cells, and necrotic 
cells. Notice that "

"%&
!("%&)
!$

 and &
"%&

!("%&)
!$

 denote the 

migration of the cells from the dense medium to the 
less dense medium. Moreover, 𝑔(𝑐) is the cell mitosis 
and 𝑓(𝑐) denotes the rate of the proliferative cells 
turning into quiescent phase while the quiescent cells 
becoming necrosis at the rate ℎ(𝑐). Furthermore,  
𝑐(𝑥, 𝑡) stands for the local nutrient concentration 
which is taken as  

𝑐 =
𝑐)𝛾
𝛾 + 𝑝 ;1 − 𝛼

(𝑝 + 𝑞 + 𝑛)=, (4) 

where 𝛾 and 𝛼 are some scalars. On the other hand, 
𝑐) is the initial nutrient concentration. It is important to 
note that 𝑝, 𝑞, and 𝑛 are functions of 𝑥 and 𝑡. Here, 𝑥 
and 𝑡 stand for the location and time variables, 
respectively. For more detailed discussions the 
authors refer the reader to (9, 15). It is also noted that 
both 𝑓(𝑐) = 0, and ℎ(𝑐) = 0 as 𝑐 → ∞ where 𝑓(𝑐) >
ℎ(𝑐), (13). This means also that the functions 𝑓 and ℎ 
are decreasing functions, 𝑔(𝑐) is, on the contrary, 
increasing.  
 
For the sake of clarity of notations let 𝑟 = 𝑝 + 𝑞, 𝑀" =
"
-
 and 𝑀& =

&
-
. With the help of chain rule the model in 

Equations (1)-(3) can be expressed more explicitly as 
follows: 
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where  

	;𝑀"=$ =
𝑝$𝑟 − 𝑟$𝑝

𝑟. 𝑎𝑛𝑑 ;𝑀&=$ =
𝑞$𝑟 − 𝑟$𝑞

𝑟.  (6) 

 
Throughout the study, the specified model subject to 
the zero-flux condition, that is Neumann-type 
boundary conditions. More precisely, !"

!$
= !&

!$
= !+

!$
=

0 at 𝑥 = 𝑥) and 𝑥 = 𝑥*+, . Moreover, the initial 
conditions are taken as follows: 
 
𝑝(𝑥, 0) = 𝑒!".$%, 𝑞(𝑥, 0) = 0, 𝑛(𝑥, 𝑡) = 0 and 𝑐" = 1. (7) 

158 



J Basic Clin Health Sci 2021; 3: 156- 164     Ovgu Korkut S et al. Num. Sol. for the Avascular Tumor Growth 

 

 
Due to the inability of the computers, 𝑥*+, cannot be 
taken as ∞. Thus, for a more realistic domain 𝑥*+, is 
chosen sufficiently large, that is 𝑥*+, = 210. 
 
Numerical Scheme 
Spatial Discretization 
The specified model in Equation (5) corresponds to a 
system of the coupled nonlinear partial differential 
equation (PDE). Finite difference methods are the 
most preferred approach for solving such a system. 
However, in this study, central difference 
approximation is utilized for discretizing the spatial 
coordinates of Equation (5). In so doing, the system 
of PDE reduces into a system of the ordinary 
differential equation (ODE) which can be solved by a 
higher-order method, successively.  
 
Let ∆𝑥 = 𝑥/%0 − 𝑥/ for 𝑖 = 0,1… ,𝑁$ where 𝑁$ is the 
number of divisions. Then, one can obtain  
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+
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(8) 
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∆𝑥.
+ 𝑓(𝑐/)𝑝/ − ℎ(𝑐/)𝑞/ , 

(9) 

𝑛̇/ = ℎ(𝑐/)𝑞/, 
 (10) 

