
ANKARA SCIENCE UNIVERSITY, RESEARCHER

VOL. 1, NO. 1, JULY 2021

26

Implementation of the Multi Pedestrian Tracking Problem on

Graphics Processing Unit

Özcan DÜLGER 1,2*

1 Department of Computer Engineering, Artvin Coruh University; ORCID: 0000-0001-7525-1064
2 Department of Computer Engineering, Middle East Technical University

* Corresponding author: odulger@ceng.metu.edu.tr

Received: 30 June 2021; Accepted: 2 July 2021

Abstract

Particle filter is a serial Monte Carlo estimation method which is used when the system or the measurement model

of the application is highly non-linear and uncertainties are large. As the number of particles increases, the

computation cost of the particle filter increases. Graphics processing unit (GPU) offers promising solutions to

accelerate the particle filter. Since there are many pedestrians in a multi pedestrian tracking problem, more than

one particle filters run at a time. So, it is important to implement the particle filter on the GPU efficiently. In this

study, we implement a multi pedestrian tracking algorithm on the GPU. We have three pedestrians along with

some clutters (ten clutters at each time step). There may be up to 13 measurements which stand for too many

particle filters run at a time. We use gating, association techniques in order to assign a measurement to a track (a

pedestrian). We implement the particle filters on the GPU and achieve up to 9.79x speed up. When we consider

the duration between two consecutive measurements is small, implementing the particle filter on the GPU becomes

substantial as the number of particles increases. Furthermore, the quality of the particle filters is significant.

Keywords: multi pedestrian tracking, particle filter, Systematic resampling, graphics processing unit,

CUDA programming, Tesla K40 board

1. Introduction

Particle filter is a serial Monte-Carlo method that is used efficiently in the applications whose system or

measurement model is highly non-linear and uncertainties are large. The target that is tracked is

represented by the particles and their weights. The estimation of the target is the weighted average of

the particles. The computational cost of the particle filter increases as the number of particles increases

which causes the real time implementation of the particle filter challenging. Graphics processing units

offer promise for the real time implementation of the particle filter since they have many cores in their

architectures [1].

As time progresses, the normalized weight of one particle approaches to one, the normalized weights of

the remaining particles become nearly zero. In this situation, the remaining particles cause wasted

computational effort. Further, the degeneracy problem arises because only one particle is effective. One

of the solutions that are used to overcome degeneracy problem is resampling. In resampling, the weights
of the particles are determiner in the results. The particles whose weights are large are replicated by the

ratio of their weights and the particles whose weights are very small are eliminated. We use Systematic

resampling algorithm in our experiments. It is very common resampling algorithm in literature [1][2].

Understanding the actions of the people in the public area is important for estimating their intentions

and attentions or extracting knowledge about their behaviors and social networks. The body orientations

or position information are used in these processes. With these processes, we can understand which

exhibits they like in a museum or we can extract who are just walking and who are interested in shopping

in a shopping mall [3]. In this study, we implement a multi pedestrian tracking algorithm by using

particle filter as the estimation method. At first, we implement the multi pedestrian tracking algorithm

serially with C++ programming language. Then we implement it with CUDA programming language

on the graphics processing unit (GPU). We show the quality and the execution time performances of the

implementations along with the speed up of the GPU implementation.

https://orcid.org/0000-0001-7525-1064
mailto:odulger@ceng.metu.edu.tr

Ankara Science University, Researcher

Dülger

27

In the second section, we mention some of the studies about Systematic resampling and pedestrian

tracking in literature. In section 3, we describe the sampling importance resampling (SIR) particle filter

and the Systematic resampling methods. Moreover, we describe our multi pedestrian tracking algorithm

in detail. In section 4, we give information about the experimental environment and discuss the

experiment results. Section 5 concludes the study.

2. Literature

There are some studies in literature about the efficient implementation of Systematic resampling on the

GPU [4-6]. There are also other studies in literature which track the pedestrians by using particle filter.

Brscic and co-workers track the positions and the body directions of the pedestrians in a shopping mall.

