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Abstract
To analyze discrete count data with excessive zeros, different zero-inflated statistical mod-
els that allow for frequent zero-valued observations have been developed. When the un-
derlying data generation process of non-zero values is based on the number of successes
in a sequence of independent Bernoulli trials, the zero-inflated binomial distribution is
perhaps adequate for modeling purposes. In this paper, we discuss statistical inference
for a zero-inflated binomial distribution using the objective Bayesian and frequentist ap-
proaches. Point and interval estimation of the model parameters and hypothesis testing
for excessive zeros in a zero-inflated binomial distribution are developed. A Monte Carlo
simulation study is used to assess the performance of estimation and hypothesis testing
procedures. A comparative study of the objective Bayesian approach and the frequentist
approach is provided. The proposed statistical inferential methods are applied to analyze
an earthquake dataset and a baseball dataset for illustration.
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1. Introduction
Countable discrete data are widely encountered in diverse fields, including social science,

natural science, engineering, and sport science. In many instances, these count data tend to
possess zero-inflated patterns in the sense that there are more zero frequencies than usual.
For instance, many power hitters or sluggers in baseball seldom produce triple-base hits
rather than home runs. Events that rarely occur, such as triple-base hits in the baseball
example, usually result in zero counts and the data are referred to as zero-inflated data.
Analyzing discrete data with excessive zeros under traditional methodologies and models
can result in biased estimators or loss of information. Therefore, to analyze discrete count
data with excessive zeros, different zero-inflated statistical models that allow for frequent
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zero-valued observations have been developed. Cohen [8] initially proposed zero-inflated
Poisson models, which were later developed by [15]. Several methodologies related to
zero-inflated models have been proposed and applied in various areas since then.

Most studies on zero-inflated models have focused on the Poisson and negative binomial
distributions [21,29]. Both frequentist and Bayesian approaches have been used to conduct
statistical inference for zero-inflated models. Dong et al. [12] described a multivariate
random-parameter zero-inflated negative binomial regression model for modeling crash
counts. A full Bayesian methodology was utilized to estimate model parameters. Ridout
et al. [23] proposed a score test for conducting hypothesis testing of zero-inflated Poisson
(ZIP) regression models against zero-inflated negative binomial alternatives. When the
underlying data generation process of the non-zero values is based on the number of suc-
cesses in a sequence of independent Bernoulli trials, a zero-inflated binomial distribution is
appropriate for modeling purposes. Amek et al. [2] developed zero-inflated binomial (ZIB)
geostatistical models and compared them with standard binomial distributions, where a
Bayesian approach was used to analyze a dataset from epidemiology (the sporozoite rates)
and the corresponding highest posterior density (HPD) intervals were obtained. Recently
Zhang et al. [19] integrated a zero-inflated negative binomial with a Gaussian process to
analyze spatial transcriptomics data in which analysis was conducted under a Bayesian
framework. Jiang et al. [14] also employed a zero-inflated negative binomial regression
model to perform an integrative analysis on microbiome data. See [20] and [28] for de-
tailed descriptions and related references to account for excess zeros in sequential count
data emerging in biological fields.

In the past decade, the analysis of count data using ZIB distributions has been discussed
[6,11,26]. As pointed out by [4], it is important to conduct hypothesis testing of the zero-
inflated model versus the regular (non-zero-inflated) model when zero-inflated models are
adapted. For this reason, we consider hypothesis testing for excessive zeros in a ZIB
distribution along with the point and interval estimation of the model parameters. In this
paper, we focus on the ZIB distribution described as follows. Let Xi (i = 1, 2, . . . , N)
be a zero-inflated binomial random variable, denoted by Xi ∼ ZIB(ni, θ, ω) having the
following probability mass function (pmf):

Xi ∼
{

0, with probability ω,
Bin(ni, θ), with probability 1 − ω,

for 0 ≤ ω ≤ 1 and 0 < θ ≤ 1 . That is, ZIB(ni, θ, ω) can be characterized as
f1(xi|θ, ω) = ωI(xi = 0) + (1 − ω)f0(xi|θ), xi = 0, 1, . . . , ni, (1.1)

where

f0(xi|θ) =
(

ni

xi

)
θx

i (1 − θ)ni−xi , xi = 0, 1, . . . , ni, (1.2)

and I(·) is an indicator function. That is, I(A) = 1 if A is true and I(A) = 0 otherwise.
The parameter ω is often called the zero-inflation parameter.

Based on the ZIB model in Eq. (1.1), an objective Bayesian approach and a frequentist
approach for statistical inference are discussed and compared in this paper. The rest
of this paper is organized as follows. In Section 2, the objective Bayesian approach for
estimation and hypothesis testing of the ZIB is developed. We first review the use of the
Bayes factor for model selection. Since prior elicitation is one of the important issues
in the Bayesian framework, we present elicitation procedures to specify default objective
priors in testing the zero-inflation parameter of the ZIB. Bayesian model selection and
testing procedures using the Bayes factor, which is an integrated likelihood ratio of two
contending models, are proposed. In Section 3, the frequentist approach for estimation and
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hypothesis testing of the ZIB is discussed. We review the direct maximization method and
the expectation-maximization (EM) algorithm to obtain the maximum likelihood estimates
of the model parameters. Moreover, we propose a likelihood ratio test and a bootstrap
testing procedure for hypothesis testing of excessive zeros in the ZIB model. A Monte
Carlo simulation study is used in Section 4 to evaluate the performance of the estimation
and hypothesis testing procedures. The proposed Bayesian and frequentist approaches are
compared and discussions are provided. The main results are illustrated by analyzing two
real datasets in Section 5. Finally, brief concluding remarks are provided in Section 6.

2. Objective Bayesian approach
2.1. Review of the Bayes factor for model selection

Suppose that there are L different models, denoted by M1, M2, . . . ML, being considered
as candidate models, and these models contend with each other in determining the most
plausible model. If model Mi holds, then the data XXX follow a parametric distribution with
probability density function (pdf) or probability mass function (pmf) fi(xxx|θi) depending
upon types of random variables, where θi is an unknown parameter (possibly a vector).
Let Θi be the parameter space for θi in which Θi may or may not be nested. Bayesian
model selection proceeds by choosing a prior distribution πi(θi) for θi under Mi, and the
prior model probability p(Mi) of model Mi being the true model (before the data are
observed) for i = 1, 2, . . . , L. The posterior probability that Mi is the true model can be
expressed as

Pr(Mi; xxx) = p(Mi)mi(xxx)∑L
j=1 p(Mj)mj(xxx)

, (2.1)

where mi(xxx) =
∫

Θi
fi(xxx|θi)πi(θi)dθi is called the marginal or predictive density of XXX under

model Mi, i = 1, 2, . . . , L. Subsequently, for given data xxx, the model with the largest
posterior probability in (2.1) can be regarded as the most plausible model. Further, the
Bayes factor of model Mj to model Mi is defined as

Bji(xxx) = mj(xxx)
mi(xxx)

=
∫

Θj
fj(xxx|θj)πj(θj)dθj∫

Θi
fi(xxx|θi)πi(θi)dθi

. (2.2)

As a special case, when L = 2 with an equal prior model probability of 1/2, we denote
the two models as M0 and M1, and we have

Pr(M0; xxx) = 1
1 + B10

and Pr(M1; xxx) = B10
1 + B10

.