Notice that 𝑝/ = 𝑝(𝑥/ , 𝑡), 𝑞/ = 𝑞(𝑥/ , 𝑡),	and 𝑛/ = 𝑛(𝑥/ , 𝑡). 
Moreover, 𝑝̇/ , 𝑞̇/ , and 𝑛̇/ represent the derivatives of 
𝑝, 𝑞, and 𝑛 with respect to 𝑡 at 𝑥 = 𝑥/ . 
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After employing the discretization algorithm and 
imposing the boundary conditions the differentiation 
matrices are obtained as follows: 
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where 𝐷0 and 𝐷.	are (𝑁$ + 1) × (𝑁$ + 1)	sparse 
matrices. Thus, the attained system of ODEs in 
Equations (7)-(9) can be expressed simply in a 
matrix-vector form as follows: 
 

M
𝑝̇(𝑥, 𝑡)
𝑞̇(𝑥, 𝑡)
𝑛̇(𝑥, 𝑡)

N = M
𝐹"(𝑝, 𝑞, 𝑛)
𝐹&(𝑝, 𝑞, 𝑛)
𝐹+(𝑝, 𝑞, 𝑛)

N (13) 

 
where 𝑥 stands for the vector form of the discretized 
domain and  
 
𝐹"(𝑝, 𝑞, 𝑛) = 𝑀𝐷0𝑟 +

"
-
𝐷.𝑟 + 𝑔(𝑐)(1 − 𝑝 − 𝑞 − 𝑛) −

𝑓(𝑐)𝑝, 
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&
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𝐷.𝑟 + 𝑓(𝑐)𝑝 − ℎ(𝑐)𝑞, 

𝐹+(𝑝, 𝑞, 𝑛) = ℎ(𝑐)𝑞. 
Notice that 𝑀 = 3$"-1"3$-

-!
  and 𝑁 = 3$&-1&3$-

-!
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Temporal Integration 
The main objective of this section is to share the two 
alternative methods in a brief and understandable 
way with the readers. To do so, we first recall 
Equation (13) by making the notations simpler such 
that  
 
𝑉̇(𝑥, 𝑡) = 𝐺(𝑥, 𝑡, 𝑉)
𝑉(𝑥, 0) = 𝑉)(𝑥).					

 (14) 

 
Notice that 𝑉(𝑥, 𝑡) = [𝑝(𝑥, 𝑡) 𝑞(𝑥, 𝑡) 𝑛(𝑥, 𝑡)]4 and 
𝐺(𝑥, 𝑡, 𝑉) = [𝐹"(𝑝, 𝑞, 𝑛) 𝐹&(𝑝, 𝑞, 𝑛) 𝐹+(𝑝, 𝑞, 𝑛)]4 
where 𝑇 stands for the transpose of a vector. 
Moreover, 𝑉̇(𝑥, 𝑡) represents !

!#
𝑉(𝑥, 𝑡).  

In this study, two alternatives already exist methods 
have been suggested to the literature. This is not to 
say that this study is not novel, on the contrary, we 
have never encountered such a study in the literature 
survey we have done so far. The methods discussed 
throughout the current study are RK4 and SSP-RK3 
which are described as follows: 
 

RK4
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⎪
⎧
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2 \												
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2 \													
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𝑉+%0 = 𝑉+ +
∆𝑡
6
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and  
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2
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) 

 
It is noted that ∆𝑡 is the time step, that is ∆𝑡 = #<=>

7?
 

where 𝑁# is the number of divisions in time and that 𝑛 
stands for the iteration of time for 𝑛 = 0,1,… ,𝑁#. It is 
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important to emphasize that SSP-RK3 is also known 
as third-order total variation diminishing the Runge-
Kutta method in literature. For a detailed discussion 
on SSP-RK3, the authors refer the reader to (21).  
 
