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            A New Unit Root Test Against LSTAR Nonlinearity 
without Threshold 

Atilla Hepkorucu1  

Eşiksiz LSTAR Doğrusal-dışılığına Karşı Yeni Bir Birim Kök 
Testi 

A New Unit Root Test Against LSTAR Nonlinearity 
without Threshold 

Öz 

Çalışmada, eşik içermeyen durağan LSTAR doğrusal-dışı 
yapısı alternatifine karşı basit bir birim kök testi 
önerilmiştir. Monte Carlo simülasyonları ile kritik 
değerler, boyut ve güç özellikleri incelenmiştir. 
Geliştirilen testin gücü, doğrusal Dickey ve Fuller (DF) 
(1979) ve doğrusal olmayan Kapetanios, Shin ve Snell 
(KSS) (2003) birim kök testleri ile karşılaştırılmıştır. Eşik 

etkisi olmadığı varsayılarak geliştirilen test (𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0), 

karşılaştırılanlara göre daha uygundur. Testin ampirik 
uygulaması OECD ülkeleri ve Avrupa 1961(i)-1986(iv) 
endüstriyel üretim verileri için yapılmıştır. Uygulama 
kısmında kullanılan veriler, LSTAR model yapısına uygun 
olduğu için seçilmiştir. Çalışmanın literatüre katkısı, 
eşiksiz LSTAR model yapısına sahip zaman serilerinin 
birim kök yapısını açıklayan alternatif bir test 
mekanizması elde etmektir. Ampirik uygulama sonuçları 
göstermektedir ki, testin kullanımı ilgili model yapısı 
altında uygundur. 

Abstract 

In this paper, a simple unit root test was proposed 
against the alternative of stationary LSTAR nonlinearity 
without a threshold effect. The critical values, size and 
power properties were examined with Monte Carlo 
simulations. The power of the developed test was 
compared with linear Dickey and Fuller (DF) (1979) and 
nonlinear Kapetanios, Shin and Snell (KSS) (2003) unit 

root tests. The developed test (𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0) assumed that 

no-threshold effect is more suitable than the 
comparable ones. The empirical application of the test 
was carried out for industrial production data from OECD 
countries and Europe 1961(i) - 1986(iv). The data used in 
the application part has been chosen, because it is 
suitable for the LSTAR model structure. The contribution 
of the study to the literature is to obtain an alternative 
test mechanism that explains the unit root structure of 
time series LSTAR model structure without a threshold. 
Empirical application results show that the use of the 
test is appropriate under the relevant model structure. 
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1. Introduction 

The introduction of smooth regime switching is aimed at the STAR (smooth threshold 
autoregressive) model which is constructed by Teräsvirta and Anderson (1992). Using a 
nonlinear process is an alternative description of smooth adjustment, because the adjustment 
is continuous over time. Recently, it has been strongly accepted that economic time series 
can be modeled nonlinearly. This nonlinearity can be caused by regime changes, business 
cycle, structural breaks or the data generation process. The differentiation of the data 
movements in the nonlinear form can be explained by STAR instead of discrete change. It 
should also be considered that the transition between regimes may continue smoothly for 
several periods. 

The TAR (threshold autoregressive) model is a predecessor of the STAR model that 
enables transition across regimes only. However, the transition between regimes does not 
occur suddenly and the transition mechanism needs to be explained. But it cannot explain the 
transitional phase. In the TAR model, the transition between regimes is sharply gradual. The 
basic difference between the STAR and TAR models is that the adjustment approaches 
smoother rather than the discrete adjustment to STAR model. The smooth transition is 
accepted as more adequate for economic cycles (Henry and Shields, 2004, p. 486). In the 
STAR model structure, it is allowed the change of the autoregressive coefficient. This change 
is determined by a stimulus variable; It is determined by the deviation function, which is 
determined by the distance from the threshold value. If the variation of the series is smooth 
within itself, two basic situations are taken into account while modeling the structure in 
applications. If the determined function is exponential, the ESTAR structure, which takes into 
account the quadratic distance, will be considered. If it is similar in structure to the logistic 
function, taking into account the Euclidean distance, The STAR structure is used. Despite the 
smooth transition between the regimes of the STAR models, if the distance to the threshold 
value gets larger, it gains a segmented linear appearance and may appear suitable for TAR 
models. This is where the most important difference between ESTAR and LSTAR structures 
lies. So, to understand the difference of the models, mathematical structures can be 
examined in the following equations. The transition functions of these structures with 
different 𝜃 mean reversion speeds as 0.05, 0.1, 0.5 are visualized in Figure 1.  

