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Abstract 

Static anchors are generally used for the localization of Unknown Nodes (UNNs) in Wireless Sensor Networks (WSNs). However, it 

would be a more efficient approach to design a Mobile Anchor (MA) trajectory to cover all UNNs instead and to have the MA travel to 

broadcast its position at specific points along that trajectory. With this logic, many studies have been published in the literature in recent 

years. SCAN, HILBERT, SPIRAL, LMAT, Z-curve, H-curve, and M-curves static path planning models are examined in this study. The 

localization performances of these path planning models are compared with different performance evaluation criteria using the Weighted 

Centroid Localization (WCL) technique in the obstacle-presence scenario. The simulation results show the advantages of the H-curve 

model over existing schemes. The SPIRAL model performs worse than other models in the obstacle-presence scenario.  

 

Keywords: localization, mobile anchor node assisted localization, obstacle-handling, path planning, static path planning.   

Bazı Statik Yol Planlama Modellerinin Yerelleştirme 

Performanslarının Engelli Ortamda Karşılaştırılması 

Öz 

Kablosuz Algılayıcı Ağlar (Wireless Sensor Networks, WSNs)'de bilinmeyen düğümlerin yerelleştirilmesi işlemi için genellikle statik 

çapalar kullanılmaktadır. Ancak, bunun yerine bütün bilinmeyen düğümleri kapsayacak şekilde bir hareketli çapa yörüngesi tasarlamak 

ve hareketli çapayı bu yörünge boyunca konumunu belirli noktalarda yayınlamak üzere dolaştırmak, daha verimli bir yaklaşım olacaktır. 

Bu mantıkla, son yıllarda literatürde birçok çalışma yayınlanmıştır. Bu çalışmada, SCAN, HILBERT, SPIRAL, LMAT, Z-eğrisi, H- 

eğrisi ve M- eğrileri statik yol planlama modelleri incelenmiştir. Bu yol planlama modellerinin yerelleştirme performansları, düzgün 

şekilli engeller içeren ağlarda, Ağırlıklı Merkezi Yerelleştirme (Weighted Centroid Localization, WCL) tekniği kullanılarak farklı 

performans değerlendirme kriterleriyle karşılaştırılmıştır. Benzetim sonuçları, H-eğrisi modelinin mevcut şemalara göre avantajlarını 

göstermektedir. SPIRAL modeli ise düzgün şekilli engeller içeren senaryolarda diğer modellere göre daha kötü performans 

göstermektedir. 

 

Anahtar Kelimeler: yerelleştirme, hareketli çapa düğüm destekli yerelleştirme, engel yönetimi, yol planlama, statik yol planlama. 
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1. Introduction 

Wireless Sensor Networks (WSNs) are the networks that 

detect application-specific events in the Region of Interest (ROI), 

collect the processed information about these events wirelessly 

through multiple sensor nodes and transmit them to a base station. 

The application areas of WSNs are very diverse. Applications 

such as environmental monitoring, warfare, child education, 

surveillance, microsurgery, and agriculture are just a few 

examples [1]. In most of these applications, the event reported by 

the sensor nodes becomes meaningful if the event's location is 

known. Localization is known as the process of determining the 

physical coordinates of sensor nodes whose locations are 

unknown [2]. 

The Global Positioning System (GPS) is one of the most 

popular positioning technologies easily accessible. However, this 

technology has some disadvantages, such as high cost and high 

energy consumption. This situation makes it challenging to install 

GPS on every node in the WSN. For this reason, GPS units are 

usually placed in a small number of nodes called Anchor Nodes 

(ANs) or beacons in the network. The locations of other nodes, 

except ANs, are obtained by any localization method. These nodes 

are also called unknown nodes (UNNs) [3]. 

Many localization methods have been proposed for WSNs 

until now. These methods can be classified into two general 

groups according to the distance measurement approaches used in 

the method: range-based and range-free. Range-based methods 

use measurement values such as distance or angle to determine 

the positions of UNNs. They also use extra hardware to obtain 

these measurements. The most well-known range-based methods 

are Time of Arrival (ToA), Time Difference of Arrival (TDoA), 

Angle of Arrival (AoA), and Received Signal Strength Indicator 

(RSSI). In range-free methods, special equipment is not used for 

distance estimation. Therefore, they are less costly and simpler 

than range-based methods. However, range-based methods give 

more accurate localization results. The most common range-free 

methods are Approximate Point in Triangle (APIT), Centroid, 

Distance Vector-hop (DV-hop), and Amorphous [4-7]. 