In other words, for the case with two candidate models M0 and M1, based on the Bayes
factor B10, we would select model M0 as the true model if

Pr(M0; xxx) = 1
1 + B10

>
1
2

=⇒ B10 < 1

and select model M1 as the true model if B10 > 1. Kass and Raftery [16] suggested the
scale for interpretation of Bayes factors supporting evidence against M0. If B10 is between
1 and 3.2, then we say “Not worth more than a bare mention”. If it is between 3.2 to 10,
“Substantial”, 10 and 100, “Strong”, and greater than 100, we dare to say “Decisive”.

2.2. Objective priors in the ZIB model
Based on the ZIB distribution presented in Eq. (1.1), we develop Bayesian testing for

excess zeros by considering the following two candidate models:
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M0 : Xi
i.i.d.∼ f0(·|θ) , i = 1, 2, . . . , N, (2.3)

versus
M1 : Xi

i.i.d.∼ f1(·|θ, ω) , i = 1, 2, . . . , N, (2.4)
where f0 and f1 are the probability functions of the binomial and the ZIB as given in Eqs.
(1.1) and (1.2), respectively. Alternately, we can formulate the problem as a hypothesis
test within the ZIB model as

H0 : ω = 0 vs H1 : ω > 0. (2.5)
Following similar arguments in [4], the prior specifications are the choice of π0(θ) and

π1(θ)π1(ω|θ). As mentioned in [17], if the common parameters are orthogonal to the
remaining parameters in each model, i.e., the Fisher information matrix is diagonal, then
the resulting Jeffreys priors have the same prior distributions. Since the parameters ω and
θ in the ZIB model (M1) are not orthogonal, we need to reparameterize the original model
as follows. Let ni = n and xi = x for all i = 1, 2, . . . , N for simplicity. First, f1(x|θ, ω) is
written as

f∗
1 (x|θ, ω∗) = ω∗I(x = 0) + (1 − ω∗)fT (x|θ), x = 0, 1, . . . , n,

where ω∗ = ω + (1 − ω)(1 − θ)n and fT (x|θ) is the zero-truncated version of the standard
binomial distribution with parameters n and θ. Note that (1 − θ)n ≤ ω∗ ≤ 1, and fT (x|θ)
can be expressed as

fT (x|θ) = f(x)
1 − f(0)

=
(n

x

)
θx(1 − θ)n−x

1 − (1 − θ)n
, x = 1, 2, . . . , n.

Subsequently, model M0 can be expressed as
f∗

0 (x|θ) = (1 − θ)nI(x = 0) + [1 − (1 − θ)n]fT (x|θ), x = 0, 1, . . . , n.

After the reparameterization, the Fisher information matrix for ω∗ and θ can be shown to
be diagonal.

As suggested by [4], we use the same Jeffreys prior for the common parameter θ and
a proper prior for the remaining zero-inflation parameter ω. It is well known that the
Jeffreys prior for θ in the (regular) binomial model is

πJ
0 (θ) ∝ 1/

√
θ(1 − θ).

Note that the Jeffreys prior for the orthogonalized ZIB model is the same for the truncated
distribution fT (x|θ). Thus, we have

πJ
1 (θ) ∝ 1√

θ(1 − θ)
c(θ), (2.6)

where

c(θ) =
√

1 − (1 − θ)n − nθ(1 − θ)n−1

1 − (1 − θ)n
, for 0 < θ < 1.

The derivation of Eq. (2.6) is presented in Appendix A. It is a little unusual that the
Jeffreys prior for the common θ is different for each model. So, we need to justify which
prior for θ is more plausible. To resolve this issue for choice, we specify a proper prior for
ω∗ given θ. We assume that it takes a uniform distribution over the interval ((1 − θ)n, 1),
i.e.,

π1(ω∗|θ) = I[(1 − θ)n < ω∗ ≤ 1]
1 − (1 − θ)n

.
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Thus, we can impose the prior distributions for the two models f∗
0 (x|θ) and f∗

1 (x|θ, ω∗),
which are given respectively by

πl
0(θ) = c(θ)l√

θ(1 − θ)
and πl

1(θ, ω∗) = c(θ)l√
θ(1 − θ)

I[(1 − θ)n < ω∗ ≤ 1]
1 − (1 − θ)n

, (2.7)

where l is 0 or 1 so that we utilize one of the two Jeffreys priors for θ. However, it is
computationally more durable to work with the original parameterization for (θ, ω). After
applying the change of variable technique with the Jacobian transformation, we have the
Jefferys priors for the original model as

πl
1(θ, ω) = πl

1(θ, ω∗)|J |

= c(θ)l√
θ(1 − θ)

I(0 < ω < 1).

In the preliminary study, we have investigated the relationship between the two sets of
prior distributions when l = 0 and l = 1 and found that there are not many differences in
the resulting Bayes factors.

It can be shown that c(θ) is a strictly increasing function of θ regardless of n. To
calculate the infimum and supremum, we apply the L’Hospital’s rule with n being fixed.
Then, we have

lim
θ→0

c(θ) =
√

n − 1
2n

.

As a result, c(θ) ≈ 1/
√

2 as n → ∞. Finally, we notice that the value of c(θ) equals one
when θ = 1, i.e., c(1) = 1. Thus, it follows that

inf c(θ) = 1√
2

and sup c(θ) = 1.

Therefore, the corresponding Bayes factors Bl
10, (l = 0, 1) have the following relationship:

B0
10/

√
2 ≤ B1

10 ≤
√

2B0
10,

which is congruent with the results of [4] and supports the well-known fact that the
Poisson distribution can be used as an approximation to the binomial distribution for
a large number of trials. Furthermore, it is not necessary to consider ‘training sample’
computation for the intrinsic Bayes factors (IBF) of [5] since arbitrary constants would be
cancelled out in the computation of the IBF. Since the prior with l = 0 is simpler than the
prior with l = 1, we use the prior with l = 0 for subsequent analyses and studies. Thus,
the joint prior for the ZIB model can be expressed as

π1(θ, ω) ∝ θ−1/2(1 − θ)−1/2, 0 < θ < 1, 0 < ω < 1. (2.8)

Let α =
∑N

i=1 I(Xi = 0) be the number of zero observations, and t =
∑N

i=1 Xi be the
total number of successes. Then, the likelihood function under M1 can be expressed as

L1(xxx|θ, ω) ∝
[
ω + (1 − ω)(1 − θ)n

]α

(1 − ω)N−αθt(1 − θ)n(N−α)−t. (2.9)

Applying the binomial expansion on [ω + (1 − ω)(1 − θ)n]α in Eq. (2.9) yields[
ω + (1 − ω)(1 − θ)n

]α

=
α∑

j=0

(
α

j

)
ωj(1 − ω)α−j(1 − θ)n(α−j),

and the Bayes factor B10 = m1(xxx)/m0(xxx) can be obtained as

B10 = Γ(Nn + 1)
Γ(Nn − t + 1/2)

α!
(N + 1)!

