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Abstract

The aim of this research is to introduce a novel iterative technique termed CC-iteration for identifying the
�xed points of Garcia-Falset mappings. In uniformly convex Banach spaces, we establish both weak and
strong convergence characteristics. Additionally, numerical examples of the iterative approach are presented
in the form of a signal recovery application in a compressed sensing issue.
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1. Introduction

Let C be a nonempty subset of a Banach spaceX, Garcia-Falset et al. [3] presented a mapping T : C → X
satisfying condition (Eµ) on C, that is, there exists µ ≥ 1 such that

∥x− Ty∥ ≤ µ∥x− Tx∥+ ∥x− y∥

for all x, y ∈ C. It is noticeable that T : C → X satis�es condition (E1) if it is nonexpansive. By Lemma
7 in [15], T : C → C satis�es condition (E3) if it is a Suzuki mapping. In [3], they also determined the
existence and asymptotic behavior of �xed points. Moreover, there are interesting studies on the �xed point
problem for additional nonlinear mappings in [18, 19].

Many problems in various �elds, such as image reconstruction [12, 14, 23] and signal processing [1, 13,
20, 21, 22, 24], can be modeled as �xed point problems. Numerous authors have presented various iterative
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approaches for �xed point numerical approximation. Ishikawa [5], Mann [6] and Noor [7] are some of the
pioneers of iterative approaches for estimating �xed points in nonlinear mappings. In 2020, Usurelu et al.
[17] showed the existence of �xed points for Garcia-Falset mappings in uniformly convex Banach spaces using
the TTP-iteration introduced in [16]. A number of convergence results have also been obtained using this
iterative strategy. This e�ort will provide a new iterative method in advance of inspiring research. As follows
is the de�nition of the CC-iteration method: x0 ∈ C and

zn = (1− en)xn + enTxn,

yn = (1− cn − dn)zn + cnTxn + dnTzn,

xn+1 = (1− an − bn)Txn + anTyn + bnTzn, (1)

for all n ≥ 0, where {an}, {bn}, {cn}, {dn}, {en}, {an + bn} and {cn + dn} are sequences in (0, 1). Using
this iterative approach, we derive both weak and strong convergence theorems for Garcia-Falset mappings in
uniformly convex Banach spaces, as well as a conclusion pertaining to the presence of �xed points for these
mappings. All known results supporting the proving of key theorems will be detailed in the next section.
Finally, the application of compressed sensing signal reconstruction will be studied in the last section, and
the results will be compared to those of Noor [7] and Thakur et al. [16].

2. Main Results

We assume that C is a nonempty closed convex subset of a real Banach space X and T : C → C is
a Garcia-Falset mapping for the rest of this section. Recall that if a �xed point set {z ∈ C | Tz = z} is
nonempty and for every �xed point z ∈ C and for each x ∈ C,

∥z − Tx∥ ≤ ∥z − x∥,

then a mapping T : C → C is said to be quasi-nonexpansive.

Lemma 2.1. Let the �xed point set of T is nonempty and let {xn} be a sequence de�ned by the iteration (1)
where x0 ∈ C. Then lim

n→∞
∥xn − p∥ exists for any �xed point p.

Proof. Let p be a �xed point of T . Since the mapping T is quasi-nonexpansive by [3, Proposition 1], we have

∥Tzn − p∥ ≤ ∥zn − p∥ ≤ (1− en)∥xn − p∥+ en∥Txn − p∥ ≤ ∥xn − p∥. (2)

By (2), we obtain

∥Tyn − p∥ ≤ ∥yn − p∥ ≤ (1− cn − dn)∥zn − p∥+ cn∥Txn − p∥+ dn∥Tzn − p∥
≤ (1− cn − dn)∥xn − p∥+ cn∥xn − p∥+ dn∥xn − p∥
= ∥xn − p∥. (3)

By (2) and (3), we have

∥xn+1 − p∥ ≤ (1− an − bn)∥Txn − p∥+ an∥Tyn − p∥+ bn∥Tzn − p∥
≤ (1− an − bn)∥xn − p∥+ an∥xn − p∥+ bn∥xn − p∥
= ∥xn − p∥. (4)

It is noticeable that {∥xn − p∥} is bounded and nonincreasing for each �xed point p, that is, lim
n→∞

∥xn − p∥
exists.

