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Abstract 

Particle filter is a serial Monte Carlo estimation method which is used when the system or the measurement model 

of the application is highly non-linear and uncertainties are large. As the number of particles increases, the 

computation cost of the particle filter increases. Graphics processing unit (GPU) offers promising solutions to 

accelerate the particle filter. Since there are many pedestrians in a multi pedestrian tracking problem, more than 

one particle filters run at a time. So, it is important to implement the particle filter on the GPU efficiently. In this 

study, we implement a multi pedestrian tracking algorithm on the GPU. We have three pedestrians along with 

some clutters (ten clutters at each time step). There may be up to 13 measurements which stand for too many 

particle filters run at a time. We use gating, association techniques in order to assign a measurement to a track (a 

pedestrian). We implement the particle filters on the GPU and achieve up to 9.79x speed up. When we consider 

the duration between two consecutive measurements is small, implementing the particle filter on the GPU becomes 

substantial as the number of particles increases. Furthermore, the quality of the particle filters is significant.  

Keywords: multi pedestrian tracking, particle filter, Systematic resampling, graphics processing unit, 

CUDA programming, Tesla K40 board 

1. Introduction 

Particle filter is a serial Monte-Carlo method that is used efficiently in the applications whose system or 

measurement model is highly non-linear and uncertainties are large. The target that is tracked is 

represented by the particles and their weights. The estimation of the target is the weighted average of 

the particles. The computational cost of the particle filter increases as the number of particles increases 

which causes the real time implementation of the particle filter challenging. Graphics processing units 

offer promise for the real time implementation of the particle filter since they have many cores in their 

architectures [1]. 

As time progresses, the normalized weight of one particle approaches to one, the normalized weights of 

the remaining particles become nearly zero. In this situation, the remaining particles cause wasted 

computational effort. Further, the degeneracy problem arises because only one particle is effective. One 

of the solutions that are used to overcome degeneracy problem is resampling. In resampling, the weights 
of the particles are determiner in the results. The particles whose weights are large are replicated by the 

ratio of their weights and the particles whose weights are very small are eliminated. We use Systematic 

resampling algorithm in our experiments. It is very common resampling algorithm in literature [1][2]. 

Understanding the actions of the people in the public area is important for estimating their intentions 

and attentions or extracting knowledge about their behaviors and social networks. The body orientations 

or position information are used in these processes. With these processes, we can understand which 

exhibits they like in a museum or we can extract who are just walking and who are interested in shopping 

in a shopping mall [3]. In this study, we implement a multi pedestrian tracking algorithm by using 

particle filter as the estimation method. At first, we implement the multi pedestrian tracking algorithm 

serially with C++ programming language. Then we implement it with CUDA programming language 

on the graphics processing unit (GPU). We show the quality and the execution time performances of the 

implementations along with the speed up of the GPU implementation. 
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In the second section, we mention some of the studies about Systematic resampling and pedestrian 

tracking in literature. In section 3, we describe the sampling importance resampling (SIR) particle filter 

and the Systematic resampling methods. Moreover, we describe our multi pedestrian tracking algorithm 

in detail. In section 4, we give information about the experimental environment and discuss the 

experiment results. Section 5 concludes the study. 

2. Literature 

There are some studies in literature about the efficient implementation of Systematic resampling on the 

GPU [4-6]. There are also other studies in literature which track the pedestrians by using particle filter. 

Brscic and co-workers track the positions and the body directions of the pedestrians in a shopping mall. 

They use multiple 3D range sensors to get the observations of the pedestrians. They observe head 

position and the body angle as the measurement data of the person and use video sequences as a sensor 

input [3]. To weight the particles, they use hypothetical target representation. Furthermore, they 

compare the performances of the particle filter with CAMSHIFT and Mean-Shift algorithms [7]. Guan 

and co-workers propose an improved particle filter to track the pedestrians in surveillance video. They 

use color histogram model as the observation model [8]. There are also other studies that improve the 

multi pedestrian tracking algorithms [9][10]. Further, there are some studies that implement the multi 

pedestrian tracking algorithms on the GPU [11][12]. 

