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Abstract
In this manuscript, we discuss the spread of vaccine refusal through a non-linear math-
ematical model involving the interaction of vaccine believers, vaccine deniers, and the
media sources. Furthermore, we hypothesize that the media coverage of disease-related
deaths has the potential to increase the number of people who believe in vaccines. We
analyze the dynamics of the mathematical model, determine the equilibria and investigate
their stability. Our theoretical approach is dedicated to emphasizing the importance of
convincing people to believe in the vaccine without getting into any medical arguments.
For this purpose, we present numerical simulations that support the obtained analytical
results for different scenarios.
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Vaccination is probably the most effective method of prevention against the contagious
infectious diseases. However, people do not suddenly accept novel vaccines, and scientists
are expected to persuade people to get vaccinated, even during a pandemic. The term
vaccine hesitancy refers to people’s attitudes and beliefs about vaccination, and it is often
defined as a delay in accepting or refusing the vaccine [16,22]. The World Health Organi-
zation (WHO) draws attention to the vaccine hesitancy in the list of ten threats to global
health in 2019 [20,43].

Historical evidence indicates that the success of immunization for a contagious infectious
disease depends on high acceptance and coverage rates of a vaccination program [32].
For example, measles requires at least a 90% to 95% vaccine coverage for a sufficient
immunization of the entire society [20]. Although it is a vaccine-preventable disease,
WHO reported that more than 140, 000 people worldwide died from measles in 2018. The
growing movement of vaccine hesitancy in recent years has resulted in lower vaccination
rates in Europe and in the US. Scientists underline that the increase of measles outbreaks
is linked to the decrease of the vaccination rate [13].

There are many factors that keep people from getting vaccinated. Religious objections,
certain ideas about natural living, and exaggerated concerns about vaccine safety are
driving people to reject the vaccine [21, 37]. The vaccine hesitancy is associated with
media-based anti-vaccine messages and distrust in the healthcare system [5, 20, 30]. In
addition, the lack of desired education of healthcare providers has also been reported as a
reason for vaccine refusal [21].
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During the pandemic, although people have a strong perception of the high risks that
may occur after COVID-19 infection, there is still an increase in hesitancy to receive any
vaccine [42]. Investigating the impact of vaccine rejection on potential epidemics and
estimating the public health cost of small changes in vaccination rates are more inter-
esting from a mathematical point of view than the social causes of vaccine hesitancy.
Indeed, mathematical models have provided several methods for understanding the non-
linear transmission dynamics of an infectious disease under the effect of vaccination. These
models are widely used by decision makers to evaluate possible scenarios for local or global
vaccination program [25].

Mathematical modelling and analysis of the transmission of infectious diseases have
nearly a century of history in epidemiology [8, 18]. So far, compartment-based models
known as SIR models have been widely studied to understand the transmission of various
infectious diseases [14, 15, 19, 23, 40, 41]. The preventive effect of vaccination on disease
transmission has been examined through an extension of the SIR modeling approach [2,9,
29, 38, 45]. Further, several game-theoretical models in epidemiology have been proposed
in order to understand the effect of vaccination on the disease dynamics[3, 4, 6, 35, 36].
In social and human sciences, mathematical models in epidemiology have been employed
to determine the dynamics of changes in society’s beliefs and voters’ decision-making
mechanisms in elections [27, 31]. In addition, studies focusing on the effects of awareness
programs on the spread of infectious diseases are also encountered in the literature [12,26,
33,34,44].