RESULTS AND DISCUSSION 
Obtaining a numerical solution for nonlinear partial 
differential equations is challenging, especially if the 
phenomena preserve some characteristics. Even 
though we assure theoretically that the numerical 
method will eventually converge to the exact solution, 

some problems can occur computationally such as 
stability. Thus, any numerical methods should be 
confirmed from a computational point of view. This 
section is dedicated to present the results of the 
performed numerical schemes on the addressed 
avascular tumor growth model. The model 
parameters are chosen as follows: 

𝑓(𝑐) =
1 − tanh	(4𝑐 − 2)

2 ,

𝑔(𝑐) = 𝛽𝑒89 ,																								
ℎ(𝑐) = 𝑓(𝑐) 2⁄ .																					

  

Notice that the proliferation rate is considered as 
Gompertz’s growth rate.  All computations have been 
executed on Intel Core i7-6700HQ 2.60Ghz and 
16GB of RAM and implemented via the MATLAB-
2018b programming language. 
Before presenting the numerical results the biological 
illustration expressing the avascular tumor cell has 
been depicted in Figure 1. From a biological angle, 
the avascular tumor model has three main zones: 
necrotic zone, quiescent zone, and proliferative zone. 
In the spirit of the proliferative zone, the tumor cells 
tend to proliferate and grow whereas the cells tend to 
die due to the lack of nutrients and oxygen in the 

 

Figure 1. Schematic illustration of the avascular 
tumor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               
                                (a)                                                                                                    (b) 

                               
                                (c)                                                                                                  (d) 
Figure 2. The densities of proliferating (a), quiescent (b), and the necrotic cell (c) for 𝛼 = 0.8. The obtained results 
belong to RK4. 
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necrotic zone. However, cells in the quiescent zone 
are mysterious. Therefore, quiescent cells play a vital 
role in the phenotype of the tumor. 
Figure 2 illustrates the density of the proliferating, 
quiescent, and necrotic cells in t=0,2,⋯,14 weeks 
computed by RK4. For the exhibited figure, Figure 1, 
the constant parameters are taken as α=0.8,β=0.5 
and γ=10. Moreover, the domain (0,210) is divided 
into 420 nodes with mesh size ∆x=0.5 and the time 
step is considered as ∆t=0.1≈16.8 hours. All figures 
are compatible with both the literature, (19-20), and 
the biological processes. 
Moreover, Figure 3 shows the significance of the α 
parameter on the solutions. One can be observed that 
the smaller values of α the proliferating rate is bigger. 
The density of proliferating cells, therefore, is more 
than those of α=0.8. Moreover, for the smaller choice 
of α, the necrotic core is more linear, that is the 
necrotic cells tend to 0 faster. 
Likewise, the density of the proliferating, quiescent, 
and necrotic cells in t=0,2,⋯,14 weeks has been 
obtained by SSP-RK3. Similar to RK4, in Figure 4, the 
numerical results are attained for the choice of 
α=0.8,β=0.5,γ=10 where ∆x=0.5 and ∆t=0.1≈16.8 
hours. The exhibited figures, Figure 4 and Figure 5, 
are in good agreement with those in the literature. 
Besides Figure 4, Figure 5 describes the behavior of 

the SSP-RK3 when α=0.4. Similar reactions of those 
for RK4 are observed for SSP-RK3. 
Due to the similar behavior of the numerical solutions, 
SSP-RK3 also provides biological compatibility. One 
can observe from Figures 2-5 that as time passes the 
proliferating cells tend to migrate toward the outer 
edge. Toward the outer edge, the density of the 
proliferating cells is much more than those of 
quiescent and necrotic. Additionally, the necrotic cells 
decrease moving away from the tumor center. 
Furthermore, one can be observed that the decrease 
of α values lead to increase of the density of nutrient 
which makes the decrease of the necrotic cells faster. 
This also means that the numerical results are 
compatible biologically with the tumor growth that is 
the increase of the density of the nutrient leads to the 
decrease of the density of the necrotic cells. One can 
conclude finally that the quiescent cells are more 
likely to become the proliferative cells by the selected 
parameters. 
In addition to these figures, from a mathematical 
angle, methods’ estimation errors and their 
convergence rates are also listed in Table 1 and 
Table 2. The recorded errors are measured in the 
infinity norm. That is, 
 