The sensor nodes that form WSNs are generally low cost, 

have low information processing capability, and limited power 

hardware. There can be hundreds or even thousands of this 

hardware in a WSN. Therefore, determining the location of the 

sensors by adding GPS units to each of these hardware is by no 

means an efficient approach. Therefore, new ideas have to be 

considered before the sensor nodes in WSN can be localized. With 

this logic, approaches using only one Mobile Anchor (MA) have 

been studied in the literature. In these approaches, the only node 

in the WSN that contains a GPS unit is the MA node and UNNs 

do not contain a GPS unit. With this idea, significant 

improvements have been made compared to the scenario where 

all nodes in the WSN are static. In the Mobile Anchor Node 

Assisted Localization (MANAL) architecture, MA does not have 

energy constraints like UNNs. The movement trajectory of the 

MA can be carefully designed to improve the localization 

performance of the network. In a localized network using a static 

anchor, the static anchor cannot be reused after localization. 

Hence, these nodes will be an extra burden on the network. Fig. 1 

shows a MA moving along a certain trajectory by broadcasting 

periodic signals and the UNNs to be found [8]. 

 

 

Fig. 1 Mobile anchor node assisted localization [8] 

One of the main problems in applications using a MA and 

unknown static nodes is how to design the path that MA will 

follow. Generally targeted with such a design are: (i) to find UNNs 

in the Region of Interest (ROI) with as few errors as possible when 

the MA uses the path designed; (ii) to find all nodes in the ROI if 

possible; and (iii) to spend as little energy as possible. In the 

literature, many studies have been conducted in different 

scenarios in order to achieve these and similar objectives. In this 

study, the localization performance of seven static path planning 

models in the literature is compared in an obstacle-presence 

environment. The environment used as the base for this 

comparison is the obstacle environment in the Z-curve study. In 

addition, a realistic channel is used for the performance evaluation 

of different mobility models. 

2. Related Work 

As previously mentioned, localization schemes are divided 

into two classes according to the distance measurement method: 

range-based and range-free. This classification is very 

comprehensive. However, given the number of proposed 

localization schemes and the mobility of known or unknown 

nodes, expanding this classification has become necessary. 

Therefore, if this classification is expanded to consider mobility, 

four main classes are obtained, as shown in Fig. 2 [9]. 

Fig. 2 Classification of localization schemes in WSNs [10] 

In this study, studies in the "Static Nodes Mobile Anchor" 

class, one of the classes in Fig. 2, will be examined. For detailed 

information about other classes, study [11] can be consulted.  

2.1. Mobile Anchor – Static Nodes 

In this approach, a node with locational information called 

MA broadcasts this information periodically, allowing the UNNs 
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locations to be found according to some localization techniques 

(e.g., RSSI, TOA, or TDOA). The total cost in the network will 

be reduced by using a single anchor node. The main problems in 

MANAL are: i) designing the path of the MA to minimize 

localization error and performing the localization process of the 

entire network as soon as possible, ii) designing the localization 

scheme in which the locations of UNNs are calculated using 

information from MAs to UNNs [12]. 

A classification of MA paths is given in Fig. 3. As can be 

seen, these paths are divided into two main classes as random and 

planned [9]. Random models are typically used in environments 

where high localization performances are not required. Random-

Way Point (RWP), Random Direction (RD), and Reference Point 

Group Mobility (RPGM) are examples of these models [13-14]. 

Fig. 3 Different path models for MANAL in WSNs 

Planned models can be dynamic or static. In dynamic path 

planning models, the path is constantly updated with the 

information obtained on the path according to the need in the 

application. Therefore, there is no predetermined way. 

