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Abstract
The necessary and sufficient conditions for a proper f—biharmonic curve in the three-dimensional Lorentzian
Sasakian manifolds are obtained. Moreover, we give some results for f—biharmonic Legendre curves.
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1. Introduction

Harmonic maps between (pseudo-) Riemannian manifolds have been studied extensively since the eminent work of Eells
and Sampson [1]. In addition to this, biharmonic maps, which are generalizations of harmonic maps, constitute one of the
dynamical topic of differential geometry (for a survey of biharmonic maps see [2]). Non-harmonic biharmonic maps are said
to be proper biharmonic maps. Chen and Ishikawa showed that there does not exist proper biharmonic curves in Euclidean
3-space [3]. Moreover, they investigated proper biharmonic curves in Minkowski 3-space (see [4]). Caddeo, Montaldo and Piu
studied biharmonic curves on a surface [5]. Caddeo, Oniciuc and Piu demonstrated that all non-geodesic biharmonic curves are
helices in three-dimensional Heisenberg space [6]. Ou and Wang characterized non-geodesic biharmonic curves in Sol space
and proved that there exists no non-geodesic biharmonic helix in Sol space [7]. Caddeo, Montaldo, Oniciuc and Piu found
explicit formulae for biharmonic curves in Cartan-Vranceanu three-dimensional spaces [8].

In [9], Lu gave a generalization of biharmonic maps and introduced f—biharmonic maps. He derived the first variation
formula and calculated the f—biharmonic map equation. Ou considered f—biharmonic curves on a generic manifold and
gave a characterization for them in n—dimensional space forms [10]. Guvenc and Ozgur studied f—biharmonic Legendre
curves in Sasakian space forms [11]. Karaca and Ozgur investigated f—biharmonic curves in Sol spaces, Cartan Vranceanu
three-dimensional spaces and homogenous contact three-manifolds [12]. Du and Zhang examined f—biharmonic curves in
Lorentz—Minkowski space [13].

In this paper, we investigate the curves of the three-dimensional Lorentzian Sasakian manifolds in order to specify
f—bihamonicity properties of them. We consider the Lorentzian Bianchi-Cartan-Vranceanu model of 3-dimensional Lorentzian
Sasakian manifolds. Throughout the paper, all geometric objects (curves, manifolds, vector fields, functions etc.) are assumed
to be smooth.
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2. Preliminaries
2.1 Contact Lorentzian manifolds

A (2n+ 1)—dimensional differentiable manifold M is said to be an almost contact manifold if it admits a global form 1 such
that 1 A (dn)™ # 0 everywhere. When a contact form 7 is given, we have a unique vector field £ satisfying

n(¢) =landdn(g,X) =0,

where X is a vector field on M. The vector field & is called characteristic vector field. It is known that there exists a Lorentzian
metric g and a (1, 1)—tensor field such that

n(X) = _g(X>§)7 dn(XvY) :g(X7¢Y)7 ¢2(X) = _X+n(X)§a (D

where X and Y are vector fields on M. From (1), it follows that

95 =0, m0¢ =0, g(9X,9Y) = g(X,Y) +n(X)N(Y).

A Lorentzian manifold M equipped with the tensors (g, ¢,&,n) satisfying (1) is called Lorentzian contact metric manifold.
A Lorentzian contact metric manifold is Sasakian if and only if

(Vx@)Y =g(X,Y)e +n(Y)X,
for any vector fields X,Y on M, where V is Levi-Civita connection of g [14].

Definition 1. A [-dimensional integral submanifold of a contact manifold is called a Legendre curve [17].

2.2 Frenet-Serret equations

Let y: I — M be a unit speed curve in a three-dimensional Lorentzian manifold M such that ¥’ satisfies g(y',7') = & = +1. The
constant € is said to be the causal character of . A unit speed curve is called spacelike or timelike if its causal character is 1 or
-1, respectively. A unit speed curve is called a Frenet curve if g(y’,7”) # 0. A Frenet curve has an orthonormal frame field
{T =¥ ,N,B} along y. Then the Frenet-Serret equations are given by

VT = &kN,
VN = —g«kT —¢&7B,
ViB = &1N,

where kK = HV}/;/ H is the geodesic curvature and 7 is the geodesic torsion of y. The vector fields 7', N and B are called tangent
vector field, principal normal vector field and binormal vector field of 7, respectively.

The constants &, and &3 are defined by g(N,N) = & and g(B,B) = €3, and called second causal character and third causal
character of 7y, respectively. The equation €& = —&;3 holds.

A Frenet curve 7 is a geodesic if and only if Kk = 0.

Proposition 2. Ler {T,N,B} are orthonormal frame field in a Lorentzian 3-manifold. Then, [17],
TALN=8&B, NA\LB=¢& T, BALT =¢&N.
Proposition 3. The torsion of a Legendre curve is 1 in three-dimensional Sasakian Lorentzian manifolds [15].