𝐸#!(𝑝) = max

$%&%'"
|𝑝& − 𝑝()*| , 										𝐸#!(𝑞) = max

$%&%'"
|𝑞& − 𝑞()*|,							𝐸#!(𝑛) = max

$%&%'"
|𝑛& − 𝑛()*| 

           
                                        (a)                                                                                           (b) 

											 														
                                   (c)                                                                                                (d) 
 
Figure 3. The densities of proliferating (a), quiescent (b), and the necrotic cell (c) obtained by RK4 for 𝛼 = 0.4.  
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It is crucial to note that the main attention of this study 
is time discretization. Thus, p^ref,q^ref, and n^ref 
denote the reference solution where ∆t=0.001. Here, 
Table 1 lists the errors and order of convergence of 
RK4 whereas Table 2 presents those values of SSP-
RK3. 
 

 
As well as the biological compatibility, tables are also 
evidence that the performed methods are consistent 
with theoretical results given in the literature.   
 
CONCLUSION 
The main purpose of the study is to propose 
alternative numerical solution techniques for solving 

                            
                               (a)                                                                                                 (b) 

                             
                                   (c)                                                                                                  (d) 
Figure 4. The densities of proliferating (a), quiescent (b), and the necrotic cell (c) for 𝛼 = 0.8. The obtained results 
belong to SSP-RK3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Error estimation and order of convergence of RK4 for p,q,n 

 ∆𝒕 𝑬𝑳!(𝒑) Order 𝑬𝑳!(𝒒) Order 𝑬𝑳!(𝒏) Order 

0.2 7.4095e-06  6.3409e-06  4.8696e-06  
0.1 4.9392e-07 3.907 4.2219e-07 3.9087 3.2289e-07 3.9147 
0.05 3.1884e-08 3.9534 2.7238e-08 3.9542 2.0791e-08 3.9570 
0.025  2.0252e-09 3.9767 1.7297e-09 3.9771 1.3190e-09 3.9784 

 

 
Table 2:  Error estimation and order of convergence of SSP-RK3 for p,q,n   

∆𝒕 𝑬𝑳!(𝒑) Order 𝑬𝑳!(𝒒) Order 𝑬𝑳!(𝒏) Order 

0.2 2.8918e-04  1.6349e-04  1.1337e-04  
0.1 3.8524e-05 2.9082 2.1684e-05 2.9145 1.2058e-05 3.2330 
0.05 4.9716e-06 2.9540 2.7924e-06 2.9570 1.3730e-06 3.1345 
0.025  6.3142e-07 2.9770 3.5429e-07 2.9785 1.6344e-07 3.0706 
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the avascular tumor growth model which contains the 
proliferative, quiescent, and necrotic zone. This is not 
to say the study is just mathematical, on the contrary, 
it presents also biological perspectives. To do so, 
Sherratt-Chaplin’s avascular model has been 
considered and has been solved numerically. For 
solving the model, the discretization of the spatial 
domain has been fixed to the central difference 
approximation whereas the temporal domain has 
been integrated via two different techniques such that 
SSP-RK3 and RK4. Both numerical schemes have 
been tested on the mathematical model. For a reliable 
comparison, the parameters of the model are chosen 
in line with the literature. All indicated figures have 
shown that both methods have recorded similar 
results to those of the literature. Moreover, as stated 
in the discussion part that both methods are perfectly 
compatible with the biological truth. Furthermore, the 
numerical results are also enriched with the tables 
which list the errors and the rate of convergence of 
the numerical method, computationally. Finally, in the 
light of the knowledge of all valuable aforementioned 
findings and discussions, one can be concluded that 
both proposed methods can be considered as the 
alternative methods for solving such problems. 
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