3. SIR Particle Filter and Multi-Pedestrian Tracking Algorithm 

The stages of the sampling importance resampling (SIR) particle filter are given in Algorithm 1 [1]. 

In this algorithm, 𝑁 is the number of particles; 𝑖 is the index of the particle; 𝑘 is the index of the time 

step; 𝑥𝑘
𝑖  represents the state of 𝑖-th particle; �̃�𝑘

𝑖  is the weight of 𝑖-th particle; 𝑠𝑢𝑚�̃� is the sum of all 

weights; 𝑤𝑘
𝑖  is the normalized weights of 𝑖-th particle; 𝑥𝑘 is the state of the target; �̂�𝑘 is the estimation 

of the target; 𝑧𝑘 is the measurement; 𝑝(𝑥𝑘|𝑥𝑘−1
𝑖 ) is the transitional prior and 𝑝(𝑧𝑘|𝑥𝑘

𝑖 ) is the likelihood 

function. 

 

Algorithm 1: SIR Particle Filter [1] 
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[ {𝑥𝑘
𝑖 }𝑖=1

𝑁  ] = SIR [{𝑥𝑘−1
𝑖 }𝑖=1

𝑁  , 𝑧𝑘] 

foreach 𝑖 = 1:𝑁 

  𝑥𝑘
𝑖  ~ 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖 ) 

  �̃�𝑘
𝑖 = 𝑝(𝑧𝑘|𝑥𝑘

𝑖 ) 
 end foreach 

𝑠𝑢𝑚�̃� = SUM [ {�̃�𝑘
𝑖 }𝑖=1

𝑁  ] 

foreach 𝑖 = 1:𝑁 

  𝑤𝑘
𝑖 = 𝑠𝑢𝑚�̃�−1�̃�𝑘

𝑖 

 end foreach 

 �̂�𝑘 = SUM [ {𝑥𝑘
𝑖 ∗ 𝑤𝑘

𝑖 }𝑖=1
𝑁  ] 

[ {𝑥𝑘
𝑖 }𝑖=1

𝑁  ] = RESAMPLE [{𝑥𝑘
𝑖 , 𝑤𝑘

𝑖 }𝑖=1
𝑁  ] 

 

In the first stage, the state of each particle at time 𝑘 is predicted by using transitional prior. And the 

weights of the particles are calculated by using measurement at time 𝑘 and likelihood function. In the 

second stage, the sum of the weights is calculated. In third stage, the weights are normalized and the 

estimation of the target at time 𝑘 is calculated. In the fourth stage, resampling is performed. There are 

dependencies between the stages of the algorithm. However, each stage can be implemented on the GPU 

fully parallel. The stages of the Systematic resampling method are given in Algorithm 2 [13]. 

 

 



Ankara Science University, Researcher 

 

Dülger 

 

 
28 

Algorithm 2: Systematic Resampling [13] 
 

1 
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[ {𝑂𝑖 , −, −}𝑖=1
𝑁  ] = SYSTEMATIC [{�̃�𝑖}𝑖=1

𝑁 ] 

𝑢~ 𝜐[0 1)  
C = INCLUSIVE-PREFIX-SUM(�̃�) 
foreach 𝑖 = 1:𝑁 

   𝑟𝑖 = 
𝑁∗𝐶𝑖

𝐶𝑁  

 𝑂𝑖 = min (𝑁, ⌊𝑟𝑖 + 𝑢⌋) 
   end foreach 

 

The output of this method is the cumulative summation of the number of repetitions of the particles 

called as cumulative offspring and denoted as 𝑂. 𝐶 is the cumulative summation of the weights. 𝑢 is a 

real random number between 0 and 1, excluding 1, drawn from a uniform distribution. 𝑟 is a real 

number. 