α∑
j=0

(N − j)!
(α − j)!

Γ(Nn − nj − t + 1/2)
Γ(Nn − nj + 1)

. (2.10)
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2.3. The posterior distributions of the parameters for the ZIB
In this section, we present closed forms of the marginal posterior distributions of θ and

ω, respectively, based on the Jeffreys priors presented in Section 2.2. The joint posterior
distribution of θ and ω can be expressed as

p(θ, ω|xxx) ∝
α∑

j=0

(
α

j

)
ωj(1 − ω)N−jθt−1/2(1 − θ)Nn−nj−t−1/2. (2.11)

The following proposition provides the marginal posterior distributions of ω and θ with
mixture distributions.

Proposition 2.1. (1) The marginal posterior of ω is
p(ω|xxx) = c0f0(ω) + c1f1(ω) + · · · + cαfα(ω),

where fℓ ∼ Beta(ℓ + 1, N − ℓ + 1) for ℓ = 0, 1, . . . , α.
(2) The marginal posterior of θ is

p(θ|xxx) = c0g0(θ) + c1g1(θ) + · · · + cαgα(θ),
where gℓ ∼ Beta(t + 1/2, Nn − nℓ − t + 1/2) for ℓ = 0, 1, . . . , α.

Here, the weights of the mixture distributions are

c0 = k
(α)
0 /K(α), c1 = k

(α)
1 /K(α), · · · , cα = k(α)

α /K(α),

where

K(α) =
α∑

j=0

α!
(N − α)!

AjDj . (2.12)

Here,

Aj = (N − j)!
(α − j)!

, Bj = Nn − t − nj + 1
2

, Cj = Nn − nj + 1, Dj = Γ(Bj)/Γ(Cj).(2.13)

Finally, we have K(α) = k
(α)
0 + k

(α)
1 + · · · + k

(α)
α for which k

(α)
ℓ is the ℓ-th term of K(α)

in Eq. (2.12) for ℓ = 0, 1, . . . , α.

Remark 2.2. When α = 1, the marginal posterior distribution of ω is

p(ω|xxx) = N(N + 1)D0(1 − ω)N + D1ω(1 − ω)N−1

ND0 + D1
,

where the corresponding weights are

c0 = ND0
ND0 + D1

and c1 = D1
ND0 + D1

.

Based on the posterior distributions of ω and θ, we can obtain the posterior means,
denoted by ω̃ and θ̃, respectively. We can also construct the credible HPD intervals for
the model parameters.

Note that the interpretations of confidence intervals and credible intervals are different.
A 100(1 − δ)% credible interval can be interpreted as a probabilistic statement about the
parameter, as there is 100(1−δ)% probability that the true parameter would lie within the
interval given the observed data. For instance, a 95% credible interval (which is known as
Bayesian 95% confidence interval) can be interpreted as there being a 95% probability that
the true (unknown) parameter would lie within the interval, given the evidence provided
by the observed data. Meanwhile, a 95% confidence interval in a frequentist setting can
be interpreted as 95% of all samples giving an interval that contains the true parameter
in repeated sampling.
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2.4. Bayesian predictive distributions
In this subsection, we discuss the predictive distribution for a future observation that

follows the ZIB distribution. Recall that the joint posterior distribution of θ and ω based
on a random sample of size N is given by (2.11). Let Z ≡ XN+1 be a future observation
having the ZIB distribution, denoted by f(z|θ, ω), i.e., Z ∼ ZIB(nz, θ, ω), where nz is
the number of trials for the random variable Z. Then, the predictive distribution of the
future observation Z given the past data XXX = (X1, X2, . . . , XN ) based on sample sizes
n1 = n2 = . . . = nN = n is

Z|XXX ∼ g(z|xxx) =
∫ 1

0

∫ 1

0
f(z|θ, ω)p(θ, ω|xxx)dθdω. (2.14)

Since the ZIB distribution has two sub-distributions; one degenerated at zero and the
other following a conventional binomial distribution, the predictive distribution can be
obtained with two separate cases. That is,

• If Z = 0, then f(z|θ, ω) = ω + (1 − ω)(1 − θ)nz ;
• If Z ̸= 0, then f(z|θ, ω) = (1 − ω)

(nz

z

)
θz(1 − θ)nz−z.

Thus, we have a closed form with a two-fold predictive distribution of Z. When Z = 0,
the predictive distribution of Z is

g(z = 0|xxx) = 1
N + 2

∑α
j=0 Aj

[
(j + 1)Γ(Bj)/Γ(Cj) + (N − j + 1)Γ(Bj + nz)/Γ(Cj + nz)

]
∑α

j=0 AjΓ(Bj)/Γ(Cj)
,

and the predictive distribution of Z for z ̸= 0 is

g(z ̸= 0|xxx) =
(

nz

z

)
1

N + 2
Γ(t + z + 1/2)

Γ(t + 1/2)

∑α
j=0 Aj(N − j + 1)Γ(Bj + nz − z)/Γ(Cj + n)∑α

j=0 AjΓ(Bj)/Γ(Cj)
,

where Aj , Bj , and Cj are given in Eq. (2.13).

Remark 2.3. When we have observations with unequal sample sizes, i.e., if there is at
least one pair of (i, j) such that ni ̸= nj , a closed form of the predictive distribution is not
available.

3. Frequentist approach
In this section, we present the frequentist approach for statistical inference of the ZIB

model based on the likelihood method. Note that there are existing R functions avail-
able for fitting the ZIB distribution by the maximum likelihood estimation method. For
instance, the R functions zibinomial and zibinomialff in the R package VGAM [27]
fit the ZIB distribution based on the maximum likelihood estimation method. Here, we
consider the maximum likelihood estimators (MLE) for (θ, ω) under M1 obtained by the
direct maximization method and the EM algorithm. We also present a likelihood ratio
test (LRT) procedure and a bootstrap procedure for testing the hypotheses in Eq. (2.5).