The proof of the main theorem can be supported by the following Schu's lemma.
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Lemma 2.2. [9] Let X be a uniformly convex Banach space and let {δn} be a sequence such that 0 < δ̄ ≤
δn ≤ δ∗ < 1 for all n ≥ 1 and for some positive real numbers δ̄, δ∗. If sequences {an} and {bn} in X
are such that lim sup

n→∞
∥an∥ ≤ q, lim sup

n→∞
∥bn∥ ≤ q and lim

n→∞
∥δnan + (1 − δn)bn∥ = q for some q ≥ 0, then

lim
n→∞

∥an − bn∥ = 0.

Theorem 2.3. Let X be uniformly convex and let {xn} be a sequence de�ned by the iteration (1), where
x0 ∈ C and {dn} is bounded away from 0 and 1 for all n ≥ 0. The �xed point set of T is nonempty if and
only if {xn} is bounded and lim

n→∞
∥Txn − xn∥ = 0.

Proof. Suppose that the �xed point set of T is nonempty and let p be a �xed point of T . By Lemma 2.1,
there exists r ≥ 0 such that r = lim

n→∞
∥xn − p∥ and the sequence {xn} is bounded. Next, we will show that

lim
n→∞

∥Txn − xn∥ = 0. Taking lim sup in (2), we obtain

lim sup
n→∞

∥zn − p∥ ≤ lim sup
n→∞

∥xn − p∥ = r. (5)

By the quasinonexpansiveness of T , we have

lim sup
n→∞

∥Txn − p∥ ≤ lim sup
n→∞

∥xn − p∥ = r. (6)

On the others hand,

∥xn+1 − p∥ ≤ (1− an − bn)∥Txn − p∥+ an∥Tyn − p∥+ bn∥Tzn − p∥
≤ (1− bn)∥xn − p∥+ bn∥zn − p∥.

Therefore,

∥xn+1 − p∥ − ∥xn − p∥ ≤ bn(∥xn+1 − p∥ − ∥xn − p∥) ≤ ∥zn − p∥ − ∥xn − p∥,

that is,

∥xn+1 − p∥ ≤ ∥zn − p∥.

Taking lim inf in the above inequality, we get

r ≤ lim inf
n→∞

∥xn+1 − p∥ ≤ lim inf
n→∞

∥zn − p∥ ≤ lim sup
n→∞

∥zn − p∥ ≤ r.

Hence,

lim
n→∞

∥(1− en)(xn − p) + en(Txn − p)∥ = lim
n→∞

∥zn − p∥ = r. (7)

Combining (5)-(7) and Lemma 2.2, we can conclude that lim
n→∞

∥Txn−xn∥ = 0. Conversely, suppose that the

sequence {xn} is bounded and lim
n→∞

∥Txn − xn∥ = 0. Next, suppose that p ∈ A(C, {xn}). Since T satis�es

condition (E), the following relation is obtained:

r(Tp, {xn}) = lim sup
n→∞

∥xn − Tp∥

≤ lim sup
n→∞

(µ∥Txn − xn∥+ ∥xn − p∥)

≤ lim sup
n→∞

∥xn − p∥

= r(p, {xn}).

Therefore, Tp ∈ A(C, {xn}). By the uniqueness of asymptotic centers, we have p = Tp, that is, the �xed
point set of T is nonempty.
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Suantai determined the following lemma, which we will use to establish the next outcome.

Lemma 2.4. [11] Let X be a Banach space that satis�es Opial's property and let {an} be a sequence in X.
Let a, b in X be such that lim

n→∞
∥an − a∥ and lim

n→∞
∥an − b∥ exist. If {ani} and {ami} are subsequences of

{an} that weakly converge to a and b, respectively, then a = b.

Theorem 2.5. Let X be uniformly convex with Opial's property. Let T and {xn} be the same in Theorem
2.3 and the �xed poined set of T is nonempty. Then {xn} weakly converges to a �xed point of T .

Proof. We have {xn} is bounded sequence, lim
n→∞

∥xn−p∥ exists for all �xed point p and lim
n→∞

∥xn−Txn∥ = 0

by Lemma 2.1 and Theorem 2.3. Let {xni} and {xmi} be subsequences of {xn} weakly converging to z1 and
z2, respectively. Then lim

i→∞
∥xni − Txni∥ = lim

i→∞
∥xmi − Txmi∥ = 0. We obtain z1, z2 ∈ C since C is closed

and convex, also by Mazur's theorem. As the demiclosedness at zero of I − T from [3, Theorem 1], we have
z1, z2 are �xed points. By Lemma 2.4, we can conclude that z1 = z2. Therefore, {xn} weakly converges to
a �xed point of T .

The next two results present strong convergence for Garcia-Falset mappings.

Theorem 2.6. Let C be a nonempty, compact and convex subset of a uniformly convex Banach space X.
Let T and {xn} be as same as in Theorem 2.3. If the �xed point set of T is nonempty, then {xn} strongly
converges to a �xed point of T .