2.3 f—Biharmonic maps
A map ¢ : (My,g) — (N,,h) between two pseudo-Riemannian manifolds is called harmonic if it is a critical point of the energy

1
E(9) =5 [ lldgldv,.
Q

where Q is a compact domain of M,,. The tension field 7(¢) of ¢ is defined by
m

©(@) =tr(VOde) = Y &(VEdo(e) —do(Veei)),
i=1
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where V? and {e;} denote the induced connection by ¢ on the bundle ¢*TN,. A map ¢ is called harmonic if its tension field
vanishes. The bienergy E»(¢@) of a map ¢ is defined by

1
= [ In(@Idv,.
Q

and ¢ is called biharmonic if it is a critical point of the bienergy, where Q is a compact domain of M,,. Clearly, all harmonic
maps are biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps. The bitension field 7,(¢) of @ is
defined by

Zez (VEVE VS, . )T(9) =R (1(0).dp(e;))dg(e:)), )

where RV denotes the curvature tensor of N,,. A map ¢ is called biharmonic if its bitension field vanishes.
A map ¢ is called f—harmonic with a function f : M — R, if it is a critical point of the energy

1
Er(9) =5 [ flldo| dv,,
Q

where Q is a compact domain of M,,. The f—tension field 77(¢) of ¢ is given by

(@) = f1(@) +do(gradf) (©)
see [16]. The f—bitension field 7 r(¢) of ¢ is defined by
TZ,f((P) = fT2((P) +AfT( )+2Vérudf ((P) (4)

A map ¢ is called f—biharmonic if its f—bitension field vanishes ( [9, 13]). Non-harmonic and non-biharmonic f—biharmonic
curves are called proper f—biharmonic curves and if f is a constant, then an f—biharmonic curve turns to be a biharmonic
curve [9].

3. f—Biharmonic curves in Lorentzian Sasakian manifolds

We recall fundamental concepts about the Lorentzian Bianchi-Cartan-Vranceanu model of 3-dimensional Lorentzian Sasakian
manifolds from [17]. Let us consider the set

D={(x,,2) ER*: 1+ (2 +)%) >0},

2

where c is a real number. On the region D, the contact form 1) is taken

ydx — xdy

N=dit—r—>5 75
1+ 52 +)?)

Then, the characteristic vector field of 1 is £ = a%
Next, the Lorentzian metric is equipped as

dx? + dy?
[+ 5P

ydx —xdy

—(dz4 2=
et e 1y2)

)%

8c =

The Lorentzian orthonormal frame field (e, e,e3) on (D, g.) is given by

B B N N U I B N L N
=1+ 5@+ o = (1450 ) baa = 5

Then the endomorphism field ¢ is given by
¢er) =e2, 9(e2) = —e1, 9(e3) =0.
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The Levi-Civita connection V of (D, g.) is described as

Ve e1 =cyes, Ve ea = —cye; +e3, Vo3 =ea,
Ve,e1 = —cxes —e3, Vo,e0 = cxer, Veo,e3 = —ey,
Ve3€1 = 623V6382 = _617V63e3 =0.

The contact form 1 on D fulfills
dn(XaY) :gc(Xad)Y)a XY € X(D)

Moreover the structure (g., ¢,&,n) is Sasakian. The non-vanishing components of the curvature tensor R of (D, g.) are given
by

R(€l7€2)€1 = _(2C+3)€1, R(€|7€3)€3 = —ey,
R(627el)el = _(20+3)€2,R(€2,e3)€3 = —ey,
R(ez,er)er = e3, R(ez,er)er = e3.

For the sectional curvature K of (D, g.), we have
K(8,ei))=—R(E,e;,8,ei) =—1,i=1,2,
and
K(e1,e2) =R(ey,ez,e1,e2) =2¢+3.

So, (D, g.) is of constant holomorphic sectional curvature H = 2¢ + 3.

For the case H = —1 (i.e. ¢ = —2), the Lorentzian Sasakian manifold D turns to be anti-de Sitter 3-space.

Now, suppose that y: I — (D, g.) is a curve parametrized by arc-length and {7, N, B} is an orthonormal frame field tangent
to D along ¥, where T = Tiey 4+ Trep + T3e3, N = Niey + Nyex + Nze3 and B = Bieg + Baey + Bies.

The f—biharmonicity condition for curves on (D, g.) is obtained in the following theorem.

Theorem 4. Let v: 1 — (D,g.) be a curve parametrized by arc-length. Then 7y is f—biharmonic if and only if the following
relations are satisfied:

3k f42K%f =0,
Kf" 2K f1+ fIK" + &6 + e k12 + ke (&3 +2(c+2)n(B)?)] =0, §))
=2xtf’ — f2x' T+ xT') +2€1 (c+2)kfM(N)N(B) = 0.