3.1. Maximum likelihood estimation



Estimation and testing for a zero-inflated binomial distribution 841

3.1.1. Direct maximization methods. Based on the observed values xi from ZIB(ni, θ, ω),
i = 1, 2, . . . , N , from the distribution presented in Eqs. (1.1) and (1.2), the likelihood func-
tion can be expressed as

L(θ, ω) =
N∏

i=1
ωI(xi = 0) + (1 − ω)

(
ni

xi

)
θxi(1 − θ)ni−xi

and the log-likelihood function can be written as

ℓ(θ, ω) = ln L(θ, ω) =
N∑

i=1

{
ln [ω + (1 − ω)(1 − θ)ni ] I(xi = 0)

+ ln
[
(1 − ω)

(
ni

xi

)
θxi(1 − θ)ni−xi

]
I(xi > 0)

}
.(3.1)

The MLEs of the parameter θ and ω can be obtained by maximizing the log-likelihood
function in Eq. (3.1). Numerical methods such as the Nelder-Mead method with the
constraints 0 < θ < 0 and 0 < ω < 1 can be used to maximize the log-likelihood function
and obtain the MLEs. Possible initial estimates of θ and ω for the iterative procedure in
finding the MLEs are

∑N
i=1 xi/

∑N
i=1 ni and

∑N
i=1 I(xi = 0)/N , respectively.

Here, we denote the MLEs of θ and ω as θ̂ and ω̂, respectively. The observed Fisher
information matrix can be expressed as

I(θ, ω) =
[
−∂2ℓ(θ,ω)

∂θ2 −∂2ℓ(θ,ω)
∂θ∂ω

−∂2ℓ(θ,ω)
∂ω2

]
(θ,ω)=(θ̂,ω̂)

, (3.2)

where the second derivatives of the log-likelihood function are presented in Appendix
B. Then, the asymptotic variance-covariance matrix of the parameter estimates can be
obtained by inverting the observed Fisher information matrix, i.e.,

V (θ, ω) = [I(θ, ω)]−1 =
[
V̂ ar(θ̂) Ĉov(θ̂, ω̂)

V̂ ar(ω̂)

]
. (3.3)

The expected Fisher information matrix can also be considered here, and the elements
of the expected Fisher information matrix are presented in Appendix C.

3.1.2. The EM algorithm. In the perspective of parameter estimation for zero-inflated
models, it is well known that the EM-algorithm works out nicely [3,13,22]. Instead of using
numerical methods for the direct maximization of the likelihood function, it is typical to
treat the estimation of parameters in the ZIB distribution as a missing data problem and
solve it by using the EM algorithm. Specifically, we define an indicator variable, Ji, to
entitle if Xi is an observation from the zero population or an observation from the binomial
population, i.e.,

Ji =
{

0, if Xi belongs to the zero population;
1, if Xi belongs to the binomial population.

Note that Ji (i = 1, 2, . . . , N) is a latent variable that cannot be observed when Xi = 0.
The conditional expectation of the latent variable given Xi can be expressed as

E(Ji|Xi = 0) = 1 and E(Ji|Xi > 0) = ω

ω + (1 − ω)(1 − θ)ni
.
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The likelihood function of ω and θ based on complete data (denoted as D) is

LC(ω, θ;D) =
N∏

i=1
ω(1−ji)(1 − ω)ji

[(
ni

xi

)
θxi(1 − θ)ni−xi

]ji

.

Hence, the log-likelihood function based on the complete data is
ℓC(ω, θ;D) = ln L(ω, θ;D)

=
(

N −
N∑

i=1
ji

)
ln ω + ln(1 − ω)

N∑
i=1

ji +
N∑

i=1
ln
(

ni

xi

)
ji

+
(

N∑
i=1

xiji

)
ln θ +

[
N∑

i=1
(ni − xi)ji

]
ln(1 − θ). (3.4)

The first derivatives of the log-likelihood function with respect to ω and θ, respectively,
are

Sω(ω, θ;D) = ∂ℓ(ω, θ;D)
∂ω

= 1
ω

(
N −

N∑
i=1

ji

)
− 1

(1 − ω)

N∑
i=1

ji (3.5)

and Sθ(ω, θ;D) = ∂ℓ(ω, θ;D)
∂θ

= 1
θ

N∑
i=1

xiji − 1
(1 − θ)

(
N∑

i=1
niji −

N∑
i=1

xiji

)
. (3.6)

Furthermore, the negative of the second derivatives of the log-likelihood function with
respect to ω and θ can be obtained as

Bωω(ω, θ;D) = −∂2ℓ(ω, θ;D)
∂ω2 = 1

ω2

(
N −

N∑
i=1

ji

)
+ 1

(1 − ω)2

N∑
i=1

ji, (3.7)

Bθθ(ω, θ;D) = −∂2ℓ(ω, θ;D)
∂θ2 = 1

θ2

N∑
i=1

xiji + 1
(1 − θ)2

(
N∑

i=1
niji −

N∑
i=1

xiji

)
, (3.8)

Bωθ(ω, θ;D) = Bθω(ω, θ;D) = −∂2ℓ(ω, θ;D)
∂ω∂θ

= 0. (3.9)

Here, we take advantage of the existence of explicit solutions to the complete likelihood
equations and propose an EM algorithm as an alternative way to obtain the MLEs of ω
and θ.

Suppose ω̂(0) and θ̂(0) are the initial estimates of the parameters ω and θ, the EM
algorithm can be described as follows:
Step 1. Given the current estimates ω̂(h) and θ̂(h) in the h-th iteration, Ji (i = 1, 2, . . . , α)

follows a Bernoulli distribution
Pr(Ji = 0) = q

(h)
i , and Pr(Ji = 1) = 1 − q

(h)
i

for Xi = 0 (i = 1, 2, . . . , α), where

q
(h)
i = ω̂(h)

ω̂(h) + (1 − ω̂(h))(1 − θ̂(h))ni
.

In the E-step, we compute

γ̂i = E(Ji|Xi > 0, θ̂(h), ω̂(h)) = 1 − q
(h)
i .

Step 2. In the M-step, based on the solutions of Eqs. (3.5) and (3.6) we have

ω = 1 −

N∑
i=1

ji

N
and θ =

N∑
i=1

xiji

N∑
i=1

niji

.
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Thus, the updated estimates of parameters ω and θ can be computed as

ω̂(h+1) = 1 −

α∑
i=1

γ̂i + (N − α)

N
and θ̂(h+1) =

N∑
i=α+1

xi

α∑
i=1

niγ̂i +
N∑

i=α+1
ni

.

Step 3. Repeat Steps 1 and 2 until convergence occurs. For example, convergence can be
defined as

max(|θ̂(h+1) − θ̂(h)|, |ω̂(h+1) − ω̂(h)|) < ε,

for a small value of ε.
Once the MLEs of ω and θ are obtained from the EM-algorithm, the observed informa-

tion matrix and the corresponding variance-covariance matrix can be computed based on
Eqs. (3.2) and (3.3).