The iterations of ‘foreach’ loop can be executed in parallel among the threads where each thread runs 

for each particle. Each thread calculates the cumulative offspring of the particle it represents. We need 

to convert 𝑂 to an ancestor array in order to assign the states of the ancestor of the particle. An algorithm 

about this conversion is given in Algorithm 3 [13]. It is very suitable for the GPU implementation. 

 

Algorithm 3: Cumulative Offspring to Ancestors [13] 
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[ {𝑥𝑛𝑒𝑤𝑖 , −, −}𝑖=1
𝑁  ] = CO TO ANCESTORS [{𝑥𝑖 , 𝑂𝑖}𝑖=1

𝑁 ] 

foreach 𝑖 = 1:𝑁 
  if i == 1  start = 0 

 else  start = 𝑂𝑖−1 

 end if 

 𝑜𝑖 =  𝑂𝑖 − 𝑠𝑡𝑎𝑟𝑡 
 for 𝑗 = 1: 𝑜𝑖 

  𝑥𝑛𝑒𝑤𝑠𝑡𝑎𝑟𝑡+𝑗 =  𝑥𝑖  

 end for 

   end foreach 

 

In this algorithm, the iterations of ‘foreach’ loop can be executed in parallel among the threads where 

each thread runs for each particle. Each thread finds the children of the particle it represents if exists. 

In our multi-pedestrian tracking problem, we have multiple pedestrians along with false alarms 

(measurements do not belong to any pedestrian). We need to identify measurements which ones belong 

to the pedestrians and which ones are false alarms. And we need to associate the measurements to the 

pedestrians correctly in order to track them persistently. There are algorithms to perform these issues. 

First, we mention some concepts about the multi pedestrian tracking problem. We track all 

measurements we receive from the sensor. A track can be in three status: 

• Tentative track: Still undecided track whether it is target or false alarm 

• Confirmed track: Track confirmed as target 

• Deleted track: Absence of data of the track for a consecutive time steps. It can be tentative or 

confirmed track 

To associate a measurement to a track, we use gating technique. We draw an ellipsoidal gate for a track 

by using predicted measurement error and its covariance and the state of the measurement. The 

measurements are located inside the gate of the track if their distances to the track are below than the 

gate threshold. If there are more than one measurements located inside the gate of the track or if more 

than one tracks have the same measurement inside their gates, we need a mechanism to associate the 

measurements to the tracks. We use nearest-neighbor (NN) technique. In this technique, the closest 

measurement to the track is assigned as the measurement of the track. The other ones are processed as 

new tentative track. If more than one tracks have the same measurement inside their gates, the oldest 
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track has the priority to get the measurement. Once we associate all measurements with the existing 

tracks, we update the kinematic equations of the tracks by using the associated measurements. To delete 

a track we use M/N logic. We set M/N as 2/3. For the tentative tracks, they become confirmed if the 

measurements are associated with the track in 2 consecutive scans and are associated at least 2 of 3 

following scans. Otherwise the track is deleted. For the confirmed tracks, they are deleted if the 

measurements are not associated with the track in 2 consecutive scans or are not associated at least 2 of 

3 following scans. Note that nearest-neighbor is a hard decision mechanism and is suitable for the single 

target tracking problems. For the multi pedestrian tracking problems, we use global nearest neighbor 

(GNN) mechanism. In this mechanism, the measurements are associated to the tracks in the best 

hypothesis. Best hypothesis can be found with the assignment problem. We use auction algorithm for 

the assignment problem [14]. The pseudo-code of the multi-target tracking algorithm is given in 

Algorithm 4. 