SCAN, DOUBLE-SCAN, and HILBERT [10], SPIRAL [15], 

Localization algorithm with a Mobile Anchor node based on 

Trilateration (LMAT) [16], Z-curve [17], H-curve [9], and M-

curves [18] studies can be given as examples of static path 

planning models. In static models, the path, starting point, and 

endpoint to be followed by the MA are determined before the 

localization process. These were designed before the MA was 

released to the ROI. Thus, there is no external intervention 

concerning the trajectory it follows while the MA is in movement. 

The main problem of these models is the collinearity problem. 

In [10], SCAN, DOUBLE-SCAN, and HILBERT path 

planning models were proposed. These models are known as the 

first mobile-assisted static path planning models in the literature. 

In the HILBERT path planning model, the idea of making more 

turns in the trajectory is proposed to solve the collinearity problem 

of SCAN and the path length problem of the DOUBLE SCAN. 

For this purpose, the ROI is divided into four squares of equal 

size, and the points between the squares are joined. Using 

different non-collinear position information from MA, UNNs can 

estimate their position more correctly than the SCAN model. 

However, one of the most important problems of the HILBERT 

model is the problem of coverage. Using the HILBERT path 

planning model, MA cannot provide sufficient information to 

UNNs located at ROI boundaries to estimate their location. This 

will increase the localization error and reduce the number of 

localized nodes. The SCAN and HILBERT path planning models 

are shown in Fig. 4a and Fig. 4b, respectively. 

In [15], the authors proposed a mobile anchor centroid 

localization (MACL) method. MA is moved on a spiral trajectory. 

In the localization process, the MA moves and broadcasts the 

position messages (xi, yi) with a spacing L (moving arc length). 

The SPIRAL path planning model is shown in Fig. 4c. 

Han et al. [16] presented a path planning scheme called 

LMAT based on trilateration for MAs. In this scheme, the distance 

between the two locations in which the MA broadcasts location 

data is defined as the resolution. MA continues its trajectory by 

forming symmetrical equilateral triangles and broadcasts location 

data to UNNs at each vertex of these equilateral triangles. This 

process ensures that the collinearity problem is solved 

successfully. As a result, high localization accuracy and high 

localization ratio are achieved with LMAT. However, the length 

of the path traveled by the MA is long. The LMAT path planning 

model is shown in Fig. 4d. 

Rezazadeh et al. [17] proposed a MA path planning scheme 

called Z-curve. The MA's path is "Z"-shape. In this study, the 

authors divided the ROI into squares for three levels and 

connected the "Z" shapes at each level. As with most mobile path 

planning models in WSNs, providing three non-collinear points to 

UNNs in the Z-curve model is one of the main objectives. 

Additionally, the performance of the Z-curve is evaluated in the 

presence of obstacles, and the Z-curve obstacle-handling 

trajectory is proposed to reduce the obstacle problem in 

localization. The Z-curve model is shown in Fig. 4e. 

Alomari et al. [9] presented a MA path planning scheme 

called H-curves. This scheme is called H-curves because of the 

multi-curved "H"-shaped paths in the design. The path design was 

designed to solve the collinearity problem, shorten the distance 

traveled by MA, and cover each UNN with at least three different 

MAs. The important point in this study is to create a distance 

difference of dm/2 between two rows, dm MA's step interval. Thus, 

the two rows do not overlap, the number of points decreases, and 

ultimately a triangle-like communication form is created. 

Weighted Centroid Localization (WCL) and Weight-

Compensated Weighted Centroid Localization (WCWCL) 

methods were used as localization estimation methods. The H-

curve path planning model is shown in Fig. 4f. 

Kannadasan et al. [18] devised a different path planning 

scheme that follows MA's trajectory "M" shape. Therefore, they 

called the proposed scheme "M-curves". In this study, two 

successive rows are patterned with the letters M and W. There is 

a dm-long space between M or W letters on each row. A dm/2 

distance difference is created between two rows. Thus, a triangle-

like communication form as in H-curve was obtained, and a 

solution was made to the collinearity problem. The authors used 

the "Centroid Method" as the localization estimation method and 

aimed to increase its performance by adding "Dolphin Swarm 

Algorithm (DSA)". The M-curve path planning model is shown 

in Fig. 4g. 