3.1.3. Confidence intervals of the parameters. Since both the parameters ω and θ
are in (0, 1), we consider the normal approximated 100(1 − δ)% confidence intervals of ω
and θ based on a logit-transformation. That is,

logit−1
[
ln
(

ω̂

1 − ω̂

)
± z1−δ/2

√
Vωω

ω̂(1 − ω̂)

]
(3.10)

and

logit−1
[
ln
(

θ̂

1 − θ̂

)
± z1−δ/2

√
Vθθ

θ̂(1 − θ̂)

]
, (3.11)

where zq is the upper q-th percentile of the standard normal distribution, logit−1(y) =
1/(1 + e−y) is the inverse logit function, Vθθ = V̂ ar(θ̂), and Vωω = V̂ ar(ω̂) from Eq. (3.3).

In addition to constructing confidence intervals of the parameters based on normal ap-
proximation, bootstrap procedures based on maximum likelihood estimates can also be
used. The following bootstrap procedure is used to compute the bootstrap confidence
intervals for parameters ω and θ:

Step A1. Based on the observed data (x1, x2, . . . , xN ), the MLEs of parameters θ and ω in
the ZIB model are obtained by the method described in Section 3.1.1 or 3.1.2. The MLEs
of θ and ω are denoted as θ̂obs and ω̂obs.

Step A2. Generate the random variate x
(b)
i from ZIB(ni, θ̂obs, ω̂obs), i = 1, 2, . . . , N . De-

note the bootstrap sample as xxx(b) = (x(b)
1 , x

(b)
2 , . . . , x

(b)
N ).

Step A3. Based on the bootstrap sample xxx(b) = (x(b)
1 , x

(b)
2 , . . . , x

(b)
N ), the MLEs of param-

eters θ and ω in the ZIB model are obtained by the method described in Section 3.1.1 or
3.1.2, and denotes the estimates as θ̂(b) and ω̂(b).

Step A4. Repeat Steps A2 and A3 B times to obtain ω̂(1), ω̂(2), . . . , ω̂(B) and θ̂(1), θ̂(2), . . . , θ̂(B).

Step A5. Arrange the sequences of the bootstrap estimates in ascending order to obtain
ω̂[1] < ω̂[2] < . . . < ω̂[B] and θ̂[1] < θ̂[2] < . . . < θ̂[B].
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Step A6. The 100(1−δ)% bootstrap confidence intervals of ω and θ are (ω̂[B(δ/2)], ω̂[B(1−δ/2)]))
and (θ̂[B(δ/2)], θ̂[B(1−δ/2)])), respectively, where [a] denotes the integer part of a.

3.2. Hypothesis testing for excess zeros in the ZIB model
To test the hypotheses in Eq. (2.5) based on the likelihood approach, we consider an

LRT, a score test, and a bootstrap test in the following subsections.

3.2.1. Likelihood ratio test. Under the null hypothesis that ω = 0, the MLE of θ can
be readily obtained as

θ̂0 =

N∑
i=1

xi

N∑
i=1

ni

,

and the maximum log-likelihood function can be obtained as ℓ(θ̂0, 0) from Eq. (3.1). Un-
der the alternative hypothesis that ω ̸= 0, the MLEs of θ and ω are θ̂ and ω̂ which can be
obtained by direct maximization or by the EM algorithm as described in Sections 3.1.1 and
3.1.2, respectively. Subsequently, the maximum log-likelihood function can be obtained as
ℓ(θ̂, ω̂) from Eq. (3.1). Then, the LRT statistic can be computed as

λ = −2
[
ℓ(θ̂0, 0) − ℓ(θ̂, ω̂)

]
. (3.12)

It is well-known that this LRT statistic follows a chi-square distribution with one degree
of freedom. Since we are dealing with the null hypothesis for which the parameter value
is at the boundary of the parameter space, an adjustment on the computation of p-value
is needed [7, 25]. The p-value of the LRT for testing the hypotheses in Eq. (2.5) can be
calculated as

pLR = 1 −
[
0.5 + 0.5χ2

1(λ)
]
, (3.13)

where χ2
1(λ) is the value of the cumulative distribution function a chi-square random

variable with one degree of freedom evaluated at an observed test statistic λ in Eq. (3.12).
The null hypothesis in Eq. (2.5) is rejected at the δ level if pLR < δ.

3.2.2. Score test. When testing the hypotheses in Eq. (2.5), the score test statistic
developed under the null hypothesis that ω = 0 based on the expected Fisher information
matrix can be applied. From [10], the score test statistic can be expressed as

S2 =

{
N∑

i=1

[
I(xi = 0)(1 − θ̂0)−ni − 1

]}2

N∑
i=1

[
(1 − θ̂0)−ni − 1 − niθ̂0(1 − θ̂0)−1

] .

Under the null hypothesis, the score test statistic S2 follows a chi-square distribution with
one degree of freedom. Hence, the p-value of the score for testing the hypotheses in Eq.
(2.5) can be calculated as

pS = 1 − χ2
1(S2), (3.14)

and the null hypothesis is rejected at the δ level if pS < δ.
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3.2.3. Bootstrap test based on maximum likelihood estimates. In this subsec-
tion, we propose a bootstrap test based on maximum likelihood estimates. The following
bootstrap procedure is used to compute the p-value.

Step B1. Based on the observed data (x1, x2, . . . , xN ), the MLEs of parameters θ and ω in
the ZIB model are obtained by the method described in Section 3.1.1 or 3.1.2. The MLEs
of θ and ω are denoted as θ̂obs and ω̂obs.

Step B2. Under the null hypothesis that ω = 0, generate the random variate x
(b)
i from

the binomial model in Eq. (1.2) with parameters θ = θ̂0 =
N∑

i=1
xi

/
N∑

i=1
ni and ni,

i = 1, 2, . . . , N . Denote the bootstrap sample as xxx(b) = (x(b)
1 , x

(b)
2 , . . . , x

(b)
N ).

Step B3. Based on the bootstrap sample xxx(b) = (x(b)
1 , x

(b)
2 , . . . , x

(b)
N ), the MLEs of param-

eters θ and ω in the ZIB model are obtained by the method described in Section 3.1.1 or
3.1.2, and denotes the estimates as θ̂(b) and ω̂(b).

Step B4. Repeat Steps B2 and B3 B times to obtain ω̂(1), ω̂(2), . . . , ω̂(B).

Step B5. The bootstrap p-value is computed as

pB = 1
B

B∑
b=1

I(ω̂(b) > ω̂obs).

The null hypothesis in Eq. (2.5) is rejected at the δ level if pB < δ.

4. Monte Carlo simulation study
In this section, a Monte Carlo simulation study is used to evaluate the performance of

the Bayesian and frequentist approaches for point and interval parameter estimation and
testing for excess zeros in the ZIB model. The datasets are simulated from the ZIB model
with parameters θ = 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.60 and ω = 0, 0.05, 0.10, 0.15.
We consider the sample sizes N = 30, ni = 15 for i = 1, 2, . . . , 30 and N = 50, ni = 20 for
i = 1, 2, . . . , 50.