Proof. Let ¥ = 7(s) be a curve parametrized by arc-length. We use formula (4). From [17], we have

T(’}’) =VrT = —&KN, (6)

R(T,N,T,N) = &5+ 2(c +2)B3, )
R(T,N,T,B) =2¢|(c+2)N3B3,

(y) =383kK’T + & (K" — erx(e1k° 4+ £37%))N + € (2K’ 1+ k7' ) B+ €2 kR(T,N)T. 8
Moreover, from [13], we have

Vs TV = V1 (VrT) = & [K'N + k(—& kT — &37B)),

Aft(y) = f"ViT = f"e;kN. ©)
Therefore, combining equations (6), (8) and (9), we obtain
(10)
ns(y) = 3akkfT+ef(K —ex(ex’ +&1))N+e f2K't+K7)B
+&fKR(T,N)T + &k f"N +2&f'[K'N + k(—& kT — &37B)).
If we take inner product of equation (10) with 7, N and B, respectively and use the equations (7), we get (5). |
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Corollary 5. Let y: I — (D, g.) be a Legendre curve parametrized by arc-length. Then vy is f—biharmonic if and only if the
following relations are satisfied:

3k f4+2K%f =0,
Kf" 4+ 2k f + fIK" + &3K° + €1k + K2 (€3 + 2(c +2)1(B)?)] =0,
—kf' 4+ f(—K'+&1(c+2)kn(N)n(B)) =0.

Now, we express the following results for ¢ # —2.

Proposition 6. Let y: I — (D, g.) be an f—biharmonic curve parametrized by arc-length. If K is a non-zero constant, then Y is
biharmonic.

Proof. Under the assumption K is a non-zero constant, from the first equation in (5), obviously we get f/ = 0. So, yis a
biharmonic curve. |

Proposition 7. Let v: 1 — (D,g.) be an f—biharmonic curve parametrized by arc-length. If T is a non-zero constant and
N(N)N(B) =0 (i.e., N3B3 = 0), then v is biharmonic.

Proof. Under the assumption 7 is a non-zero constant and 1(N)n(B) = 0, using the first and third equations in (5), we get

/ 2 !
E — i (11)
K 3f
and
K./ f/
T(—+=)=0. 12
(E+7) (12)
Putting equation (11) in (12) shows that f is constant, therefore ¥ is a biharmonic curve. |

Corollary 8. Ify: I — (D,g.) is an f—biharmonic Legendre curve parametrized by arc-length and n(N)n(B) = 0, then 7y is
biharmonic.

Proposition 9. Let y: 1 — (D,g.) be an f—biharmonic curve parametrized by arc-length. If T is a non-zero constant, then
I g1 (c+2)n(N)n(B)
= e T .

f
Proof. Under the assumption 7 is a non-zero constant, if we use the first and third equations in (5), we obtain

K’ 2f

;:—%: (13)
and

—2ktf —2fKk't+2¢€(c+2)xfn(N)n(B) = 0. (14)
Setting equation (13) in (14), we get the result. |

Corollary 10. Ify: I — (D,g.) is an f—biharmonic Legendre curve parametrized by arc-length, then f = eJ3e(crn(Nn(B)

Proposition 11. Let y: I — (D, g.) be a non-geodesic curve parametrized by arc-length and suppose that T = 0. In this case, Y
is f—biharmonic if and only if the following equations are valid:

i =d, (15)
(fx)" = —fr(&3K* + & (&3 +2(c+2)n(B)?)), (16)
n(N)n(B) =0, (17)

where ¢ € R.
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Proof. Under the assumption T = 0, if we use equations in (5) by integrating first equation, we deduce the results. |

Proposition 12. Let y: 1 — (D, g.) be a non-geodesic curve parametrized by arc-length and suppose that T and K are
non-constants. In this case, 'y is f—biharmonic if and only if the following equations are valid:

A =, (18)
(fx)" = —fr(esk* + &7 + &(&3+2(c +2)n(B)?), (19)
Kzfzr _ ef 2¢ <<f+2>;1(N)n(B) 7 20)

where ¢ € R.

Proof. Under the assumption T and k are non-constants, if we use equations in (5) by integrating first and third equations, we
obtain (18), (19) and (20). |

From the last two propositions, we can give the following theorem.

Theorem 13. An arc-length parametrized curve v : I — (D, g.) is proper f—biharmonic if and only if one of the following
situations is true:
(i)T=0, f=c k3/2 and the curvature K solves the equation below:

3(K')? —2kK" = —4K%[e3k% + & (&5 +2(c +2)n(B)?)].

T 2¢) (c+2)n(N)n(B)
T

(ii) T #0, % = %, f=a k3/2 and the curvature x solves the equation below:

¢ [ 4g1 (c+2)n(N)n(B)
3(k')? —2kK" = —4K*[e3k2(1 — 826—4) + & (&3 +2(c+2)n(B)?)).
1
Proof. (i) The first equation of (5) gives
F=cx 2, 1)

By replacing the above equation into (16), we obtain the result.
(i1) From the first equation of (5), we have

f=ck 32 (22)

Setting the above equation in (20), we get
r I 2¢) (c+2)n(N)n(B)
e T
L — (23)
K e
And finally putting equations (22) and (23) in (19), we obtain the result. |

Consequently, we can express the following corollary.

Corollary 14. An arc-length parametrized f—biharmonic curve v: I — (D, g.) with constant geodesic curvature is biharmonic.

4. Conclusions

In this paper, we obtain some characterizations for f—biharmonic curves in Lorentzian Bianchi-Cartan-Vranceanu model of
3-dimensional Lorentzian Sasakian manifolds.
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