 

 

 

 

 

 

 

 

 

 

 

In this algorithm, at time 0 we initialize the tentative tracks by using the measurements at time 0. These 

measurements can be either a target or a false alarm. At time 𝑘 >  0, the measurements are associated 

with the confirmed tracks at first. Then the measurements that are not associated with the confirmed 

tracks are used for the tentative tracks in order to be associated with them. If there exists measurements 

that are not associated with the confirmed tracks and the tentative tracks, new tentative tracks are created 

with them. In Gating function, we calculate the distances of each measurement to the tracks. If the 

distance of the measurement is less than the gate threshold of the track, that measurement is considered 

to be inside of the gate of the track. In GNN function, we associate each measurement that is inside of 

the gates of the tracks with the tracks. In UpdateParticleFilter function, the particle filter of each track 

is processed by using the associated measurements. If there is no any associated measurement for a 

track, only the prediction stage of the particle filter is processed. In UpdateM/NLogic function, the 

parameters of the M/N logic are updated. 

4. Experimental Environment and Results 

We use SIR particle filter in our multi-pedestrian tracking problem. In the experiments, we use the real 

data of the pedestrians that are collected by [3]. They use multiple 3D range sensors in a shopping center 

to get the data of the pedestrians as the measurements of the problem. We select three specific person’s 

data for our application. We apply a simple filter to eliminate the noises in order to get the true data of 

the persons. Then we add required noises to the true data to create our noisy measurement data. The 

units of the data in the tracking application are millimeter (mm) and seconds (sec.). The true data of the 

pedestrians are shown in Figure 1. 

The arrows show the starting points of the pedestrians and the circles show the meeting points of the 

pedestrians or a sudden change (around 180°) in the direction of the second pedestrian at a point. 

Starting time (𝑇𝑠1) of the first pedestrian is 5, starting time (𝑇𝑠2) of the second pedestrian is 292 and 

Algorithm 4 Multi-Pedestrian Tracking Algorithm 
 

At time k = 0:  

Initialize tentative tracks 

At time k > 0: 

 If confirmed track exists: 

  Gating(Confirmed Tracks, Measurements,GateResults) 

  GNN(Confirmened Tracks, Measaurements, GateResults, AssociationResults) 

  UpdateParticleFilter(Confirmened Tracks, Measaurements, AssociationResults) 

  UpdateM/NLogic(Confirmened Track, AssociationResults) 

 end if 

 If tentative track exists, they are processed with the un-used measurements: 

  Gating(Confirmed Tracks, Measurements,GateResults) 

  GNN(Confirmened Tracks, Measaurements, GateResults, AssociationResults) 

  UpdateParticleFilter(Confirmened Tracks, Measaurements, AssociationResults) 

  UpdateM/NLogic(Confirmened Track, AssociationResults) 

 end if 

 

 Create new tentative tracks from the un-used measurements 
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starting time (𝑇𝑠3) of the third pedestrian is 1433. The number of false alarms (clutters) is 10 at each 

time step. We add the measurement data of pedestrian 1, pedestrian 2 and pedestrian 3 to the clutter set 

before running the algorithm. Therefore, there exists at least 10 measurements and at most 13 

measurements at each time step. The state of a pedestrian in the particle filter is [𝑝𝑥𝑝𝑦𝑣𝑥𝑣𝑦]′ where 𝑝𝑥 

is the 𝑥 position and 𝑝𝑦 is the 𝑦 position of the pedestrian in 2D dimension. And 𝑣𝑥 is the velocity in 𝑥 

position and 𝑣𝑦 is the velocity in 𝑦 position. The initial state of each particle is generated as follows: 

𝐱𝟎
𝐢 ~𝓝(𝐱𝟎, 𝐏𝟎) (1) 

 

 

Figure 1 True data of the pedestrians we track in our application. 