The simulated biases and MSEs for point estimation of the parameters ω and θ are
defined by

Bias = 1
M

M∑
j=1

(δ̂j − δ) and MSE = 1
M

M∑
j=1

(δ̂j − δ)2,

respectively, where M is the number of replications in the simulation. Here, δ = θ or
ω is the true value of the parameter, and δ̂j is the estimate of δ in the jth replication.
On the other hand, the simulated coverage probabilities (CP) and average widths (AW)
of 95% confidence/credible intervals of the parameters ω and θ are defined by
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CP = 1
M

M∑
j=1

I(δ ∈ [δLj , δUj ]) and AW = 1
M

M∑
j=1

(min{1, δ̂Uj} − max{0, δ̂Lj}),

respectively. We note that δLj is the lower bound of the interval for parameter δ, and
δUj is the upper bound of the interval for parameter δ in the jth replication. We also
note that the HPD intervals were calculated using a normal approximation. In particular,
when calculating HPD intervals along with CP and AW, we used the normal approxima-
tion method proposed by [24]. This method enables us to conduct a comparative analysis
between the frequentist approach and the Bayesian approach. Another method that can
be used is to approximate the HPD intervals based on the expected Fisher information
[9]. However, based on our preliminary study, there is no significant difference between
these two approaches. The simulated rejection rates (at 5% level for frequentist proce-
dures) of the testing procedures for excessive zeros based on both Bayesian and frequentist
approaches are presented in Tables 1 and 2. A total of M = 1000 replications is used for
entire simulations.

From Tables 1 and 2, we observe that the performance of point and interval estimates
of the Bayesian and frequentist approaches are comparable. There are some situations
where the Bayesian approach outperforms the frequentist approach and some that the
frequentist approach outperforms the Bayesian approach. We use bold faces on promising
values showing the best results in terms of the rejection rate. More precisely, among the
Bayesian, LRT, score test and the bootstrap method, the best rejection rate that is greater
than a value of 0.9 was boldfaced.

For point estimation, the MSEs of the MLE of ω are smaller than the MSEs of the
Bayesian estimate of ω in most cases, while the MSEs of the MLE of θ are similar to the
MSEs of the Bayesian estimate of θ. For interval estimation, except for the cases when
the true value of θ is close to zero (i.e., θ = 0.05 or 0.1), the simulated CP’s of the interval
estimates are at or above a nominal level of 95%. For testing the hypothesis, the procedure
based on the Bayes factor B10 is more powerful in detecting the excessive zeros (i.e., ω > 0)
compared to the LRT and bootstrap test in general. We observe that the performance
of the testing procedures for excess zeros depends on the true value of θ. Specifically,
the testing procedures considered here, especially for the LRT and bootstrap test, are
less powerful when θ is close to zero. Overall, the estimation and the hypothesis testing
procedures discussed here are performing reasonably well in most cases. However, one
should be cautious with making conclusions based on the estimation and the hypothesis
testing procedures when the value of parameter θ is close to zero. In regards to calculation
efficiency, we note that the total CPU time for one set of parameter configurations using
the Bayesian method was 15.15 for N = 25 and 19.27 seconds for N = 50. On the other
hand, it took almost the same computing times for all frequentist approaches, which was
1.73 seconds for each configuration.

Figures 1 and 2 show some graphical displays regarding the results of Tables 1 and
2, respectively. In these figures we provide several performance measures such as bias,
MSE, CP, and AW with three different values of ω: 0.05, 0.1, and 0.15. There seem to
be no remarkable differences among the three approaches. However, we can see that the
bootstrap method yields slightly poor results on CP values as the value of θ increases. We
also notice that the rejection rates vary among different approaches. That is, no particular
method shows dominating results in all cases in terms of the rejection rate. Finally, Figure
3 shows comparison of rejection rates between two noninformative priors, i.e., the Jeffreys
and uniform priors. There are not much differences in the rejection rates between the two
priors.
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Figure 1. Bias, MSE, CP, and AW of the Bayesian, LRT, and bootstrap methods
with different values of ω and θ (left panel), and the rejection rate of the three
methods (right panel) based on the results of Table 1
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Figure 2. Bias, MSE, CP, and AW of the Bayesian, LRT, and bootstrap methods
with different values of ω and θ (left panel), and the rejection rate of the three
methods (right panel) based on the results of Table 2
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Figure 3. The rejection rate calculated with the uniform and Jeffreys priors
based on the results of Table 1 (left panel) and Table 2 (right panel)
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5. Practical data analyses
In this section, we illustrate the proposed methodologies by using two real datasets that

may have excessive zeros.

5.1. Earthquake data in South Korea
There are two measures in characterizing the size of an earthquake: magnitude and

intensity. Magnitude is the most general measure to estimate the scale of an earthquake.
The magnitude is an absolute figure regardless of the location, which is an indicator of
the amplitude recorded on the seismograph at each station and considers various factors
such as epicentral depth and epicentral distance. On the other hand, intensity is a relative
figure that varies according to the location, which is the measure that indicates the size of
the tremor in a particular location. Here, we consider a dataset on the number of earth-
quakes in South Korea over the last 43 years in which the data of earthquakes are classified
by magnitude. Specifically, we collect the number of earthquakes with a magnitude of 5.0
or larger that have occurred in South Korea. See the data from the Korea Meteorological
Administration website at https://www.weather.go.kr/w/eqk-vol/search/korea.do.
The dataset consists of the number of earthquakes in a duration of six months (January–
June or July–December) from September 1978 to December 2020 and the number of
earthquakes with a magnitude > 5.0 during a six-month period. Since there is no earth-
quake until September in 1978, there are 2 × 43 − 1 = 85 observations with ni being the
number of earthquakes in a six-month period and xi being the number of earthquakes with
magnitude > 5.0 out of ni earthquakes for i = 1, 2, . . . , 85. Among N = 85 observations,
there are 78 zeros. The dataset is presented in Table 3.

Based on the data presented in Table 3, we apply the Bayesian and frequentist ap-
proaches described in Sections 2 and 3 to estimate the parameters of the ZIB model and
test for excess zeros. In the EM-algorithm, we use the tolerance limit with ε = 10−8 for
convergence and it takes 537 iterations to convergence. For the observed Fisher informa-
tion matrix based on the missing information principle, we use K = 106 simulations for
the approximation. The bootstrap test based on the maximum likelihood estimate is con-
ducted using B = 10000 bootstrap samples. The results of the data analysis are presented
in Table 4. From Table 4, we observe that both the Bayesian and frequentist approaches
yield similar parameter estimates. Since the Bayes factor is B10 = 1.3210 > 1.0, we select
the ZIB model with excess zeros using the Bayesian approach. However, based on the
LRT, the score test, and the bootstrap test, the p-values are greater than 0.05, showing
there is no sufficient evidence to support the ZIB model at the 5% level.

