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Abstract
The necessary and sufficient conditions for a proper f−biharmonic curve in the three-dimensional Lorentzian
Sasakian manifolds are obtained. Moreover, we give some results for f−biharmonic Legendre curves.
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1. Introduction
Harmonic maps between (pseudo-) Riemannian manifolds have been studied extensively since the eminent work of Eells
and Sampson [1]. In addition to this, biharmonic maps, which are generalizations of harmonic maps, constitute one of the
dynamical topic of differential geometry (for a survey of biharmonic maps see [2]). Non-harmonic biharmonic maps are said
to be proper biharmonic maps. Chen and Ishikawa showed that there does not exist proper biharmonic curves in Euclidean
3-space [3]. Moreover, they investigated proper biharmonic curves in Minkowski 3-space (see [4]). Caddeo, Montaldo and Piu
studied biharmonic curves on a surface [5]. Caddeo, Oniciuc and Piu demonstrated that all non-geodesic biharmonic curves are
helices in three-dimensional Heisenberg space [6]. Ou and Wang characterized non-geodesic biharmonic curves in Sol space
and proved that there exists no non-geodesic biharmonic helix in Sol space [7]. Caddeo, Montaldo, Oniciuc and Piu found
explicit formulae for biharmonic curves in Cartan-Vranceanu three-dimensional spaces [8].

In [9], Lu gave a generalization of biharmonic maps and introduced f−biharmonic maps. He derived the first variation
formula and calculated the f−biharmonic map equation. Ou considered f−biharmonic curves on a generic manifold and
gave a characterization for them in n−dimensional space forms [10]. Guvenc and Ozgur studied f−biharmonic Legendre
curves in Sasakian space forms [11]. Karaca and Ozgur investigated f−biharmonic curves in Sol spaces, Cartan Vranceanu
three-dimensional spaces and homogenous contact three-manifolds [12]. Du and Zhang examined f−biharmonic curves in
Lorentz–Minkowski space [13].

In this paper, we investigate the curves of the three-dimensional Lorentzian Sasakian manifolds in order to specify
f−bihamonicity properties of them. We consider the Lorentzian Bianchi-Cartan-Vranceanu model of 3-dimensional Lorentzian
Sasakian manifolds. Throughout the paper, all geometric objects (curves, manifolds, vector fields, functions etc.) are assumed
to be smooth.
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2. Preliminaries
2.1 Contact Lorentzian manifolds

A (2n+1)−dimensional differentiable manifold M is said to be an almost contact manifold if it admits a global form η such
that η ∧ (dη)n ̸= 0 everywhere. When a contact form η is given, we have a unique vector field ξ satisfying

η(ξ ) = 1 and dη(ξ ,X) = 0,

where X is a vector field on M. The vector field ξ is called characteristic vector field. It is known that there exists a Lorentzian
metric g and a (1,1)−tensor field such that

η(X) =−g(X ,ξ ), dη(X ,Y ) = g(X ,φY ), φ
2(X) =−X +η(X)ξ , (1)

where X and Y are vector fields on M. From (1), it follows that

φξ = 0, η ◦φ = 0, g(φX ,φY ) = g(X ,Y )+η(X)η(Y ).

A Lorentzian manifold M equipped with the tensors (g,φ ,ξ ,η) satisfying (1) is called Lorentzian contact metric manifold.
A Lorentzian contact metric manifold is Sasakian if and only if

(∇X φ)Y = g(X ,Y )ξ +η(Y )X ,

for any vector fields X ,Y on M, where ∇ is Levi-Civita connection of g [14].

Definition 1. A 1-dimensional integral submanifold of a contact manifold is called a Legendre curve [17].

2.2 Frenet-Serret equations
Let γ : I → M be a unit speed curve in a three-dimensional Lorentzian manifold M such that γ ′ satisfies g(γ ′,γ ′) = ε1 =±1. The
constant ε1 is said to be the causal character of γ. A unit speed curve is called spacelike or timelike if its causal character is 1 or
-1, respectively. A unit speed curve is called a Frenet curve if g(γ ′′,γ ′′) ̸= 0. A Frenet curve has an orthonormal frame field
{T = γ ′,N,B} along γ. Then the Frenet-Serret equations are given by

∇T T = ε2κN,

∇T N = −ε1κT − ε3τB,

∇T B = ε2τN,

where κ =
∥∥∇γ ′γ

′∥∥ is the geodesic curvature and τ is the geodesic torsion of γ. The vector fields T,N and B are called tangent
vector field, principal normal vector field and binormal vector field of γ, respectively.