 

where 𝑥0 is the initial estimation of the track and is equal to vector [𝑝𝑥0𝑝𝑦00 0]′ and 𝑃0 is the 

multivariate process noise covariance matrix of 𝑥0 and is equal to 𝑑𝑖𝑎𝑔[402 202 402 202]. We use the 

nearly constant velocity model in the prediction process of the particle filter and the formula of the 

prediction process of a particle is defined as follows: 

𝐱𝐤
𝐢 = [

𝟏 𝟎 𝐓 𝟎
𝟎 𝟏 𝟎 𝐓
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

] ∗ 𝐱𝐤−𝟏
𝐢 + 

[
 
 
 
 
 
𝐓𝟐

𝟐
𝟎

𝟎
𝐓𝟐

𝟐
𝐓 𝟎
𝟎  𝐓 ]

 
 
 
 
 

∗ 𝐪𝐤
𝐢  (2) 

where 𝑇 is the sampling period and 𝑞𝑘
𝑖 ~𝒩(0, 𝑄) is the vector of the multivariate normally distributed 

random numbers. 𝑄 is the multivariate process noise covariance matrix. We set the value of 𝑄 as 

𝑑𝑖𝑎𝑔[1500 1500] by considering the average velocities in 𝑥 and 𝑦 positions of the pedestrians and set 

the value of 𝑇 as 1 since the duration between the two consecutive measurements is one second. The 

measurement data are the 𝑟𝑎𝑛𝑔𝑒 and the 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 of the track and are defined as follows: 

𝐳𝐤 =  

[
 
 
 √𝐩𝐱𝐤

𝟐 + 𝐩𝐲𝐤
𝟐

𝐚𝐫𝐜𝐭𝐚𝐧 (
𝐩𝐲𝐤

𝐩𝐱𝐤
⁄ )

]
 
 
 
+ 𝐯𝐤 (3) 
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where 𝑣𝑘~𝒩(0, 𝑅) is the vector of the multivariate  normally distributed random numbers and 𝑅 is the 

multivariate measurement noise covariance matrix. We set the value of R as 𝑑𝑖𝑎𝑔[402  (
0.1𝑝𝑖

180
)
2
] by 

considering the noises in measurements. The weight of a particle is calculated by applying the state of 

the particle 𝑥𝑘
𝑖  to the multivariate normal probability density function of the measurement whose mean 

is the measurement data 𝑧𝑘 and covariance is 𝑅. 

We obtain the estimation of the track as the combination of the particles according to their normalized 

weights. The computation is done as follows: 

�̂�𝐤 = ∑𝐱𝐤
𝐢

𝐍

𝐢=𝟏

𝐰𝐤
𝐢  (4) 

In resampling, we implement the parallel Systematic resampling algorithm given in Section 3 on the 

GPU. We use an efficient parallel reduction algorithm for the sum operations of the SIR particle filter 

on the GPU and parallel scan algorithm for the inclusive scan operation of the Systematic resampling 

method [15][16]. To assess the quality of the tracking of the pedestrians, we calculate the root mean 

squared error (RMSE) of the estimation of the pedestrians. The estimation error in a time step is defined 

as follows: 

𝐞𝐤
𝐣

= √(𝐩𝐱𝐤

𝐣
− 𝐱𝐤𝟏

𝐣
)
𝟐
+ (𝐩𝐲𝐤

𝐣
− 𝐱𝐤𝟐

𝐣
)

𝟐

 (5) 

where 𝑥𝑘1
𝑗
 and 𝑥𝑘2

𝑗
 are the estimated positions of 𝑗𝑡ℎ pedestrian in 𝑥 position and 𝑦 position respectively 

at time step 𝑘. 𝑝𝑥𝑘
𝑗

 and 𝑝𝑦𝑘
𝑗

 are the true positions of 𝑗𝑡ℎ pedestrian in 𝑥 position and 𝑦 position 

respectively at time step 𝑘. The RMSE is calculated with the estimation error 𝑒𝑘
𝑗
 at each time step 𝑘. It 

is defined follows: 

𝐑𝐌𝐒𝐄𝐣 = √∑ (𝐞𝐤
𝐣
)
𝟐

𝐓𝐬𝐭𝐣
𝐤=𝟏

𝐓𝐬𝐭𝐣
 (6) 

where 𝑇𝑠𝑡𝑗 is the total time step of 𝑗𝑡ℎ pedestrian. 