They use multiple 3D range sensors to get the observations of the pedestrians. They observe head

position and the body angle as the measurement data of the person and use video sequences as a sensor

input [3]. To weight the particles, they use hypothetical target representation. Furthermore, they

compare the performances of the particle filter with CAMSHIFT and Mean-Shift algorithms [7]. Guan

and co-workers propose an improved particle filter to track the pedestrians in surveillance video. They

use color histogram model as the observation model [8]. There are also other studies that improve the

multi pedestrian tracking algorithms [9][10]. Further, there are some studies that implement the multi

pedestrian tracking algorithms on the GPU [11][12].

3. SIR Particle Filter and Multi-Pedestrian Tracking Algorithm

The stages of the sampling importance resampling (SIR) particle filter are given in Algorithm 1 [1].

In this algorithm, 𝑁 is the number of particles; 𝑖 is the index of the particle; 𝑘 is the index of the time

step; 𝑥𝑘
𝑖 represents the state of 𝑖-th particle; �̃�𝑘

𝑖 is the weight of 𝑖-th particle; 𝑠𝑢𝑚�̃� is the sum of all

weights; 𝑤𝑘
𝑖 is the normalized weights of 𝑖-th particle; 𝑥𝑘 is the state of the target; �̂�𝑘 is the estimation

of the target; 𝑧𝑘 is the measurement; 𝑝(𝑥𝑘|𝑥𝑘−1
𝑖) is the transitional prior and 𝑝(𝑧𝑘|𝑥𝑘

𝑖) is the likelihood

function.

Algorithm 1: SIR Particle Filter [1]

1

2

3

4

[{𝑥𝑘
𝑖 }𝑖=1

𝑁] = SIR [{𝑥𝑘−1
𝑖 }𝑖=1

𝑁 , 𝑧𝑘]

foreach 𝑖 = 1:𝑁

 𝑥𝑘
𝑖 ~ 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖)

 �̃�𝑘
𝑖 = 𝑝(𝑧𝑘|𝑥𝑘

𝑖)
 end foreach

𝑠𝑢𝑚�̃� = SUM [{�̃�𝑘
𝑖 }𝑖=1

𝑁]

foreach 𝑖 = 1:𝑁

 𝑤𝑘
𝑖 = 𝑠𝑢𝑚�̃�−1�̃�𝑘

𝑖

 end foreach

 �̂�𝑘 = SUM [{𝑥𝑘
𝑖 ∗ 𝑤𝑘

𝑖 }𝑖=1
𝑁]

[{𝑥𝑘
𝑖 }𝑖=1

𝑁] = RESAMPLE [{𝑥𝑘
𝑖 , 𝑤𝑘

𝑖 }𝑖=1
𝑁]

In the first stage, the state of each particle at time 𝑘 is predicted by using transitional prior. And the

weights of the particles are calculated by using measurement at time 𝑘 and likelihood function. In the

second stage, the sum of the weights is calculated. In third stage, the weights are normalized and the

estimation of the target at time 𝑘 is calculated. In the fourth stage, resampling is performed. There are

dependencies between the stages of the algorithm. However, each stage can be implemented on the GPU

fully parallel. The stages of the Systematic resampling method are given in Algorithm 2 [13].

Ankara Science University, Researcher

Dülger

28

Algorithm 2: Systematic Resampling [13]

1

2

3

4

5

6

[{𝑂𝑖 , −, −}𝑖=1
𝑁] = SYSTEMATIC [{�̃�𝑖}𝑖=1

𝑁]

𝑢~ 𝜐[0 1)
C = INCLUSIVE-PREFIX-SUM(�̃�)
foreach 𝑖 = 1:𝑁

 𝑟𝑖 =
𝑁∗𝐶𝑖

𝐶𝑁

 𝑂𝑖 = min (𝑁, ⌊𝑟𝑖 + 𝑢⌋)
 end foreach

The output of this method is the cumulative summation of the number of repetitions of the particles

called as cumulative offspring and denoted as 𝑂. 𝐶 is the cumulative summation of the weights. 𝑢 is a

real random number between 0 and 1, excluding 1, drawn from a uniform distribution. 𝑟 is a real

number.