The constants ε2 and ε3 are defined by g(N,N) = ε2 and g(B,B) = ε3, and called second causal character and third causal
character of γ, respectively. The equation ε1ε2 =−ε3 holds.

A Frenet curve γ is a geodesic if and only if κ = 0.

Proposition 2. Let {T,N,B} are orthonormal frame field in a Lorentzian 3-manifold. Then, [17],

T ∧L N = ε3B, N ∧L B = ε1T, B∧L T = ε2N.

Proposition 3. The torsion of a Legendre curve is 1 in three-dimensional Sasakian Lorentzian manifolds [15].

2.3 f−Biharmonic maps
A map ϕ : (Mm,g)→ (Nn,h) between two pseudo-Riemannian manifolds is called harmonic if it is a critical point of the energy

E(ϕ) =
1
2

∫
Ω

∥dϕ∥2 dvg,

where Ω is a compact domain of Mm. The tension field τ(ϕ) of ϕ is defined by

τ(ϕ) = tr(∇ϕ dϕ) =
m

∑
i=1

εi(∇
ϕ
ei

dϕ(ei)−dϕ(∇eiei)),
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where ∇ϕ and {ei} denote the induced connection by ϕ on the bundle ϕ∗T Nn. A map ϕ is called harmonic if its tension field
vanishes. The bienergy E2(ϕ) of a map ϕ is defined by

E2(ϕ) =
1
2

∫
Ω

∥τ(ϕ)∥2 dvg,

and ϕ is called biharmonic if it is a critical point of the bienergy, where Ω is a compact domain of Mm. Clearly, all harmonic
maps are biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps. The bitension field τ2(ϕ) of ϕ is
defined by

τ2(ϕ) =
m

∑
i=1

εi((∇
ϕ
ei

∇
ϕ
ei
−∇

ϕ

∇ei ei
)τ(ϕ)−RN(τ(ϕ),dϕ(ei))dϕ(ei)), (2)

where RN denotes the curvature tensor of Nn. A map ϕ is called biharmonic if its bitension field vanishes.
A map ϕ is called f−harmonic with a function f : M → R, if it is a critical point of the energy

E f (ϕ) =
1
2

∫
Ω

f ∥dϕ∥2 dvg,

where Ω is a compact domain of Mm. The f−tension field τ f (ϕ) of ϕ is given by

τ f (ϕ) = f τ(ϕ)+dϕ(grad f ) (3)

see [16]. The f−bitension field τ2, f (ϕ) of ϕ is defined by

τ2, f (ϕ) = f τ2(ϕ)+∆ f τ(ϕ)+2∇
ϕ

grad f τ(ϕ). (4)

A map ϕ is called f−biharmonic if its f−bitension field vanishes ( [9, 13]). Non-harmonic and non-biharmonic f−biharmonic
curves are called proper f−biharmonic curves and if f is a constant, then an f−biharmonic curve turns to be a biharmonic
curve [9].

3. f−Biharmonic curves in Lorentzian Sasakian manifolds

We recall fundamental concepts about the Lorentzian Bianchi-Cartan-Vranceanu model of 3-dimensional Lorentzian Sasakian
manifolds from [17]. Let us consider the set

D = {(x,y,z) ∈ R3 : 1+
c
2
(x2 + y2)> 0},

where c is a real number. On the region D, the contact form η is taken

η = dz+
ydx− xdy

1+ c
2 (x

2 + y2)
.

Then, the characteristic vector field of η is ξ = ∂

∂ z .
Next, the Lorentzian metric is equipped as

gc =
dx2 +dy2

{1+ c
2 (x

2 + y2)}2 − (dz+
ydx− xdy

1+ c
2 (x

2 + y2)
)2.

The Lorentzian orthonormal frame field (e1,e2,e3) on (D,gc) is given by

e1 = {1+
c
2
(x2 + y2)} ∂

∂x
− y

∂

∂ z
, e2 = {1+

c
2
(x2 + y2)} ∂

∂y
+ x

∂

∂ z
, e3 =

∂

∂ z
.