In this manuscript, we discuss the spread of vaccine refusal via a compartmental math-
ematical model. Our approach stands on the research of A. K. Misra [27] that described
the spread of two political ideologies with an SIR-type model. We combine this idea with
the researches on the effect of media in the spread of an infectious diseases [12,26,34,44].
While the current study has similarities with the research of A.K. Misra [27] in that it
uses the idea of modeling the spread of two opposing political views ( i.e. vaccine believers
and vaccine deniers instead of two political parties), but it has differences from the afore-
mentioned study in that the model set-up includes non-linear media effect and news about
disease related deaths associated with increased confidence in the vaccine. We prefer to
use the terminology of vaccine skeptics and vaccine believers as in [35] and vaccine deniers
as in [11]. Thus, we consider three discrete compartments in a homogeneously distributed
population: vaccine skeptics S, vaccine believers B and vaccine deniers D. We assume
that only the adult individuals (at least 18 years old) find a place in the compartment of S
and people can enter into S when they become 18 years old. The positive role of media in
the awareness of people and other environmental stimulus in the changing of refusal ten-
dency of individuals are described by a separate compartment as an environmental effect
E. The feature of compartment E is that, unlike other compartments, it includes media
sources, not individuals. In this concept, we discuss how strong the media do influence
the spread of vaccine refusal. We analyze the stability of the system around the equilibria
and simulate our results for different scenarios.

1. Model
We consider a homogeneously distributed population of N(t) which is the sum of three

distinct sub-populations at time t: vaccine skeptics S(t), vaccine believers B(t) and vaccine
deniers D(t). We assume that only the adult individuals (at least 18 years old) find a
place in the compartment S and individuals who have turned the age of 18 can enter
the compartment with the rate Π. S(t) denotes skeptic people who have not yet decided
whether to get a vaccine. B(t), D(t) respectively represent the people who believe in the
benefits of vaccine and who deny to take a vaccine because of a personal reason (distrust
to health system, religion, beliefs etc.). We assume that people who ones believed in the
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benefit of vaccine cannot be directly a denier. Further, E(t) refers to the total number of
media sources which consist of advertisements, or news that can convince people to get
a vaccine. Since messages about the personal health risks associated with the COVID-19
may encourage vaccine uptake [28], we consider E(t) increases proportional to the number
of the disease related deaths because of the vaccine refusals. f(E) is the awareness function
which we define by Holling Type II response f(E(t)) = E(t)

K+E(t) where K is the capacity
of the positive advertisements produced by social media. The Holling Type II functional
response originally occurs in predator-prey systems and is characterized by a slowing rate
of intake based on the assumption that the consumer’s capacity to process food is limited.
However, this idea is commonly applied to rumor-spreading models by treating the news
as a food [17,33]. Moreover, we assume that the deniers may influence skeptics and infect
them.

We draw a flow diagram figure 1 to summarize the above assumptions.

S D

B

Π
µ

β1SD

(1 − q)ωD

µ + µd

β2f(E)S γB
qωD

µ

Figure 1. The flow diagram for the scenario of vaccine refusal

According to the flow diagram (see figure 1) we constitute a mathematical model via
nonlinear ordinary differential equations (1.1) with initial conditions S(0), B(0) > 0,
D(0) ≥ 0 and E(0) ≥ E0.

dS(t)
dt

= Π − β1S(t) D(t) − β2S(t) E(t)
K + E(t)

+ γB(t) + (1 − q)ωD(t) − µS(t)

dB(t)
dt

= β2S(t) E(t)
K + E(t)

+ qωD(t) − (µ + γ)B(t)

dD(t)
dt

= β1S(t) D(t) − (ω + µ + µd)D(t)

dE(t)
dt

= αµdD(t) − δ(E(t) − E0) (1.1)

Table 1. Parameters of the model (1.1)

Parameters Description
Π the rate of being adult
q probability of gaining awareness
β1 transmission rate for vaccine refusal
β2 spread rate of awareness sources
ω failure rate in refusal of deniers
γ failure rate in awarenesses of believers
µ natural death rate
µd disease-related death rate of deniers
K capacity of the positive advertisements produced by environmental sources
α production rate of awareness sources
δ decay rate of awareness sources
E0 standard initial number of awareness sources
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All parameters considered in the model (1.1) are positive and they are summarized in
table 1. In order to achieve a significant model, we show the positivity of all solutions of
the system (1.1) for all t.
Lemma 1.1. The solutions S(t), B(t), D(t), and E(t) of the system (1.1) with initial
conditions S(0), B(0) > 0, D(0) ≥ 0, and E(0) ≥ E0 are positive for all t > 0.
Proof. From the third equation of the system (1.1), we explicitly obtain

D(t) = D(0)exp

 t∫
0

(β1S(s) − (ω + µ + µd))ds


which implies D(t) ≥ 0 for all t ≥ 0.