The LRT, score test, and bootstrap test may not effectively detect the zero-inflation for
this dataset. One possible reason for the low power (i.e., ability to detect zero-inflation)
in the LRT and bootstrap tests is that the estimate of θ is very close to 0. Although we
do not know the true value of θ for this dataset, based on the estimate of θ, we believe
that the true value of θ should be close to 0. As we observed in the simulation study,
this discrepancy might be due to the poor power performance of the frequentist testing
procedures when the value of θ is close to zero. For instance, when θ = 0.05, the power
is only 0.085 (i.e., making the right decision to claim zero-inflation 8.5% of times) even
when the true value of ω is 0.15.

5.2. Major league baseball data
In this subsection we analyze an offensive measure of a player in Major League Baseball

(MLB) for fitting the ZIB. It is known that extra-base hits are seldom produced by non-
power hitters, and thus these can be regarded as zero-inflated. Extra base hits consist of
two-base hits, three-base hits, and home runs. As mentioned in Introduction, three-base
hits are very rare to occur so that we intended to use these at the initial stage of this
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Table 3. Earthquake data in South Korea from 1978 – 2021

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ni 6 11 11 4 12 9 6 8 5 10 10 14 5 18 8
xi 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ni 13 2 2 9 3 3 14 2 14 1 13 6 4 11 16
xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

ni 6 13 11 15 14 22 17 13 8 18 14 30 7 13 16
xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ni 23 18 21 28 24 14 24 18 21 16 28 22 19 23 19
xi 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
i 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

ni 27 39 21 24 18 30 22 31 25 50 43 20 29 18 26
xi 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
i 76 77 78 79 80 81 82 83 84 85

ni 33 219 89 134 67 48 45 43 34 34
xi 0 3 0 1 0 0 0 0 0 0

Table 4. Point and interval estimates of the ZIB model parameters and results
for testing excess zeros based on the earthquake data presented in Table 3

Frequentist Approach
Bayesian Approach Direct Maximization EM Algorithm

θ̃ 0.00890 θ̂ 0.00915 0.00915
V ar(θ̃) 0.00002 V ar(θ̂) 0.00003 0.00003

95% HPD interval for θ (0.00000, 0.01811) 95% ACI for θ (0.00302, 0.02740) (0.00296, 0.02791)
95% BCI for θ (0.00205, 0.02880)

θ̂0 0.005118 0.00512
ω̃ 0.3995 ω̂ 0.496039 0.49601

V ar(ω̃) 0.04757 V ar(ω̂) 0.092432 0.09293
95% HPD interval for ω (0.00000, 0.82691) 95% ACI for ω (0.08321, 0.91434) (0.08272, 0.91483)

95% BCI for ω (0.00000, 0.85780)
Bayes factor B10 1.3210 ℓ(θ̂, ω̂) -29.46504 -29.46504

ℓ(θ̂0, 0) −30.01913
LRT Stat. λ 1.10817

pLR 0.14624
Score Test Stat. S2 1.14518

pS 0.28456
Bootstrap Test pB 0.13700

research. However, there are too many zeros in three-base hits, making the fitting of data
virtually impossible. We decided to use extra-base hits as zero-inflated for our analysis.
In a regular season of MLB, each team plays a total of 162 games. A player should have
at least three plate appearances unless he is taken out of the game. It is known that a
span of five games is a reasonable group for change point analysis [1,18]. We use a span of
four games for making one observation in our analysis. Let ni be the number of times in
the plate and let xi be the total number of extra-base hits. Players sometimes take a rest
or do not play all games due to injuries or some other reasons, yielding different values of
ni for i = 1, 2, . . . , N .

We analyze the data of Brandon Crawford from the San Francisco Giants in the Year
2019. The data are readily available online: https://www.baseball-reference.com.
Table 5 shows ni and xi values in which there is a total of N = 37 observations, and 17
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observations of 37 are zeros. As appeared in the earthquake data, the parameter estimates
with both approaches are close to each other. In particular, the estimates of θ are very
close while there is a little difference between the MLE and the Bayes estimate for ω. From
a testing perspective, the Bayes factor B10 turned out to be 2.2725, which corresponds to
a fairly small p-value of 0.0324 for the LRT. This implies that both procedures decently
support the ZIB model with excessive zeros. Notice that the estimates for (θ, ω) are around
(0.1, 0.28). Although simulation results with this configuration are not presented in Tables
1 and 2, the corresponding outcomes are congruent with the simulation studies regarding
hypothesis testing.

Table 5. MLB data for Brandon Crawford

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ni 12 15 15 12 15 12 14 14 13 14 15 13 13 15 10
xi 1 1 0 0 0 0 0 0 2 1 2 1 0 4 0
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ni 16 15 15 13 12 16 15 15 14 13 17 14 11 13 15
xi 0 3 3 3 1 4 2 0 0 1 0 1 0 1 2
i 31 32 33 34 35 36 37

ni 12 13 10 12 16 13 8
xi 1 1 0 0 2 0 0

Table 6. Point and interval estimates of the ZIB model parameters and results
for testing of excess zeros based on the MLB data presented in Table 5

Frequentist Approach
Bayesian Approach Direct Maximization EM Algorithm

θ̃ 0.1025 θ̂ 0.10202 0.10203
V ar(θ̃) 0.00042 V ar(θ̂) 0.00046 0.00073

95% HPD interval for θ (0.06202, 0.14299) 95% ACI for θ (0.06701, 0.15231) (0.05991, 0.16845)
95% BCI for θ (0.06156, 0.14467)

θ̂0 0.074 0.074
ω̃ 0.2760 ω̂ 0.28078 0.28080

V ar(ω̃) 0.01414 V ar(ω̂) 0.01670 0.01967
95% HPD interval for ω (0.04300, 0.50898) 95% ACI for ω (0.10020, 0.57781) (0.09099, 0.60362)

95% BCI for ω (0.00000, 0.50542)
Bayes factor B10 2.2725 ℓ(θ̂, ω̂) 48.79855 48.79855

ℓ(θ̂0, 0) 50.50361
LRT Stat. λ 3.41012

pLR 0.03240
Score Test Stat. S2 3.41611

pS 0.06456
Bootstrap Test pB 0.0336

6. Concluding remarks
In this paper, we aim to provide some feasible Bayesian and frequentist methods for

the analysis of proportional data which may involve zero-inflation. We conducted a com-
parative analysis based on both frequentist and objective Bayesian approaches for a ZIB
distribution. We derived well-known noninformative Jeffreys priors after the orthogo-
nal transformation on parameters. A full justification was presented for the feasibility
of priors in hypothesis testing. For comparison purposes, we employed existing R pack-
ages for fitting the model by maximum likelihood methods. In particular, we used both
conventional maximization methods and the EM algorithm to come up with parameter
estimates. We also presented LRT procedures along with a bootstrap procedure for testing
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the zero-inflation parameter to compare with Bayes factors. One promising finding is that
both LRT and bootstrap procedures yielded a result that was slightly less powerful when
parameter θ is very small and close to zero.