The obstacle-handling trajectories of the path planning 

models in this environment are given in Fig. 4. Except for the Z-

curve study, none of the studies in Fig. 4 studied localization 

performance evaluations in the obstacle-presence environment. 

This study's main contribution is to measure the performances of 

the path planning schemes in Fig. 4 in the presence of obstacles 

and compare them using different evaluation criteria. All path 

planning models have been tested in the same environment, and 

this environment is the obstacle-presence environment where a 

third-order Z-curve is applied [9]. 
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Fig. 4 The obstacle-handling trajectories of the path planning models 

 

(a) SCAN 

(b) HILBERT 

(c) SPIRAL 

(d) LMAT 

(e) Z-curve 

(f) H-curve 

(g) M-curves 
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2.2. Localization Scheme 

One of the most fundamental issues in examining the 

effectiveness of MANAL algorithms is the localization method 

used to find the locations of UNNs. The efficiency of any path 

planning model is affected by the type of localization technique. 

Moreover, since single-hop networks have higher performance 

than multi-hop networks, scenarios using the single-hop WCL 

localization technique are considered in this paper. 

2.1. Weighted Centroid Localization (WCL)  

It is a localization method where the locations of UNs are 

calculated according to the average of the coordinates received 

from the anchors. Communication consumption and computation 

cost are low. In the WCL method proposed in the study [19], a 𝑤𝑖𝑗 

weight function was defined based on the RSSI value that varies 

according to the distance between the UNN and the AN to 

examine the effect of each 𝐵𝑗(𝑥, 𝑦) coordinate information 

received on the location estimation. 𝑤𝑖𝑗  can be calculated as: 

𝑤𝑖𝑗 =
1

(𝑑𝑖𝑗)𝑔                                               (1) 

where 𝑔 is a default degree for different situations. Thus, the node 

location can be formulated as follows (𝑛 indicates the number 

beacons received from the anchor):  

𝑃𝑖 =
∑ (𝑤𝑖𝑗.𝐵𝑗(𝑥,𝑦))𝑛

𝑗=1

∑ 𝑤𝑖𝑗
𝑛
𝑗=1

                                       (2) 

After replacing 𝑤𝑖𝑗  by 𝑅𝑆𝑆𝐼𝑖𝑗 , the final equation is obtained as: 

𝑃𝑖 =
∑ (𝑅𝑆𝑆𝐼𝑖𝑗.𝐵𝑗(𝑥,𝑦))𝑛

𝑗=1

∑ 𝑅𝑆𝑆𝐼𝑖𝑗
𝑛
𝑗=1

                                     (3)  

3. Network Settings and Assumptions 

The network model used in the path planning model proposed 

in this study is assumed to have the following features: 

1. The UNN and MA are the two types of sensor nodes in 

the network. N number of UNNs are deployed randomly 

to the network with uniform distribution.  

2. ROI is represented by a two-dimensional area, and a 

WSN with an S m2 area size has been established. 

3. After the UNNs are distributed to the environment, and 

they don't know the location information at the first 

stage. It is assumed that all of these nodes are static, and 

their positions are unchanged. 

4. The communication range (CR) of each sensor node in 

the network is fixed, and its value is CR m. 

5. An MA has the ability to locate itself at any point in the 

network, and it can move freely in straight lines, 

depending on the mobile path planning model across the 

entire network.  

6. The MA stops at certain intervals while moving.  

7. The MA sends the location signals from their stopping 

points to UNNs within the CR. Both the MA and the 

UNN can communicate with each other only if both are 

in each other's CRs. 

8. The distances from UNNs to MAs are estimated using 

the RSSI technique.  

9. The MA has enough energy to move and also broadcast 

location information during the localization process. MA 

consumes more energy than any UNN. 

10. The communication model is a channel by log-normal 

shadowing fading. Taking into account the radio signal 

propagation loss, we assume that unknown nodes can 

only receive the beacon packet in a circular region within 

a communication radius. 

11. There is no collision between the MA and the UNNs. 

That is, MA doesn’t go through any UNN. 