We have the solution of the last equation of the system (1.1)

E(t) = exp(−δt)

E(0) +
t∫

0

exp(δs) (αµdD(s) + γE0) ds


which is dependent on D(t) ≥ 0 and E0 ≥ 0. Thus, we get the positivity of E(t) for all
t ≥ 0. Let us check the positivity of the solutions S(t) and B(t) by using the positivity of
D(t) and E(t). We have the solution of

B(t) = exp (−(µ + γ)t)

B(0) +
t∫

0

exp((µ + γ)s)
(

β2S(s) E(s)
K + E(s)

+ qωD(s)
)

ds

 .

Then, we determine the integrating factor

ϕ(t) = exp

 t∫
0

(
β1D(s) + β2

E(s)
K + E(s)

+ µ

)
ds


to find the solution

S(t) = 1
ϕ(t)

S(0) +
t∫

0

(Π + γB(s) + (1 − q)ωD(s)) ϕ(s) ds

 .

Suppose that B(0) > 0. By continuity of solutions, B(t) > 0 in some neighbourhood of
t = 0. Then, we have t1 = sup {s > 0 : B(t) > 0 on [0, s)}. So, we need to show t1 = ∞.
For contradiction, we suppose that t1 is finite. Then, B(t) > 0 on the interval t ∈ [0, t1)
and B(t1) = 0. In this case S(t) > 0 for t ∈ [0, t1] and B(t1) ≥ exp (−(µ + γ)t1) B(0) > 0.
This contradiction proves that t = ∞. Hence, B(t) > 0 for all t ≥ 0 whenever B(0) > 0.
In similar way, we also have S(t) > 0 for all t. □
Lemma 1.2. The positive solutions S(t), B(t), D(t) and E(t) of the system (1.1) with
initial conditions S(0), B(0) > 0, D(0) ≥ 0, and E(0) ≥ E0 are bounded for all t > 0.
Proof. By taking into account the equality N(t) = S(t) + B(t) + D(t), we reduce the
(1.1) and obtain the simplified model

dN(t)
dt

= Π − µN(t) − µdD(t)

dB(t)
dt

= β2(N(t) − B(t) − D(t)) E(t)
K + E(t)

+ qωD(t) − (µ + γ)B(t)

dD(t)
dt

= β1(N(t) − B(t) − D(t)) D(t) − (ω + µ + µd)D(t)

dE(t)
dt

= αµdD(t) − δ(E(t) − E0). (1.2)
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Using the first equation of the model (1.2), we get dN(t)
dt

≤ Π−µN(t) and after integrating
the both sides of the inequality in the interval [0, t] we obtain N(t) ≤ N(0) exp(−µt) + Π

µ .

Thus we have lim
t→∞

sup N(t) ≤ Π
µ , which means N(t) ≤ Π

µ for a large t > 0. Since we
know that B(t) > 0, we rewrite S(t) = N(t) − D(t) ≥ 0. It implies the inequality
0 ≤ D(t) ≤ N(t) ≤ Π

µ . Similarly, we have 0 ≤ B(t) ≤ N(t) ≤ Π
µ . Using last equation of

the system (1.2), we achieve lim
t→∞

sup E(t) ≤ Πα µd
δ µ + E0.

□

Therefore, we define the positively invariant set of the system (1.2)

Ω =
{

(N, B, D, E) ∈ R4
+ : 0 ≤ B, D ≤ N ≤ Π

µ
, 0 ≤ E ≤ Πα µd

δ µ
+ E0

}
and investigate the dynamical processes on Ω below.