Then the endomorphism field φ is given by

φ(e1) = e2, φ(e2) =−e1, φ(e3) = 0.
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The Levi-Civita connection ∇ of (D,gc) is described as

∇e1e1 = cye2, ∇e1e2 =−cye1 + e3, ∇e1e3 = e2,
∇e2e1 =−cxe2 − e3, ∇e2e2 = cxe1, ∇e2e3 =−e1,

∇e3e1 = e2,∇e3e2 =−e1,∇e3e3 = 0.

The contact form η on D fulfills

dη(X ,Y ) = gc(X ,φY ), X ,Y ∈ χ(D).

Moreover the structure (gc,φ ,ξ ,η) is Sasakian. The non-vanishing components of the curvature tensor R of (D,gc) are given
by

R(e1,e2)e1 = −(2c+3)e1, R(e1,e3)e3 =−e1,

R(e2,e1)e1 = −(2c+3)e2,R(e2,e3)e3 =−e2,

R(e3,e1)e1 = e3, R(e3,e2)e2 = e3.

For the sectional curvature K of (D,gc), we have

K(ξ ,ei) =−R(ξ ,ei,ξ ,ei) =−1, i = 1,2,

and

K(e1,e2) = R(e1,e2,e1,e2) = 2c+3.

So, (D,gc) is of constant holomorphic sectional curvature H = 2c+3.
For the case H =−1 (i.e. c =−2), the Lorentzian Sasakian manifold D turns to be anti-de Sitter 3-space.
Now, suppose that γ : I → (D,gc) is a curve parametrized by arc-length and {T,N,B} is an orthonormal frame field tangent

to D along γ , where T = T1e1 +T2e2 +T3e3, N = N1e1 +N2e2 +N3e3 and B = B1e1 +B2e2 +B3e3.
The f−biharmonicity condition for curves on (D,gc) is obtained in the following theorem.

Theorem 4. Let γ : I → (D,gc) be a curve parametrized by arc-length. Then γ is f−biharmonic if and only if the following
relations are satisfied:

3κκ ′ f +2κ2 f ′ = 0,
κ f ′′+2κ ′ f ′+ f [κ ′′+ ε3κ3 + ε1κτ2 +κε2(ε3 +2(c+2)η(B)2)] = 0,

−2κτ f ′− f (2κ ′τ +κτ ′)+2ε1(c+2)κ f η(N)η(B) = 0.
(5)

Proof. Let γ = γ(s) be a curve parametrized by arc-length. We use formula (4). From [17], we have

τ(γ) = ε1∇T T =−ε3κN, (6)

R(T,N,T,N) = ε3 +2(c+2)B2
3,

R(T,N,T,B) = 2ε1(c+2)N3B3,
(7)

τ2(γ) = 3ε3κκ
′T + ε2(κ

′′− ε2κ(ε1κ
2 + ε3τ

2))N + ε1(2κ
′
τ +κτ

′)B+ ε2κR(T,N)T. (8)

Moreover, from [13], we have

∇
γ

grad f τ(γ) = f ′∇T (∇T T ) = ε2 f ′[κ ′N +κ(−ε1κT − ε3τB)],
∆ f τ(γ) = f ′′∇T T = f ′′ε2κN.

(9)

Therefore, combining equations (6), (8) and (9), we obtain

(10)
τ2, f (γ) = 3ε3κκ

′ f T + ε2 f (κ ′′− ε2κ(ε1κ
2 + ε3τ

2))N + ε1 f (2κ
′
τ +κτ

′)B

+ε2 f κR(T,N)T + ε2κ f ′′N +2ε2 f ′[κ ′N +κ(−ε1κT − ε3τB)].

If we take inner product of equation (10) with T,N and B, respectively and use the equations (7), we get (5). ■
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Corollary 5. Let γ : I → (D,gc) be a Legendre curve parametrized by arc-length. Then γ is f−biharmonic if and only if the
following relations are satisfied:

3κκ ′ f +2κ2 f ′ = 0,
κ f ′′+2κ ′ f ′+ f [κ ′′+ ε3κ3 + ε1κ +κε2(ε3 +2(c+2)η(B)2)] = 0,

−κ f ′+ f (−κ ′+ ε1(c+2)κη(N)η(B)) = 0.

Now, we express the following results for c ̸=−2.

Proposition 6. Let γ : I → (D,gc) be an f−biharmonic curve parametrized by arc-length. If κ is a non-zero constant, then γ is
biharmonic.