   

3.1. Obstacle-Presence Scenario  

There may be obstacles in the network area in a realistic 

environment, blocking the MA's path. In the obstacle-resistant 

trajectory developed in [20] and used in [17], MA detours the 

obstacle and issues a detour flag at the obstacle's corner points. A 

UNN uses these flag signals to determine its location. When the 

MA moves away from the obstacle, it returns to the original 

trajectory and starts broadcasting standard beacon messages. 

Since the path planning models discussed in this study are 

deterministic, the movement pattern and beacon positions for 

message broadcast are already known. Therefore, the MA can 

cross the obstacle's edge and continue the path planning pattern 

where it left off. 

In this study, "obstacle-handling trajectory" detailed in [17], 

briefly mentioned above, is used for all path planning models in 

the case of obstacle-presence. In this study, this logic is applied to 

the static path planning models that are examined. In Fig. 5, the 

obstacle processing trajectory is applied to the H-curve model, 

one of these models. 

 

Fig. 5 H-curve in obstacle-handling trajectory 

4. Performance Evaluations 

In this study, the localization performances of seven models 

in obstacle-presence scenarios were compared. These studies are 

SCAN, HILBERT, SPIRAL, LMAT, Z-curve, H-curve, and M-

curves studies. 

4.1. Simulation Setup and Wireless Channel  

A realistic wireless model is required to make a reliable 

assessment. The simulations of the Z-curve [17] take into account 

the channel model, modulation and coding scheme to extract the 

relationship between the transmit power and packet reception rate. 

Chipcon CC1000 radio module was used in the Z-curve study. 
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Similarly, the H-curve [9] is another study using realistic 

parameters. For the wireless model in the H-curve, the 

characteristics of a wireless node equipped with the Chipcon 

CC1100 radio module [19] were used. In this study, we also used 

the wireless channel model and parameters described in [17]. 

Explanations and specifications for this channel can be found in 

the following paragraphs. It should also be noted that all path 

planning models in this study are run under the same realistic 

channel conditions. 

The strength of the signal emitted in the physical environment 

decreases due to wireless propagation. Therefore, path loss and 

bit error rate should be modeled for the analysis of the physical 

layer [21-22]. 𝑃𝑟𝑟, packet reception ratio means the possibility of 

a packet being successfully received. It is expressed by the 

Bernoulli random variable that takes the value 1 if the packet is 

received and 0 if not. It is given by: 

𝑃𝑟𝑟 = (1 − 𝑃𝑏𝑒)8𝑙(1 − 𝑃𝑏𝑒)8(𝑓−𝑙)2.0                (4)                                                      

where 𝑓 = 20 byte is the size of the frame related to the 

TinyOS implementation after being encoded (the frame consists 

of preamble, network payload and CRC). The Manchester 

encoding method is used and 𝑃𝑏𝑒  is the bit error probability which 

depends on the modulation type. Here, we chose non-coherent 

FSK modulation which is used in MICA2 motes and formulated 

by [21]: 

𝑃𝑏𝑒 =
1

2
𝑒−

𝑆𝑁𝑅

2

𝐵𝑁
𝑅                                    (5) 

where 𝐵𝑁 is the noise bandwidth and 𝑅 is the data rate in bits. 

MICA2 motes use the Chipcon CC1000 radio [23] where 𝑅 =
19.2 kbps and 𝐵𝑁 = 30 kHz. The signal to noise ratio (𝑆𝑁𝑅) at 

the receiver is calculated by: 

𝑆𝑁𝑅𝑑𝐵 = 𝑃𝑟𝑒𝑐
𝑑𝐵 − 𝑃𝑛

𝑑𝐵                            (6) 

𝑃𝑟𝑒𝑐  defines the reception power and 𝑃𝑛 expresses the noise 

floor. 𝑃𝑛 is both environmentally and radio dependent [24], and it 

is given by: 

𝑃𝑛 = (𝐹 + 1)𝑘𝑇0𝐵𝑁 ,                            (10) 

where 𝐹 = 13 dB is the noise figure and 𝑘 is the Boltzmann’s 

constant. 𝑇0 = 27𝑜 C is the ambient temperature. In this study, the 

average noise floor is considered as approximately −105dBm 

[21, 25]. On the other hand, 𝑃𝑟𝑒𝑐  is given as: 