The iterations of ‘foreach’ loop can be executed in parallel among the threads where each thread runs

for each particle. Each thread calculates the cumulative offspring of the particle it represents. We need

to convert 𝑂 to an ancestor array in order to assign the states of the ancestor of the particle. An algorithm

about this conversion is given in Algorithm 3 [13]. It is very suitable for the GPU implementation.

Algorithm 3: Cumulative Offspring to Ancestors [13]

1

2

3

4

5

6

7

8

9

[{𝑥𝑛𝑒𝑤𝑖 , −, −}𝑖=1
𝑁] = CO TO ANCESTORS [{𝑥𝑖 , 𝑂𝑖}𝑖=1

𝑁]

foreach 𝑖 = 1:𝑁
 if i == 1 start = 0

 else start = 𝑂𝑖−1

 end if

 𝑜𝑖 = 𝑂𝑖 − 𝑠𝑡𝑎𝑟𝑡
 for 𝑗 = 1: 𝑜𝑖

 𝑥𝑛𝑒𝑤𝑠𝑡𝑎𝑟𝑡+𝑗 = 𝑥𝑖

 end for

 end foreach

In this algorithm, the iterations of ‘foreach’ loop can be executed in parallel among the threads where

each thread runs for each particle. Each thread finds the children of the particle it represents if exists.

In our multi-pedestrian tracking problem, we have multiple pedestrians along with false alarms

(measurements do not belong to any pedestrian). We need to identify measurements which ones belong

to the pedestrians and which ones are false alarms. And we need to associate the measurements to the

pedestrians correctly in order to track them persistently. There are algorithms to perform these issues.

First, we mention some concepts about the multi pedestrian tracking problem. We track all

measurements we receive from the sensor. A track can be in three status:

• Tentative track: Still undecided track whether it is target or false alarm

• Confirmed track: Track confirmed as target

• Deleted track: Absence of data of the track for a consecutive time steps. It can be tentative or

confirmed track

To associate a measurement to a track, we use gating technique. We draw an ellipsoidal gate for a track

by using predicted measurement error and its covariance and the state of the measurement. The

measurements are located inside the gate of the track if their distances to the track are below than the

gate threshold. If there are more than one measurements located inside the gate of the track or if more

than one tracks have the same measurement inside their gates, we need a mechanism to associate the

measurements to the tracks. We use nearest-neighbor (NN) technique. In this technique, the closest

measurement to the track is assigned as the measurement of the track. The other ones are processed as

new tentative track. If more than one tracks have the same measurement inside their gates, the oldest

Ankara Science University, Researcher

Dülger

29

track has the priority to get the measurement. Once we associate all measurements with the existing

tracks, we update the kinematic equations of the tracks by using the associated measurements. To delete

a track we use M/N logic. We set M/N as 2/3. For the tentative tracks, they become confirmed if the

measurements are associated with the track in 2 consecutive scans and are associated at least 2 of 3

following scans. Otherwise the track is deleted. For the confirmed tracks, they are deleted if the

measurements are not associated with the track in 2 consecutive scans or are not associated at least 2 of

3 following scans. Note that nearest-neighbor is a hard decision mechanism and is suitable for the single

target tracking problems. For the multi pedestrian tracking problems, we use global nearest neighbor

(GNN) mechanism. In this mechanism, the measurements are associated to the tracks in the best

hypothesis. Best hypothesis can be found with the assignment problem. We use auction algorithm for

the assignment problem [14]. The pseudo-code of the multi-target tracking algorithm is given in

Algorithm 4.