We consider the zero inflation binomial model, in which the occurrence of zeros is higher
than the conventional binomial model. For future research, one can also consider a zero-
deflated model in situations where the occurrence of zeros is lower than the conventional
binomial model. Finally, in the perspective of model checking, it would be interesting to
consider a posterior predictive analysis based on different data structures like time series
models. For instance, an autoregressive process would be a plausible model to handle
non-iid samples like baseball data.
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Appendix
A. Derivations of Eq (8)

Note that the pmf of the zero-truncated binomial random variable X is

fT (x|θ) =
(n

x

)
θx(1 − θ)n−x

1 − (1 − θ)n
, x = 1, 2, . . . , n.

So, the expected value of X is

E(X) = nθ

1 − (1 − θ)n
.

Now, let us calculate the Jeffreys prior. Note that

log fT (x|θ) = ln
(

n

x

)
+ x ln θ + (n − x) ln(1 − θ) − ln(1 − (1 − θ)n).

Since
∂2

∂θ2 ln fT (x|θ) = ∂

∂θ

[
x

θ
− n − x

1 − θ
− n(1 − θ)n−1

1 − (1 − θ)n

]

= − x

θ2 − n − x

(1 − θ)2 + n{(1 − θ)n + n − 1}(1 − θ)n−2

(1 − (1 − θ)n)2 ,

we have

I(θ) = −E

[
∂2

∂θ2 ln fT (x|θ)
]

= nθ

θ2(1 − (1 − θ)n)
+ n(1 − (1 − θ)n) − nθ

(1 − θ)2(1 − (1 − θ)n)
− n [(1 − θ)n + n − 1] (1 − θ)n−2

(1 − (1 − θ)n)2

= n

1 − (1 − θ)n

[
1
θ

+ 1 − (1 − θ)n − θ

(1 − θ)2 − [(1 − θ)n + n − 1] (1 − θ)n−2

1 − (1 − θ)n

]

= n

1 − (1 − θ)n

[
1
θ

+ 1 − (1 − θ)n−1

1 − θ
− [(1 − θ)n + n − 1] (1 − θ)n−2

1 − (1 − θ)n

]

= n

1 − (1 − θ)n

[
(1 − θ) + θ − θ(1 − θ)n−1

θ(1 − θ)
− [(1 − θ)n + n − 1] (1 − θ)n−2

1 − (1 − θ)n

]

= n
{
1 − (1 − θ)n − θ(1 − θ)n−1 {1 − (1 − θ)n} − θ(1 − θ)2n−1 − (n − 1)θ(1 − θ)n−1}

θ(1 − θ) [1 − (1 − θ)n]2

= 1
θ(1 − θ)

1 − (1 − θ)n − nθ(1 − θ)n−1

[1 − (1 − θ)n]2
.

Thus, the Jeffreys prior is readily available by taking a square root on I(θ).

B. First and second partial derivatives of the log-likelihood function
The first partial derivatives of the log-likelihood function in Eq. (3.1):

∂ ln L(θ, ω)
∂θ

=
N∑

i=1

{[
−(1 − ω)ni(1 − θ)ni−1

ω + (1 − ω)(1 − θ)ni

]
I(xi = 0) +

[
xi − niθ

θ(1 − θ)

]
I(xi > 0)

}
,

∂ ln L(θ, ω)
∂ω

=
N∑

i=1

{[ 1 − (1 − θ)ni

ω + (1 − ω)(1 − θ)ni

]
I(xi = 0) −

[ 1
(1 − ω)

]
I(xi > 0)

}
.
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The second partial derivatives of the log-likelihood function in Eq. (3.1):

∂2 ln L(θ, ω)
∂θ2 =

N∑
i=1

{(1 − ω)ni(ni − 1)(1 − θ)ni−2

ω + (1 − ω)(1 − θ)ni
−
(

(1 − ω)ni(1 − θ)ni−1

ω + (1 − ω)(1 − θ)ni

)2
 I(xi = 0)

−
[

ni

(1 − θ)2 + xi(1 − 2θ)
θ2(1 − θ)2

]
I(xi > 0)

}
,

∂2 ln L(θ, ω)
∂ω2 =

N∑
i=1

{
−
[ 1 − (1 − θ)ni

ω + (1 − ω)(1 − θ)ni

]2
I(xi = 0) −

[ 1
(1 − ω)2

]
I(xi > 0)

}
,

∂2 ln L(θ, ω)
∂θ∂ω

=
N∑

i=1

{
ni(1 − θ)ni−1

ω + (1 − ω)(1 − θ)ni
+ (1 − ω)ni(1 − θ)ni−1[1 − (1 − θ)ni ]

[ω + (1 − ω)(1 − θ)ni ]2

}
I(xi = 0).

C. Expected Fisher information matrix
We can obtain the elements of the Fisher information matrix based on the second partial

derivatives of the log-likelihood function in Eq. (3.1) as:

E

[
−∂2 ln L(θ, ω)

∂θ2

]

= −
N∑

i=1

{(1 − ω)ni(ni − 1)(1 − θ)ni−2

ω + (1 − ω)(1 − θ)ni
−
(

1 − ω)ni(1 − θ)ni−1

ω + (1 − ω)(1 − θ)ni

)2
E[I(Xi = 0)]

−
[

ni

(1 − θ)2

]
E[I(Xi > 0)] −

[ (1 − 2θ)
θ2(1 − θ)2

]
E[XiI(Xi > 0)]

}
,

E

[
−∂2 ln L(θ, ω)

∂ω2

]

=
N∑

i=1

{[ 1 − (1 − θ)ni

ω + (1 − ω)(1 − θ)ni

]2
E[I(Xi = 0)] +

[ 1
(1 − ω)2

]
E[I(Xi > 0)]

}
,

E

[
−∂2 ln L(θ, ω)

∂θ∂ω

]

= −
N∑

i=1

{
ni(1 − θ)ni−1

ω + (1 − ω)(1 − θ)ni
+ (1 − ω)ni(1 − θ)ni−1[1 − (1 − θ)ni ]

[ω + (1 − ω)(1 − θ)ni ]2

}
E[I(Xi = 0)],

where
E[I(Xi = 0)] = Pr(Xi = 0) = ω + (1 − ω)(1 − θ)ni ,

E[I(Xi > 0)] = Pr(Xi > 0) = (1 − ω)[1 − (1 − θ)ni ],
E[XiI(Xi > 0)] = niθ.