𝑃𝑟𝑒𝑐
𝑑𝐵 = 𝑃𝑡𝑟𝑎𝑛𝑠

𝑑𝐵 − 𝑃𝐿
𝑑𝐵,                        (11) 

where  𝑃𝐿
𝑑𝐵 and 𝑃𝑡𝑟𝑎𝑛𝑠

𝑑𝐵 are the power loss and transmitting 

power, respectively. To model the shadowing path loss effect, the 

log-normal model [24] used:  

𝑃𝐿(𝑑)𝑑𝐵 = 𝑃𝐿(𝑑0)𝑑𝐵 + 10𝛾 log (
𝑑

𝑑0
) + 𝑋𝜎

𝑑𝐵 ,      (12) 

where  𝑃𝐿(𝑑)𝑑𝐵 is the power loss after the signal propagates 

through distance 𝑑, 𝑃𝐿(𝑑0) is the power loss at the reference 

distance 𝑑0, 𝛾 is the path loss exponent and 𝑋𝜎 = 𝑁(0, 𝜎2) is a 

Gaussian random variable with mean 0 and standard deviation 𝜎 

(shadowing effect). 

In this study, the performances of different path planning 

models are evaluated in MATLAB simulation environment with 

50 run times. It is assumed that there are N = 250 static UNNs in 

the ROI, a single MA (M) moving on given path, and the ROI is 

an area of S = 100×100 m2. The resolution value (R) is the ratio 

between the communication range (CR) and the MA step (𝑑𝑥). 

That is, the resolution is expressed in 𝐶𝑅/𝑑𝑥. Other parameters 

used in this study are listed in Table 1. 

Table 1. Simulation Parameters 

Parameters Symbol Value Unit 

Network size  S 100×100 m2 

Number of UNNs N 250 - 

Number of MAs M 1 - 

Resolutions R 1, 1.5, 2, 2.5 - 

Path loss exponent 𝛾 3.3 - 

Standard deviation of 

noise  
𝜎 3, 5, 7, 9 - 

Power loss at 𝑑0 𝑃𝐿(𝑑0) 55  dB 

Reference point 𝑑0 1 m 

Transmission power  𝑃𝑡𝑟𝑎𝑛𝑠 -20 < 𝑃𝑡𝑟𝑎𝑛𝑠  < 

10 

dBm 

Simulation run  - 50  

4.2. Accuracy  

One of the most important criteria for evaluating any 

proposed model is the accuracy of localization. Therefore, this 

criterion is considered as the primary criterion used to compare 

different path planning models. Accuracy is related to localization 

error by the number of nodes. In this study, two methods are used 

to calculate the localization error of each model: the average 

localization error and the standard deviation of the localization 

error. 

4.2.1. Average Localization Error 

The average localization error is used to assess how accurate 

the estimated position obtained is. The ratio of the sum of the 

localization errors of all the localized UNNs in the ROI to the 

number of nodes determines the average error rate. The 

localization error for node i is calculated as follows: 

𝑒𝑟𝑟𝑜𝑟(𝑖) = √(𝑥𝑖 − 𝑢𝑖)
2 + (𝑦𝑖 − 𝑣𝑖)

2             (13) 

(𝑥𝑖 , 𝑦𝑖) are the actual coordinates of the node discussed and 

(𝑢𝑖, 𝑣𝑖) are the estimated coordinates of the same node. Therefore, 

𝑒𝑟𝑟𝑜𝑟𝑎𝑣𝑔 is given by the average localization error equation for 

the total 𝑁 sensor nodes. 

𝑒𝑟𝑟𝑜𝑟𝑎𝑣𝑔 = (∑ 𝑒𝑟𝑟𝑜𝑟(𝑖)
𝑁
𝑖=1 )/𝑁                (14) 

 

As shown in Fig. 6, in most places, the H-curve path planning 

model showed the best error performance compared to other 

models. After this model, the best error result is obtained with the 

LMAT model. Although the error performance of other models is 

similar, the SPIRAL model is noticeably worse than other models. 

If we pay attention to the path trajectories of the H-curve and 

LMAT models in Fig. 4, it is observed that the MA passes through 

the whole ROI. In addition, beacons are broadcasted at the 

borders. This is why these models localize UNNs with less error. 

