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ABSTRACT

In this study, we have generated the Gauss-Weierstrass integral and Abel-
Poisson integral which are generated by the A -Abel-Poisson kernel. These
kernels depen on non-isotropic distance. We study relationships between
Gauss-Weierstrass integral and Abel-Poisson integral with Riesz potential
generated by the non-isotropic distance.
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IZOTROPIK OLMAYAN UZAKLIKLAR UZERINE

OZET

Bu caligmada, A -Abel Poisson cekirdegi yardimiyla Gauss-Weierstrass
integralini ve Abel-Poisson integralini elde ettik. Bu cekirdekler izotropik
olmayan uzaklik ile elde edilen Riesz potansiyalleri ile Gauss-Weierstrass
integrali ve Abel-Poisson integrali arasindaki iligkiler ¢alisildi.

Anahtar Kelime: izotropik Olmayan Uzaklik, Weierstrass Cekirdegi, Abel
Poisson ¢ekirdegi, Riesz Potansiyeli.

1. INTRODUCTION

The classical Weierstrass kernel , Poisson kernel, Abel Poisson integral and
their properties are well known [1]. In the referance [2], relationships
between the Riesz Potential generated by the generalized Shift operators and
Gauss Weierstrass integrals were proved.
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In this article we prove relationships between the Riesz potentials generated
by the non-isotropic distance and Weierstrass integral, Abel Poisson integral
which are generated by the non-isotropic distance.

Firstly, we give some notations and definitions.
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be the non-isotropic A-distance [3]. Where A=(A,4,,..,4),

A >0, k=12.,n,|A=4+4+..+ 4, and xe R".

The A-Weierstrass kernel was defined as follows [4]:
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The A -Abel Poisson kernel was defined as follows [4]:
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where ¢, =

Passing to spherical coordinates by the following formulas:
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24,
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24 .
we obtained that |x‘ L, =p " . It can be seen that the Jacobian J(p, @) of
24
this transformation is J(p,8) = p " Q(8), where €(0) is the bounded

function, which depend only on angles 6,,6,,...,0, _, .

y, =(pcosb,)

The Riesz Potentials generated by the non-isotropic A -distance is defined as
follows:

(£ )0 =C@A) [fx= ;" dy, 0<ar<n 0
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where C(a, A) =

a4
w, F(M‘)F(T)

Lemma 1: Let A=A, A A, |/1|=ﬂ1+ﬂ,2 +..+4, and

A
AA) :/1—““‘"— forall A, >0, k =1,2,...,n,then we have
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Proof: If A_ =min{4,4,,....,4, }and 4

min max

= max{A,,4,,...,4,}. Then, it
is clear that

<A < ndp.. (3)

mln
In this case, there are following inequalies :
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Proof: From the non-isotropic A -distance definition, we have the following
inequality;

IA
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If fy!/{ > 1, then !}’1!" + ..+!y”!ﬂ%)21 From Lemma 1 and formula
(4) we have
) 1y )
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On the other hand, for ] y] , S1we have
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For non-isotropic A -distance, there is the following equality

|4

P W) B
't yl’ x +...+'t ynl , 17|y, 1>0.

This equality give us that non-isotropic A -distance is at the order of a
A

homogenous function l———l So the non-isotropic A -distance has following

n

properties.
a. |y|ﬂ =0 y=0

12 |i|
b. [ty =1 ]y,
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By V.f we define the Gauss-Weierstrass integral generated by the non-

isotropic A -distance such that.

V)@= [fOIW, (x~yndy , 1>0. 5)

Furthermore we define Abel-Poisson integral generated by the non-isotropic
A -distance with the following equality.

(AN = [fP(x=y.0dy , 1>0. (©)

Theorem 1: There is the following equality for W, (x,z),7 >0
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where 0 < <n and w, = JQ(@)d@.
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Proof: Proof of Theorem 1 is easy by Gamma function.

Theorem 2: Let felL

equality holds for almost every xe R".

p,1<p<c>o ,0<a<n. Then following

1 oo a{/1|_

(IS F)(x) =@ sz "V, f)(x)d (7

Proof: Firstly we consider the right side of (7) then we have the following
equality by Theorem 1 and formula (1).
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Theorem 3: If f € Lp,1<p<£,0<a’<n,then
97
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Proof: From the right hand side of the equality (8), we have
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Theorem 4: For the P,(x,t)-Abel kernel, we have the equality of
aAl 1 A
- 2ed] r([ml + —2~)r([/1| ~ﬂ) ]
It nP(x, )dr = —T : |45
’ w,L(APLC)

Proof: For the proof of this theorem, the following equality will be enough.

=

Ix171—1 (1 + X) —-m-n d.x — F(m)r(n)

, myn>0.
0 I'im+n)

Theorem 5: Let fe L,,0<a<n. In this case there is the following

inequality for almost every xe R".
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O<a<n andlSp<g. Then we have
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Theorem 5 and Theorem 6 have similar proofs with Theorem 2 and Theorem 3.
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