We implement the serial multi pedestrian tracking algorithm by using C++ programming language on 

Intel Core i7-4790K CPU [17]. We implement the parallel multi-pedestrian tracking algorithm by using 

CUDA 7.5 programming environment on NVIDIA Tesla K40 board [18][19]. 

The execution time results of the serial and the parallel multi-pedestrian tracking algorithms are given 

in Table 1 and 2 along with the speed up results. 

 

Table 1: Total Execution Time Results of Multi Pedestrian Tracking Application (in seconds)  

(The number of total time step is 1900) 

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20 

C++ 24.19 57.60 93.37 191.02 457.99 761.09 1535.62 3246.65 6390.78 11829.70 

CUDA 21.56 31.32 36.90 47.24 80.08 108.56 201.20 382.38 707,94 1207.47 

Speed 

Up 
1.12x 1.83x 2.53x 4.04x 5.71x 7.01x 7.63x 8.49x 9,02x 9.79x 

 

Table 2: Average Execution Time Results with respect to the time step (in seconds)  

(The average duration of one time step) 

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20 

C++ 0,012 0,030 0,049 0,10 0,24 0,40 0,80 1,70 3,36 6,22 

CUDA 0,011 0,016 0,019 0,024 0,042 0,057 0,10 0,20 0,37 0,63 

 

The results show us that as the number of particles increases, the execution time of the multi pedestrian 

tracking application which is implemented on the GPU improves. And we achieve up to 9.79x speed 
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up. When we investigate the average execution times, the improvement on the execution time of the 

multi pedestrian tracking application with CUDA implementation becomes substantial. When we 

consider the duration between two consecutive measurements is less than one second, the performance 

of the CUDA implementation provides us an important solution as the number of particles becomes very 

large. The RMSE results of three pedestrians are given in Table 3, 4 and 5. 

 

Table 3: RMSE Results of Pedestrian 1 

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20 

C++ 34.07 32.92 36.79 32.91 32.94 32.92 32.07 32.09 32.93 33.01 

CUDA 33.58 32.05 32.14 32.94 32.13 32.92 32.09 32.08 32.08 32.08 

 

Table 4: RMSE Results of Pedestrian 2 

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20 

C++ 37.27 37.43 38.54 36.13 36.95 37.58 35.31 35.88 36.16 38.85 

CUDA 37.96 37.05 36.43 35.92 35.57 36.37 35.94 35.59 35.00 35.47 

 

Table 5: RMSE Results of Pedestrian 3 

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20 

C++ 36.59 37.20 38.26 40.46 38.59 39.49 39.32 38.03 39.60 41.88 

CUDA 34.72 37.01 33.98 34.89 44.48 38.76 35.75 38.64 49.77 53.49 

 

It is seen that the RMSE results of three pedestrians are around 3-4 cm which can be considered as very 

low error. Further, the RMSE results of C++ and CUDA implementations are very close to each other. 

So we can choose the CUDA implementation when the speed is very important in the multi pedestrian 

tracking problem. 

5. Conclusion 

When there are too many pedestrians in an area and the particle filter is necessary for the multi pedestrian 

tracking problem, serial implementation of the particle filter has high complexity in terms of execution 

time and can not be enough for the applications where the duration between two consecutive 

measurements is small. Due to have many cores in their architectures, GPUs offer promising solutions 

for the problems which need the particle filter as the estimation method. In a multi pedestrian tracking 

application, there may be too many pedestrians along with false alarms (clutters). In our application, we 

receive at most 13 measurements in a time step from the sensor which means at most 13 particle filters 

run at a time step. We try to implement the stages of the particle filters on the GPU in parallel and 

achieve up to 9.79x speed up. In the future, we can extend our multi pedestrian tracking problem by 

adding new pedestrians to the problem. We can also implement the problem on a multi GPU platform 

where each particle filter of the measurements runs in different GPU. 
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