In this algorithm, at time 0 we initialize the tentative tracks by using the measurements at time 0. These

measurements can be either a target or a false alarm. At time 𝑘 > 0, the measurements are associated

with the confirmed tracks at first. Then the measurements that are not associated with the confirmed

tracks are used for the tentative tracks in order to be associated with them. If there exists measurements

that are not associated with the confirmed tracks and the tentative tracks, new tentative tracks are created

with them. In Gating function, we calculate the distances of each measurement to the tracks. If the

distance of the measurement is less than the gate threshold of the track, that measurement is considered

to be inside of the gate of the track. In GNN function, we associate each measurement that is inside of

the gates of the tracks with the tracks. In UpdateParticleFilter function, the particle filter of each track

is processed by using the associated measurements. If there is no any associated measurement for a

track, only the prediction stage of the particle filter is processed. In UpdateM/NLogic function, the

parameters of the M/N logic are updated.

4. Experimental Environment and Results

We use SIR particle filter in our multi-pedestrian tracking problem. In the experiments, we use the real

data of the pedestrians that are collected by [3]. They use multiple 3D range sensors in a shopping center

to get the data of the pedestrians as the measurements of the problem. We select three specific person’s

data for our application. We apply a simple filter to eliminate the noises in order to get the true data of

the persons. Then we add required noises to the true data to create our noisy measurement data. The

units of the data in the tracking application are millimeter (mm) and seconds (sec.). The true data of the

pedestrians are shown in Figure 1.

The arrows show the starting points of the pedestrians and the circles show the meeting points of the

pedestrians or a sudden change (around 180°) in the direction of the second pedestrian at a point.

Starting time (𝑇𝑠1) of the first pedestrian is 5, starting time (𝑇𝑠2) of the second pedestrian is 292 and

Algorithm 4 Multi-Pedestrian Tracking Algorithm

At time k = 0:

Initialize tentative tracks

At time k > 0:

 If confirmed track exists:

 Gating(Confirmed Tracks, Measurements,GateResults)

 GNN(Confirmened Tracks, Measaurements, GateResults, AssociationResults)

 UpdateParticleFilter(Confirmened Tracks, Measaurements, AssociationResults)

 UpdateM/NLogic(Confirmened Track, AssociationResults)

 end if

 If tentative track exists, they are processed with the un-used measurements:

 Gating(Confirmed Tracks, Measurements,GateResults)

 GNN(Confirmened Tracks, Measaurements, GateResults, AssociationResults)

 UpdateParticleFilter(Confirmened Tracks, Measaurements, AssociationResults)

 UpdateM/NLogic(Confirmened Track, AssociationResults)

 end if

 Create new tentative tracks from the un-used measurements

Ankara Science University, Researcher

Dülger

30

starting time (𝑇𝑠3) of the third pedestrian is 1433. The number of false alarms (clutters) is 10 at each

time step. We add the measurement data of pedestrian 1, pedestrian 2 and pedestrian 3 to the clutter set

before running the algorithm. Therefore, there exists at least 10 measurements and at most 13

measurements at each time step. The state of a pedestrian in the particle filter is [𝑝𝑥𝑝𝑦𝑣𝑥𝑣𝑦]′ where 𝑝𝑥

is the 𝑥 position and 𝑝𝑦 is the 𝑦 position of the pedestrian in 2D dimension. And 𝑣𝑥 is the velocity in 𝑥

position and 𝑣𝑦 is the velocity in 𝑦 position. The initial state of each particle is generated as follows:

𝐱𝟎
𝐢 ~𝓝(𝐱𝟎, 𝐏𝟎) (1)

Figure 1 True data of the pedestrians we track in our application.

where 𝑥0 is the initial estimation of the track and is equal to vector [𝑝𝑥0𝑝𝑦00 0]′ and 𝑃0 is the

multivariate process noise covariance matrix of 𝑥0 and is equal to 𝑑𝑖𝑎𝑔[402 202 402 202]. We use the

nearly constant velocity model in the prediction process of the particle filter and the formula of the

prediction process of a particle is defined as follows:

𝐱𝐤
𝐢 = [

𝟏 𝟎 𝐓 𝟎
𝟎 𝟏 𝟎 𝐓
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

] ∗ 𝐱𝐤−𝟏
𝐢 +

[

𝐓𝟐

𝟐
𝟎

𝟎
𝐓𝟐

𝟐
𝐓 𝟎
𝟎 𝐓]