Proof. This proof is the same as the proof of [17, Theorem 3.4].

Theorem 2.7. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X. Let
T and {xn} be as same as in Theorem 2.3. If T satis�es the condition (I) in [10] and the �xed point set of
T is nonempty, then {xn} strongly converges to a �xed point of T .

Proof. The proof is the same as the proof of [17, Theorem 3.5].

3. Applications

We use our iterative method to solve the issue of retrieving the original signal from compressive measure-
ments in this section. Let x̄ ∈ RN and y ∈ RM be the original signal and the observed data, respectively.
Consider

y = Ax̄+ ε, (8)

where A ∈ RM×N (M < N) and ε ∈ RM represents the Gaussian noise with N(0, σ2). The compressive
sensing signal reconstruction described in the preceding equation is what we want to solve. However, it is
well known that solving (8) is identical to the LASSO problem:

min
x∈RN

1

2
∥Ax− y∥22 subject to ∥x∥1 ≤ ζ, (9)

where ζ > 0. (9) can be seen as the �xed point problem through the following settings:

T = PD(I −
1

∥A∥2
∇g), where g(x) =

1

2
∥Ax− y∥22 and D = {x ∈ RN : ∥x∥1 ≤ ζ}.

We have known that (I − κ∇g) is nonexpansive for any 0 < κ < 2
∥A∥2 (see [4]). In addition, PD has closed

forms which is the projection onto the closed l1 ball in RN (see [2]). Then, for (9), we provide a numerical
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solution. We look at how the CC-iteration (1) behaves and compare it to two other iterative methods: the
Noor iteration [7] and the TTP-iteration [16]. The Noor iteration was de�ned as follows: x0 ∈ C and

zn = (1− γn)xn + γnTxn,

yn = (1− βn)xn + βnTzn,

xn+1 = (1− αn)xn + αnTyn,

for all n ≥ 0, where {αn}, {βn}, {γn} are sequences of real numbers in (0, 1), and the TTP-iteration was
de�ned as follows: x0 ∈ C and

zn = (1− γn)xn + γnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)Tzn + αnTyn,

for all n ≥ 0, where {αn}, {βn}, {γn} are sequences of real numbers in (0, 1). Let N = 212 and M = 211

be the size of signal. Suppose that there are m nonzero elements in the original signal, then generate the
Gaussian matrix A by using randn(M,N), σ = 0.1 and ζ = m. Choose x0 = Aty as the initial point. For

any n ≥ 0, let αn = 3n+3
4n+12 , βn = cn =

√
15n+10−(3n+3)

1
4

10
√
15n+10

, γn = en =
√

n+1
16n+15 , an = 4n+4

5n+15 , bn = n+1
10n+30 and

dn =
4
(√

15n+10−(3n+3)
1
4

)
5
√
15n+10

. Then, we compare the accuracy between the recovered signals with the mean-

squared error: MSEn = 1
N ∥xn − x̄∥2 < 5× 10−5.

Iterative schemes
m Nonzero Elements

m = 25 m = 50 m = 100

Noor
Elapsed Time (s) 0.1346 0.2339 1.4834

No. of Iter. 85 171 949

TTP
Elapsed Time (s) 0.0815 0.1423 1.0501

No. of Iter. 49 101 593

CC
Elapsed Time (s) 0.0594 0.0951 0.5642

No. of Iter. 38 76 426

Table 1: Three iterative methods are numerically compared.

In Table 1, di�erent numbers of nonzero elements were used in the numerical experiments: m = 25, 50
and 100. For each iterative method in these three situations, the elapsed periods and number of iterations
are recorded. The CC-iteration uses less time on average than the other two iterative methods. Likewise,
the CC-iteration's number is lower than the others. We also show the recovery signals for m = 100 in
Figure 1. In these speci�c instances, iteration enhances the numerical results. We compute the errors of each
reconstructed signal in Figure 2 to detect the di�erences between these outcomes.
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Figure 1: From top to bottom: the original signal, the measurement, and the recovery signals by the Noor iteration, the TTP-
iteration and CC-iteration, respectively when m = 100.
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Figure 2: Mean-squared error versus number of iterations when m = 100.

Conclusion

In conclusion, we solve the �xed points of Garcia-Falset mappings using an up-to-date iterative technique.
Furthermore, under speci�c situations, we con�rm the iterative scheme's weak and strong convergence �nd-
ings. The iterative technique was then applied to the problem of signal recovery in compressed sensing. When
compared to other iterative systems, the numerical studies of our iterative method yield better results.
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