2. Equilibria and stability analysis
2.1. Denier-free and denier-existing equilibria

We first seek a denier-free equilibrium (DFE) of the model by setting the right hand
sides of the differential equations (1.2) to zero and substitute D = 0 for the denier-free case.
Thus, we define a denier-free equilibrium in the form Edf = (Π

µ , β2ΠE0
µ(β2E0+(K+E0)(µ+γ)) , 0, E0).

Let us represent the denier-existing equilibrium by Ede = (N∗, B∗, D∗, E∗). We will
solve the following system (2.1) of algebraic equations to determine Ede:

0 = Π − µN∗(t) − µdD∗(t)

0 = β2(N∗(t) − B∗(t) − D∗(t)) E∗(t)
K + E∗(t)

+ qωD∗(t) − (µ + γ)B∗(t)

0 = β1(N∗(t) − B∗(t) − D∗(t)) D∗(t) − (ω + µ + µd)D∗(t)
0 = αµdD∗(t) − δ(E∗(t) − E0). (2.1)

As a result of algebraic computations we get the following expressions N∗ = Π − µdD∗

µ
,

B∗ = β1(Π − (µd + µ)D∗) − µ(ω + µ + µd)
µβ1

, E∗ = αµdD∗ + δE0
δ

and the implicit function

H(D∗) = β2

(
Π − (µd + µ)D∗

µ
− β1(Π − (µd + µ)D∗) − µ(ω + µ + µd)

µ β1

)
αµdD∗ + δE0

δK + αµdD∗ + δE0

−(µ + γ)β1(Π − (µd + µ)D∗) − µ(ω + µ + µd)
µ β1

+ qωD∗.

Thus, we show that N∗ and E∗ are positive in Ω, while B∗ is positive under the condition
β1(Π − (µd + µ)D∗)

µ(ω + µ + µd)
> 1 which implies D∗ <

β1Π − µ(ω + µ + µd)
β1(µd + µ)

. Further, we have the

quadratic equation of D∗ which is written in the form a1(D∗)2 + a2D∗ + a3 = 0 where
a1 = β1αµd ((µ + γ)(µd + µ) + qωµ),
a2 = β2αµµd(ω + µ + µd) + β1δ(µ + γ)(K + E0)(µd + µ) + β1qωδ(K + E0) + αµdµ(µ +

γ)(ω + µ + µd) − Πβ1αµd(µ + γ),
a3 = β2µδE0(ω + µ + µd) + µ(µ + γ)δ(ω + µ + µd)(K + E0) − (µ + γ)β1Πδ(K + E0).
We conclude a1 > 0 and a3 < 0 when the condition 1 < β1Π(γ+µ)(K+E0)

µ(ω+µ+µd)(β2E0+(γ+µ)(K+E0))
holds. Thus, we obtain a unique positive solution D∗ that also ensures the existence of
positive solutions E∗, N∗, and B∗.
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In the current terminology of mathematical epidemiology, the average number of sec-
ondary infections generated by an infectious individual in a completely susceptible popu-
lation is called the basic reproduction number R0. Since we adapt this approach to the
spread of vaccine-refusal, R0 refers a threshold of a vaccine-refusal epidemics,and indicates
whether the vaccine refusal will die out or become an endemic. Since we have only one
’infected’ compartment, we obtain a threshold value R0 = β1Π(γ+µ)(K+E0)

µ(ω+µ+µd)(β2E0+(γ+µ)(K+E0)) for
a vaccine-refusal endemic in terms the method of next generation matrix [7, 41].

The denier-free equilibrium is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1 according to the theorem given in [41]. Consequently, if R0 > 1 then a1 > 0 and
a3 < 0. Thus, the quadratic equation a1(D∗)2 + a2D∗ + a3 = 0 has a unique positive
solution D∗ which enables to find the positive solutions N∗, E∗, B∗. The system has a
unique vaccine refusal-existing equilibrium if R0 > 1.