∗ 𝐪𝐤
𝐢 (2)

where 𝑇 is the sampling period and 𝑞𝑘
𝑖 ~𝒩(0, 𝑄) is the vector of the multivariate normally distributed

random numbers. 𝑄 is the multivariate process noise covariance matrix. We set the value of 𝑄 as

𝑑𝑖𝑎𝑔[1500 1500] by considering the average velocities in 𝑥 and 𝑦 positions of the pedestrians and set

the value of 𝑇 as 1 since the duration between the two consecutive measurements is one second. The

measurement data are the 𝑟𝑎𝑛𝑔𝑒 and the 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 of the track and are defined as follows:

𝐳𝐤 =

[

 √𝐩𝐱𝐤

𝟐 + 𝐩𝐲𝐤
𝟐

𝐚𝐫𝐜𝐭𝐚𝐧 (
𝐩𝐲𝐤

𝐩𝐱𝐤
⁄)

]

+ 𝐯𝐤 (3)

Ankara Science University, Researcher

Dülger

31

where 𝑣𝑘~𝒩(0, 𝑅) is the vector of the multivariate normally distributed random numbers and 𝑅 is the

multivariate measurement noise covariance matrix. We set the value of R as 𝑑𝑖𝑎𝑔[402 (
0.1𝑝𝑖

180
)
2
] by

considering the noises in measurements. The weight of a particle is calculated by applying the state of

the particle 𝑥𝑘
𝑖 to the multivariate normal probability density function of the measurement whose mean

is the measurement data 𝑧𝑘 and covariance is 𝑅.

We obtain the estimation of the track as the combination of the particles according to their normalized

weights. The computation is done as follows:

�̂�𝐤 = ∑𝐱𝐤
𝐢

𝐍

𝐢=𝟏

𝐰𝐤
𝐢 (4)

In resampling, we implement the parallel Systematic resampling algorithm given in Section 3 on the

GPU. We use an efficient parallel reduction algorithm for the sum operations of the SIR particle filter

on the GPU and parallel scan algorithm for the inclusive scan operation of the Systematic resampling

method [15][16]. To assess the quality of the tracking of the pedestrians, we calculate the root mean

squared error (RMSE) of the estimation of the pedestrians. The estimation error in a time step is defined

as follows:

𝐞𝐤
𝐣

= √(𝐩𝐱𝐤

𝐣
− 𝐱𝐤𝟏

𝐣
)
𝟐
+ (𝐩𝐲𝐤

𝐣
− 𝐱𝐤𝟐

𝐣
)

𝟐

 (5)

where 𝑥𝑘1
𝑗
 and 𝑥𝑘2

𝑗
 are the estimated positions of 𝑗𝑡ℎ pedestrian in 𝑥 position and 𝑦 position respectively

at time step 𝑘. 𝑝𝑥𝑘
𝑗

 and 𝑝𝑦𝑘
𝑗

 are the true positions of 𝑗𝑡ℎ pedestrian in 𝑥 position and 𝑦 position

respectively at time step 𝑘. The RMSE is calculated with the estimation error 𝑒𝑘
𝑗
 at each time step 𝑘. It

is defined follows:

𝐑𝐌𝐒𝐄𝐣 = √∑ (𝐞𝐤
𝐣
)
𝟐

𝐓𝐬𝐭𝐣
𝐤=𝟏

𝐓𝐬𝐭𝐣
 (6)

where 𝑇𝑠𝑡𝑗 is the total time step of 𝑗𝑡ℎ pedestrian.

We implement the serial multi pedestrian tracking algorithm by using C++ programming language on

Intel Core i7-4790K CPU [17]. We implement the parallel multi-pedestrian tracking algorithm by using

CUDA 7.5 programming environment on NVIDIA Tesla K40 board [18][19].

The execution time results of the serial and the parallel multi-pedestrian tracking algorithms are given

in Table 1 and 2 along with the speed up results.