Proof. Under the assumption κ is a non-zero constant, from the first equation in (5), obviously we get f ′ = 0. So, γ is a
biharmonic curve. ■

Proposition 7. Let γ : I → (D,gc) be an f−biharmonic curve parametrized by arc-length. If τ is a non-zero constant and
η(N)η(B) = 0 (i.e., N3B3 = 0), then γ is biharmonic.

Proof. Under the assumption τ is a non-zero constant and η(N)η(B) = 0, using the first and third equations in (5), we get

κ ′

κ
=−2 f ′

3 f
(11)

and

τ(
κ ′

κ
+

f ′

f
) = 0. (12)

Putting equation (11) in (12) shows that f is constant, therefore γ is a biharmonic curve. ■

Corollary 8. If γ : I → (D,gc) is an f−biharmonic Legendre curve parametrized by arc-length and η(N)η(B) = 0, then γ is
biharmonic.

Proposition 9. Let γ : I → (D,gc) be an f−biharmonic curve parametrized by arc-length. If τ is a non-zero constant, then

f = e
∫ 3ε1(c+2)η(N)η(B)

τ .

Proof. Under the assumption τ is a non-zero constant, if we use the first and third equations in (5), we obtain

κ ′

κ
=−2 f ′

3 f
(13)

and

−2κτ f ′−2 f κ
′
τ +2ε1(c+2)κ f η(N)η(B) = 0. (14)

Setting equation (13) in (14), we get the result. ■

Corollary 10. If γ : I → (D,gc) is an f−biharmonic Legendre curve parametrized by arc-length, then f = e
∫

3ε1(c+2)η(N)η(B).

Proposition 11. Let γ : I → (D,gc) be a non-geodesic curve parametrized by arc-length and suppose that τ = 0. In this case, γ

is f−biharmonic if and only if the following equations are valid:

f 2
κ

3 = c2
1, (15)

( f κ)′′ =− f κ(ε3κ
2 + ε2(ε3 +2(c+2)η(B)2)), (16)

η(N)η(B) = 0, (17)

where c1 ∈ R.
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Proof. Under the assumption τ = 0, if we use equations in (5) by integrating first equation, we deduce the results. ■

Proposition 12. Let γ : I → (D,gc) be a non-geodesic curve parametrized by arc-length and suppose that τ and κ are
non-constants. In this case, γ is f−biharmonic if and only if the following equations are valid:

f 2
κ

3 = c2
1, (18)

( f κ)′′ =− f κ(ε3κ
2 + ε1τ

2 + ε2(ε3 +2(c+2)η(B)2), (19)

κ
2 f 2

τ = e
∫ 2ε1(c+2)η(N)η(B)

τ , (20)

where c1 ∈ R.

Proof. Under the assumption τ and κ are non-constants, if we use equations in (5) by integrating first and third equations, we
obtain (18), (19) and (20). ■

From the last two propositions, we can give the following theorem.

Theorem 13. An arc-length parametrized curve γ : I → (D,gc) is proper f−biharmonic if and only if one of the following
situations is true:

(i) τ = 0, f = c1κ−3/2 and the curvature κ solves the equation below:

3(κ ′)2 −2κκ
′′ =−4κ

2[ε3κ
2 + ε2(ε3 +2(c+2)η(B)2)].

(ii) τ ̸= 0, τ

κ
= e

∫ 2ε1(c+2)η(N)η(B)
τ

c2
1

, f = c1κ−3/2 and the curvature κ solves the equation below:

3(κ ′)2 −2κκ
′′ =−4κ

2[ε3κ
2(1− ε2

e
∫ 4ε1(c+2)η(N)η(B)

τ

c4
1

)+ ε2(ε3 +2(c+2)η(B)2)].

Proof. (i) The first equation of (5) gives

f = c1κ
−3/2. (21)

By replacing the above equation into (16), we obtain the result.
(ii) From the first equation of (5), we have

f = c1κ
−3/2. (22)

Setting the above equation in (20), we get

τ

κ
=

e
∫ 2ε1(c+2)η(N)η(B)

τ

c2
1

. (23)

And finally putting equations (22) and (23) in (19), we obtain the result. ■

Consequently, we can express the following corollary.

Corollary 14. An arc-length parametrized f−biharmonic curve γ : I → (D,gc) with constant geodesic curvature is biharmonic.

4. Conclusions
In this paper, we obtain some characterizations for f−biharmonic curves in Lorentzian Bianchi-Cartan-Vranceanu model of
3-dimensional Lorentzian Sasakian manifolds.
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