2.2. Local stability of equilibria
Let us consider the Jacobian matrix of the system (1.2). Thus, linearization of the

system (1.2) around the denier-free equilibrium Edf yields the matrix JEdf
:

JEdf
=

 −µ 0 −µd 0
β2

E0
K+E0

−β2
E0

K+E0
− (µ + γ) −β2

E0
K+E0

+ qω β2
(

Π
µ − β2ΠE0

µ(β2E0+(K+E0)(µ+γ))

)
K+2E0

(K+E0)2
0 0 J33 0
0 0 µdα −δ


where J33 = β1Π

µ

(
(γ+µ)(K+E0)

(β2E0+(γ+µ)(K+E0))

)
− (ω + µ + µd). All eigenvalues of the matrix JEdf

are negative while R0 < 1. However, J33 > 0 if R0 > 1. In other words, the denier-free
equilibrium JEdf

is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
The matrix JEde

gives the linearization of the system (1.2) around the denier-existing
equilibrium Ede:

JEde
=

 −µ 0 −µd 0
β2

E∗
K+E∗ −β2

E∗
K+E∗ − (µ + γ) qω − β2

E∗
K+E∗

β2(K+2E∗)(N∗−B∗−D∗)
(K+E∗)2

β1D∗ −β1D∗ β1(N∗ − B∗ − 2D∗) − (ω + µ + µd) 0
0 0 αµd −δ


The corresponding characteristic equation has the form λ4 + b1λ3 + b2λ2 + b3λ + b4 = 0,

where all coefficients can be calculated algebraically:

b1 = β2
E∗

K + E∗ + γ + 2µ + δ + β1D∗

b2 = δ

(
β2

E∗

K + E∗ γ + µ

)
+ β2K(N∗ − B∗ − D∗)

(K + E∗)2 + β1D∗ (γ + δ + µ)

+µdβ1D∗ + µ

(
β2E∗

K + E∗ + γ + δ + µ

)
+ µβ1D∗

b3 = β1δ (γ + µ) D∗ + β1β2αµd
K(N∗ − B∗ − D∗)

(K + E∗)2 D∗ + β1µd(β2 + δ + µ)D∗

+β1µ(β2 + δ + µ)D∗ + µδ

(
β2E∗

K + E∗ + γ + µ

)
b4 = β1µδ(γ + µ) + β1β2αµµd

K(N∗ − B∗ − D∗)
(K + E∗)2 D∗ + β1δµd(γ + µ)D∗

According to Routh-Hurwitz criterion all roots of the characteristic equation have neg-
ative real parts if and only if b1b2 − b3 > 0 and b1b2b3 − b2

3 − b2
1b4 > 0. Hence, the

denier-existing equilibrium JEde
exists when R0 > 1 and these inequalities constitute the

condition for the local asymptotic stability of the denier-existing equilibrium Ede.
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2.3. Global stability of Ede

We consider the following positive definite function

V (t) = D(t) − D∗ − D∗ ln(D(t)
D∗ ) + 1

2
a1(B(t) − B∗)2 + 1

2
a2(N(t) − N∗)2 + 1

2
a3(E(t) − E∗)2

where a1, a2, and a3 are positive constants in order to investigate the global stability of Ede

by using the Lyapunov direct method. Let us take a2 = β1
µd

and compute the derivative of
V (t) with respect to time t:

dV

dt
= −β1(D − D∗)2 − a1

(
β2E∗

K + E∗ + (γ + µ)
)

(B − B∗)2 − β1µ

µd
(N − N∗)2

−a3δ(E − E∗)2 − β1(B − B∗)(D − D∗) − a1
β2E∗

K + E∗ (B − B∗)(D − D∗)

+a1
β2K(N − D − B)
(K + E)(K + E∗)

(E − E∗)(B − B∗) + a1
β2E∗

K + E∗ (N − N∗)(B − B∗)

+a3αµd(D − D∗)(E − E∗).
dV

dt
is negative in the region of Ω if

T (N, B, D, E) = −β1(B − B∗)(D − D∗) − a1
β2E∗

K + E∗ (B − B∗)(D − D∗)

+a1
β2K(N − D − B)
(K + E)(K + E∗)

(E − E∗)(B − B∗) (2.2)

+a1
β2E∗

K + E∗ (N − N∗)(B − B∗) + a3αµd(D − D∗)(E − E∗) < 0.