Table 1: Total Execution Time Results of Multi Pedestrian Tracking Application (in seconds)

(The number of total time step is 1900)

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20

C++ 24.19 57.60 93.37 191.02 457.99 761.09 1535.62 3246.65 6390.78 11829.70

CUDA 21.56 31.32 36.90 47.24 80.08 108.56 201.20 382.38 707,94 1207.47

Speed

Up
1.12x 1.83x 2.53x 4.04x 5.71x 7.01x 7.63x 8.49x 9,02x 9.79x

Table 2: Average Execution Time Results with respect to the time step (in seconds)

(The average duration of one time step)

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20

C++ 0,012 0,030 0,049 0,10 0,24 0,40 0,80 1,70 3,36 6,22

CUDA 0,011 0,016 0,019 0,024 0,042 0,057 0,10 0,20 0,37 0,63

The results show us that as the number of particles increases, the execution time of the multi pedestrian

tracking application which is implemented on the GPU improves. And we achieve up to 9.79x speed

Ankara Science University, Researcher

Dülger

32

up. When we investigate the average execution times, the improvement on the execution time of the

multi pedestrian tracking application with CUDA implementation becomes substantial. When we

consider the duration between two consecutive measurements is less than one second, the performance

of the CUDA implementation provides us an important solution as the number of particles becomes very

large. The RMSE results of three pedestrians are given in Table 3, 4 and 5.

Table 3: RMSE Results of Pedestrian 1

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20

C++ 34.07 32.92 36.79 32.91 32.94 32.92 32.07 32.09 32.93 33.01

CUDA 33.58 32.05 32.14 32.94 32.13 32.92 32.09 32.08 32.08 32.08

Table 4: RMSE Results of Pedestrian 2

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20

C++ 37.27 37.43 38.54 36.13 36.95 37.58 35.31 35.88 36.16 38.85

CUDA 37.96 37.05 36.43 35.92 35.57 36.37 35.94 35.59 35.00 35.47

Table 5: RMSE Results of Pedestrian 3

𝐥𝐨𝐠𝟐 𝑵 11 12 13 14 15 16 17 18 19 20

C++ 36.59 37.20 38.26 40.46 38.59 39.49 39.32 38.03 39.60 41.88

CUDA 34.72 37.01 33.98 34.89 44.48 38.76 35.75 38.64 49.77 53.49

It is seen that the RMSE results of three pedestrians are around 3-4 cm which can be considered as very

low error. Further, the RMSE results of C++ and CUDA implementations are very close to each other.

So we can choose the CUDA implementation when the speed is very important in the multi pedestrian

tracking problem.

5. Conclusion

When there are too many pedestrians in an area and the particle filter is necessary for the multi pedestrian

tracking problem, serial implementation of the particle filter has high complexity in terms of execution

time and can not be enough for the applications where the duration between two consecutive

measurements is small. Due to have many cores in their architectures, GPUs offer promising solutions

for the problems which need the particle filter as the estimation method. In a multi pedestrian tracking

application, there may be too many pedestrians along with false alarms (clutters). In our application, we

receive at most 13 measurements in a time step from the sensor which means at most 13 particle filters

run at a time step. We try to implement the stages of the particle filters on the GPU in parallel and

achieve up to 9.79x speed up. In the future, we can extend our multi pedestrian tracking problem by

adding new pedestrians to the problem. We can also implement the problem on a multi GPU platform

where each particle filter of the measurements runs in different GPU.

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of Tesla K40 GPU

used in this work. This work was also supported in part by Republic of Turkey Ministry of Development,

Turkey under grant BAP-08-11-DPT2002K120510. Furthermore, the author was supported in part by

The Scientific and Technological Research Council of Turkey (TUBITAK) under program 2214/A.

Thanks are due to Prof. Fusun Ozguner for her support for the author during his visit to Ohio State.

References

[1] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter Particle Filters for Tracking Applications. Artech

House, 2004.

[2] P. Gong, J. D. Basciftci, and F. Ozguner, "A Parallel Resampling Algorithm for Particle Filtering on Shared-Memory

Ankara Science University, Researcher

Dülger

33

Architectures," Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th

International, Shanghai, pp. 1477-1483, 2012.