With the SPIRAL model, it is not possible to send messages to the 

entire ROI. Thus, a higher error rate is achieved. 
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Fig. 6 Localization errors of all mobile path planning models 

In this study, the average localization error variation with two 

variables given in Table 1 is also investigated separately: 

resolution (R) and standard deviation (std) of noise (σ). Firstly, 

250 UNNs simulations with different resolutions ranging from 1 

to 2.5 are performed. Fig. 7 shows the average localization error 

according to the resolution values for path models. 

 

Fig. 7 Average localization errors of models by resolution 

Fig. 7 shows a graph showing how the localization error 

varies according to the resolution. As seen from the figure, the H-

curve and LMAT path planning models are superior to other 

models. The SPIRAL model, on the other hand, showed poor 

performance compared to other models due to its path design. 

Also, it can be said that as the resolution value increases for all 

models, the localization error also increases.  

Secondly, in Fig. 8, the same parameters are repeated with 

different σ values for fixed resolution. Fig. 8 shows the average 

localization error for path planning models with different σ values 

when the WCL algorithm is applied. It is the model H-curve with 

the smallest localization error for all σ values. If the figure is 

examined carefully, it can be said that the error performance of 

most models changes little with changes in σ. The reason that the 

localization error does not vary much with σ is the characteristic 

of the WCL method that takes the weighted average of the beacon 

locations. 

 

Fig. 8 Average localization errors of the models according to the 

std of the noise (R = 1) 

4.2.2. Standard Deviation of the Localization Error 

The low standard deviation of error values indicates that most 

of the values are close to the mean. The standard deviation of the 

localization error is:  

𝑒𝑟𝑟𝑜𝑟𝑠𝑡𝑑 = √
1

𝑁
∑ (𝑒𝑟𝑟𝑜𝑟(𝑖) − 𝑒𝑟𝑟𝑜𝑟(𝑎𝑣𝑔))2𝑁

𝑖=1      (15) 

where 𝑁 is the number of UNNs,  𝑒𝑟𝑟𝑜𝑟(𝑖) is the localization 

error for node 𝑖, and 𝑒𝑟𝑟𝑜𝑟(𝑎𝑣𝑔) is the average localization error.  

Fig. 9 shows the std of the localization error for each path 

planning model for WCL. For each simulation, R = 1 and σ = 7. 

As shown in Fig. 9, the std of the error performance of the H-

curve path planning model for the WCL method is better than the 

other models. The LMAT model is similar to this model. The 

SPIRAL model is again the worst performing method in this 

scenario. This means that the errors obtained by the SPIRAL 

method are mostly far from the average. 

 

Fig. 9 Std of errors of all path planning models 

The average of the 50 simulations is then calculated using 

different R values, as shown in Fig. 10. In Fig. 10, σ = 7 and R 

vary between 1 and 2.5. This figure shows the std of the 

localization error for different resolution values. When the 

performance of the models for the WCL method is evaluated, it 

can be said that the error performance of the models is slightly 

different from the average. As the resolution increases, the std of 

the models' error value increases compared to the previous 



European Journal of Science and Technology 

 

e-ISSN: 2148-2683  445 

resolution. LMAT and H-curve models show the best std of error 

performance. According to the same evaluation criteria, the 

SPIRAL model again shows the worst result. Also, it is interesting 

to note that the SCAN and HILBERT models proposed in the 

same study give roughly the same performance at all resolutions 

according to this evaluation criterion. 

 

Fig. 10 Std of errors of the path planning models according to 

resolution (σ = 7) 

4.3. Localization Ratio 

Coverage or localization ratio indicates the number of nodes 

successfully localized by the number of UNN. As many localized 

nodes as possible are requested for each model implemented at 

the end of the localization process. In the scenario created in Fig. 

11, localization ratio performances of models with different 

resolutions and constant σ = 7 for 250 UNNs are examined. If the 

localization ratio performances of the models are evaluated, it can 

be said that all models show high performance in general. 

However, the SPIRAL method demonstrated significantly lower 

localization ratio performance than other methods for R < 2. 

Generally, the reason for the high localization rate performance is 

that the localization technique used is WCL. 