We reorganize the terms of (2.3) to find the sufficient conditions for T (N, B, D, E) < 0,
and have the following inequalities:

a1 >
15β1

4
K + E∗

β2E∗ + (K + E∗)(γ + µ)

a3 <
4β1δ

9α2µ2
d

a1

(
β2Π

µ(K + E∗)

)2
< a3

4δ

15

(
β2E∗ + (K + E∗)(γ + µ)

K + E∗

)
.

Solving these inequalities for a1 we obtain the global stability condition of Ede

15β1
4

K + E∗

β2E∗ + (K + E∗)(γ + µ)
<

4β1δ

9α2µ2
d

4δ

15

(
β2E∗ + (K + E∗)(γ + µ)

K + E∗

) (
µ(K + E∗)

β2Π

)2

or in simpler form

225α2µ2
d

64δ2 < (β2E∗ + (K + E∗)(γ + µ))2
(

µ

β2Π

)2
.

Hence, we conclude that α has an effect on the stability whereas R0 does not dependent
on α.

2.4. Sensitivity analysis
We focus on a sensitivity analysis to determine the robustness of the model to the pa-

rameter values that are correlated with the basic reproduction number R0. We calculate
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the sensitivity indices to determine the parameters that are most efficient by the trans-
mission of vaccine refusal epidemic. We follow the sensitivity approach given in [23] and
define the normalized sensitivity index of a variable R0 with respect to the parameter p as

ϵp
R0

= ∂R0
∂p

× p

R0
. (2.3)

The sensitivity indices for the parameters of the model (1.2) are ϵΠ
R0

= ϵβ1
R0

= 1 , ϵω
R0

=
− ω

ω+µ+µd
, ϵµ

R0
= −ω+2µ+µd

ω+µ+µd
= −(1 + µ

ω+µ+µd
), and ϵµd

R0
= − µd

ω+µ+µd
which show the

significance of Π and β1 for the model (1.2). However, we consider that the number of
new adults Π come in to the vaccine skeptic compartment S and the natural death rate
µ do not change radically. We conclude that, an increase of the value of β1 promote the
basic reproduction number whereas an increase of the value of ω diminishes R0.

3. Simulations
We provide numerical solutions of the model (1.2) with estimated parameters for sup-

porting the analytical results given in section 2. Since the equilibrium of denier-free case
is not interesting, we focus on the case where the basic reproduction rate remains R0 > 1
which ensures the existence of a denier-existing equilibrium. With this intention, we ob-
serve the different scenarios for the set of parameters given in table 2.

Table 2. Parameters values for the simulations

Parameters Values
Π 5 day−1

q 0.1
β1 0.000003 day−1

β2 varies in [0, 0.026] day−1

ω 0.2 day−1

γ 0.007 day−1

µ 0.00036 day−1

µd 0.00001 day−1

K 1000
α 60, 100 day−1

δ 0.05 day−1

E0 500

Even though the set of parameters P = {Π, β1, β2, K, γ, q, ω, µ, µd, α, δ, E0} is not di-
rectly obtained from an experimental research, we choose the parameters according to a
plausible scenario. The Supreme Election Council (YSK) of Turkey announced the num-
ber of voters as 57058636 for the 31 March 2019 Local Administrations General Elections.
Further, according to the statistical data of the General Directorate of Population and
Citizenship Affairs (NVI), 1380026 people at the age 17 were living in Turkey in 2018. In
other words, we roughly assume 3780 people turn 18 per day. Thus, for a initial value of
60000 people we assume to have 5 people daily enter to the system. Turkish Statistical
Institute (TUIK) reported the average life expectancy as 78 in Turkey, therefore natural
death rate per day is taken as 0.000035 [39]. Due to the current pandemic, the disease
related death rate has been chosen as µd = 0.00001 per day associated with COVID-19 [1].
In the hypothetical scenario we choose a quite small rate for the transmission of vaccine
refusal, β1 = 0.000003 and manipulate the parameters β2 and α for observing possible
results. All other parameters are determined for a vaccine-refusal endemic state by choos-
ing the basic reproduction rate, R0 > 1. For numerical solution of (1.2), we employed the
ODE solver ’ode45’ of Matlab [24].