[3] D. Brscic, T. Kanda, T. Ikeda, and T. Miyashita, "Person position and body direction tracking in large public spaces

using 3D range sensors," IEEE Transactions on Human-Machine Systems, Vol. 43, No. 6, pp. 522-534, 2013.

[4] G. Hendeby, J. D. Hol, R. Karlsson, and F. Gustafsson, "A graphics processing unit implementation of the particle

filter," In Signal Processing Conference, 2007 15th European, pp. 1639–1643, IEEE, 2007.

[5] K. Hwang, and W. Sung, "Load balanced resampling for real-time particle filtering on graphics processing units," IEEE

Transactions on Signal Processing, Vol. 61, No. 2, pp. 411–419, 2013.

[6] Y. Wu, J. Wang, and Y. Cao, "Particle filter based on iterated importance density function and parallel resampling,"

Journal of Central South University, Vol. 22, No. 9, pp. 3427–3439, 2015.

[7] M. Owczarek, P. Barański, and P. Strumiłło, "Pedestrian tracking in video sequences: a particle filtering approach," In

Computer Science and Information Systems (FedCSIS), 2015 Federated Conference on, pp. 875-881, 2015.

[8] Y. Guan, X. Chen, Y. Wu, and D. Yang, "An improved particle filter approach for real-time pedestrian tracking in

surveillance video," In International Conference on Information Science and Technology Applications, Atlantis Press,

2013.

[9] D. Stadler, and J. Beyerer, "Improving Multiple Pedestrian Tracking by Track Management and Occlusion Handling,"

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

[10] F. Flodin, Improved Data Association for Multi-Pedestrian Tracking Using Image Information, Master of Science

Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 2020.

[11] L. Barba-Guaman, J. Eugenio Naranjo, and A. Ortiz, "Deep learning framework for vehicle and pedestrian detection in

rural roads on an embedded gpu," Electronics, Vol. 9, No. 4, pp. 589, 2020.

[12] M. Dimitrievski, P. Veelaert, and W. Philips, "Behavioral pedestrian tracking using a camera and lidar sensors on a

moving vehicle," Sensors, Vol. 19, No. 2, pp. 391, 2019.

[13] L. M. Murray, A. Lee, and P. E. Jacob, "Parallel resampling in the particle filter," Journal of Computational and

Graphical Statistics, Vol. 25, No. 3, pp. 789–805, 2016.

[14] S. Blackman, and R. Popoli, Design and Analysis of Modern Tracking Systems. Norwood, MA: Artech House, 1999.

[15] M. Harris, “Optimizing Parallel Reduction in CUDA, NVIDIA Developer Technology,” 2007. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

[16] W. M. Hwu, “A work-eficient parallel scan kernel,” 2014. [Online]. Available: http://ece408.hwu-

server2.crhc.illinois.edu/Shared%20Documents/Slides/Lecture-4-6-work-efficient-scan-kernel.pdf

[17] Intel, “Intel® Core™ i7-4790K Processor,” 2020. [Online]. Available:

https://ark.intel.com/content/www/us/en/ark/products/80807/intel-core-i7-4790k-processor-8m-cache-up-to-4-40-

ghz.html

[18] NVIDIA, “Tesla K40 GPU Active Accelerator: Board Specification,” 2013. [Online]. Available:

https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf

[19] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110/210,” 2014. [Online]. Available:

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-

GK210-Architecture-Whitepaper.pdf

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://ece408.hwu-server2.crhc.illinois.edu/Shared%20Documents/Slides/Lecture-4-6-work-efficient-scan-kernel.pdf
http://ece408.hwu-server2.crhc.illinois.edu/Shared%20Documents/Slides/Lecture-4-6-work-efficient-scan-kernel.pdf
https://ark.intel.com/content/www/us/en/ark/products/80807/intel-core-i7-4790k-processor-8m-cache-up-to-4-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/80807/intel-core-i7-4790k-processor-8m-cache-up-to-4-40-ghz.html
https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