 

Fig. 11 Localization ratio of the path planning models by 

resolution (σ = 7) 

4.3. Path Length 

The path length is the length of the distance MA travels, 

following the proposed model as it moves through the network. 

Path length does not affect on the localization error, but it helps 

find parameters such as time and energy spent for the entire 

localization process. Mathematical equations of path length 

designs are calculated according to two variables: 𝑆 network size 

and 𝑑𝑥 the distance between both points. The following equations 

show the mathematical expressions of each static path planning 

model. Equations (16), (17), (19), (20), (21), (22), and (23) show 

the path length of SCAN, HILBERT, SPIRAL, LMAT, Z-curve, 

H-curve, and M-curves path planning models, respectively.  

For example, if dx = 12.5 m, S = 64 (dx)2 is obtained. 

However, as can be shown from Figure 4 and Figure 5, dx is not 

always 12.5 m in all models. 

𝐿𝑆𝐶𝐴𝑁 =
𝑆

𝑑𝑥
− 𝑑𝑥                                  (16) 

𝐿𝐻𝑖𝑙𝑏𝑒𝑟𝑡 =
𝑆

𝑑𝑥
                                      (17) 

The trajectory of SPIRAL is calculated using the following 

equation: 

The trajectory length of SPIRAL is calculated by: 

𝑥 = 𝑥0 + 𝑟 × 𝑡 × cos (2𝜋𝑡)
𝑦 = 𝑦0 + 𝑟 × 𝑡 × sin (2𝜋𝑡)

                               (18) 

𝐿𝑆𝑃𝐼𝑅𝐴𝐿 = ∑ √𝑟2 + 4𝑟2𝜋2𝑡2 + 4𝑟2𝑡𝑠𝑖𝑛4𝜋𝑡
⌈

√𝑆

𝑟
⌉

𝑡=1      (19) 

𝐿𝐿𝑀𝐴𝑇 =
𝑆

𝑑𝑥
+ 20𝑑𝑥                               (20) 

𝐿𝑍 = [(
5

8
× 43) − 1] 𝑑𝑥 + [(

3

8
× 43)] × √2𝑑𝑥     (21) 

𝐿𝐻 =
𝑆

𝑑𝑥
+ 18𝑑𝑥                                (22) 

𝐿𝑀 =
109

2
𝑑𝑥 + 16√2𝑑𝑥                         (23) 

Fig. 12 shows the path lengths of the path planning models 

for the obstacle-presence scenario. The SPIRAL model is the 

model that travels the shortest distance with 652.21 m. HILBERT 

takes a little longer with a travel distance of approximately 833 

m. But, these models suffer from the coverage problem. The 

LMAT and H-curve travel longer distances than other models. 

However, according to most evaluation criteria, these models give 

better results than other models. These results show that when 

path length and other performance criteria are evaluated together, 

H-curve and LMAT static path planning models are the optimum 

models that can be used in obstacle-presence scenarios. 

 

Fig. 12 The path length for the different mobility models in 

obstacle-presence scenario 
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5. Conclusions and Future Work 

In this study, the localization performances of SCAN, 

HILBERT, SPIRAL, LMAT, Z-curve, H-curve, and M-curve path 

planning models are compared with different performance 

evaluation criteria using the WCL technique in the obstacle-

presence scenario. According to these performance criteria, the H-

curve model, followed by the LMAT model, showed the best 

performance. On the other hand, the worst performance was 

generally achieved with SPIRAL path planning. The reason for 

poor performance in this model is that the broadcast signals 

cannot cover the ROI due to the MA trajectory. The same problem 

exists in SCAN and HILBERT. 

Our future research topics in MANAL will likely be as 

follows: 

i. Another of our future studies will be to compare the energy 

consumption and energy efficiency of static path planning models 

in the literature. 

ii. Observing the performance of the models in irregular 

obstacle-presence areas. To design a suitable dynamic path 

planning model for such areas. 

iii. Using only one anchor, MANAL algorithms can take a 

long time to find all UNNs in an ROI, especially for large-scale 

WSNs. Therefore, the collaborative MANAL algorithm using 

several MAs can be designed to reduce localization time and 

improve localization accuracy. 
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