In figure 2, the effect of positive broadcasting on the vaccine can be observed. The
parameter values β2 = 0, β2 = 0.013, and β2 = 0.026 represent no-media effect, a medium
effect of media and a high effect of media, respectively. As expected, the media are able
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to persuade skeptic people to take a vaccine, i.e. the number of vaccine believers increases
whereas the number of vaccine deniers decreases.
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Figure 2. The effect of media in the spread of vaccine-refusal (α = 60, R0 =
2.0829 for β2 = 0, R0 = 1.3532 for β2 = 0.013, R0 = 1.0021 for β2 = 0.026 ).

Further, we observe the stability of Ede in figure 3, where the solution trajectory ap-
proaches to the denier existing equilibrium.

Figure 3. Long term behavior of system with high media effect.

The analytical results of the subsection 2.3 show that α has an effect on stability even
if R0 does not consist of this term. Moreover, α is one of the possible candidates that may
convert a stable state to an unstable state. Therefore, we choose a larger value of α = 100
and perform simulations to see the change of stability state.

In figure 4, we observe the behavior of vaccine skeptics, vaccine believers, and vaccine
deniers for a rate α = 100 in a year. This figure represents the positive effect of media
against vaccine deniers in a year as in figure 2 and the dynamic behavior of the model is
just slightly different from the figure 2 for α = 60. See figure 5 to find out the difference
of these two cases, numerically.
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Figure 4. The effect of media in the spread of vaccine-refusal (α = 100, R0 =
2.0829 for β2 = 0, R0 = 1.3532 for β2 = 0.013, R0 = 1.0021 for β2 = 0.026 ).
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Figure 5. Slight different behavior of the model according to the increase of α
from 60 to 100.

However, we see that the long term behavior of the model under high media effect for
α = 60 is totally different from the long term behavior of the system for α = 100, see
figure 6. The increase of the production rate of awareness sources, i.e. the parameter α
allows to change the stability state of Ede from stable to unstable where we show with the
simulation of long term behavior of the system in figure 6.

Figure 6. Long term behavior of system with high media effect.

4. Conclusions
According to the World Health Organization (WHO), vaccine hesitancy is a severe but

not novel threat to global health. Rumours about the side effects of vaccination started just
after Dr. Edward Jenner invented the smallpox vaccine in 1796. From the bodies of people
who received the vaccine, cow heads would erupt. In 1892, Edward Joshua Edwardes
mentioned in the report "Vaccination and Small-Pox in England and Other Countries
Showing That Compulsory Re-Vaccination Is Necessary" these rumours and emphasized
the need for compulsory vaccination [10]. In 2021, mankind continue to find novel irrational
stories to believe in. Thus, we present a mathematical model that underlines the possible
positive effect of media on the confidence in the vaccine. Mathematical analysis of the
model results a vaccine-denier free equilibrium and a vaccine-denier existing equilibrium.
The denier-free equilibrium is locally asymptotically stable if R0 < 1 and the denier-
existing equilibrium exists for R0 > 1 and is globally asymptotically stable under the
conditions given in the subsection 2.3, i.e. denier existing equilibrium will persist. Stability
analysis around the equilibria shows that denier existing equilibrium is highly dependent on
the awareness parameter of media and it may turn from stable to unstable as awareness
parameter increases. Further, this research concludes that, according to the scenario
created in this model, transmission of the opinion of vaccine refusal is more important
than the production rate of awareness sources in the short-term future. However, the
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effect of the production rate of awareness sources can be seen in the long-term future.
Finally, we present a view of how strong the indirect influence of the media can be, while
developing vaccination policies, in controlling the epidemics that our world is likely to
encounter.
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