 

TAR model: 𝑦𝑡 = {
  𝛽1𝑦𝑡−1 + 𝜀𝑡 𝑖𝑓  𝑦𝑡−1 ≤ 𝑐  
𝛽2𝑦𝑡−1 + 𝜀𝑡 𝑖𝑓  𝑦𝑡−1 > 𝑐

  

 
Logistic STAR (LSTAR) model: 𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝛾𝑦𝑡−1(1 + exp (−𝜃(𝑦𝑡−𝑑 − 𝑐)))−1 + 𝜀𝑡   

 
Exponential STAR (ESTAR) model: 𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝛾𝑦𝑡−1(1 − exp (−𝜃(𝑦𝑡−𝑑 − 𝑐)2)) + 𝜀𝑡   
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Figure 1: TAR, ESTAR and TAR model transition functions with different mean reversions 
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In addition, STAR model can reflect the arbitrage behavior, depict economic variables 

explained by the rates, and illustrate the complicated and chaotic dynamic behavior of 
economic variables. This topic was taken into account by Gregoriou and Kontonikas (2009), 
Guidolin et al. (2009), Yoon (2010) and Pavlidis et al. (2013). The different transition functions 
in the STAR model reveal different types of regime-switching models. If a logistic function is 
used as a transition function, the LSTAR model is created (Dijk et al., 2002, p. 2-4). The LSTAR 
model implies that the time series could have different regimes, which may have different 
dynamics, but the transition mechanism links them smoothly. In addition, the ESTAR model 
suggests that regimes with similar dynamics can contain different transition dynamics in the 
data generation process (Sarantis, 1999, p. 33). These two models are frequently used in 
various applications lately to explain nonlinear behavior of economic variables. These 
potentially adaptable models were examined in the studies of Teräsvirta (1994), Escribano 
and Jordá (2001), Chen and Kuan (2002) and Chen (2003). Applications of LSTAR models are 
allowed for regime-switching behavior and to describe modeling asymmetric cycles such as 
expansions and recessions appropriate. Previous reviews of the smooth transition model 
include Teräsvirta and Anderson (1992), Granger and Teräsvirta (1993), Leybourne et al. 
(1998), Potter (1999) and Hall et al. (2001). 

There are two components in the STAR model. One of these allows switching regimes in a 
smooth manner and also can be described as a monotone function. The other part is related 
to the behavior of two different regimes continuum, associated with the extreme values of 
the transition function. The exhibition of the two regimes is concretized depending on 
whether it is above or below the equilibrium level. In addition, the adjustment speed varies 
with the deviation from the equilibrium permanently (Puspaningrum, Lin and Gulati, 2013, p. 
558). The logistic transition function characterizes the nonlinear part of the LSTAR model and 
it is identified by probability values. It also implies the asymmetric behavior of the time series. 
For defining and modeling nonlinear time series should take a nonlinear-specific approach. 
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Otherwise, describing a nonlinear time series with conventional linear approaches will cause 
modeling error. This error also implies that the behavior of the transition function is ignored. 

Zhang (2013) applied Monte Carlo simulation to show the linear spurious regression 
phenomenon between two independent partial units for TAR, LSTAR and ESTAR data 
generation processes (DGP) based on the model. Under these conditions, the re-estimation of 
regressions by adding an auto-regressive parameter removes this phenomenon. This study 
also points out that these nonlinear model structures can be identified with overestimated 
linear restrictions by adding a lag. Adding higher order lags can help to explain the time series 
sufficiently. However, even assuming that there is no modeling error, the explanation of the 
nature of changing regimes will be neglected. Therefore, if a nonlinear model can be 
determined by using linear conditions, its unit root structure can be examined by using 
standard linear tests under the null hypothesis by accepting power loss. Leybourne et al. 
(1998), Hamori and Tokihisa (1997) and Nelson et al. (2001) show that the standard linear 
tests are affected by size distortions if there is a structural break or regime switching in the 
time series. Many unit root tests have also been developed under nonlinear restrictions. 
Pippenger and Goering (1993), Balke and Fomby (1997), Enders and Granger (1998), Berben 
and van Dijk (1999), Caner and Hansen (2001) and Lo and Zivot (2001) indicate that standard 
linear unit root tests are performed poorly in nonlinear situations. However, there are studies 
that show the opposite. For example, Zhang (2016) declares that the ADF and KSS have better 
power characteristics than the PP, M-TAR, and inf-t tests for nonlinear DGP based on the 
model. Although the ADF test is chosen as the most robust test among the linear and 
nonlinear stationary tests, the power properties of the near-unit root process is known to be 
low. In this case, the need to examine the power properties of the ADF unit root test together 
with other tests for structures with nonlinear DGP draws attention. 

2. Unit Root Structure under LSTAR Nonlinearity 

The LSTAR model is assumed as follows. Let the model structure be redefined by 
considering the first differences of the time series. It is a logistic function that gives 
nonlinearity to the structure, and the transition variable is determined as 𝑦𝑡−𝑑. For the 
transition variable, it was assumed that d = 1 to clarify the empirical practices. 

𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝛾𝑦𝑡−1(1 + exp (−𝜃(𝑦𝑡−𝑑 − 𝑐)))−1 + 𝜀𝑡                                 (1) 
△ 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝛾𝑦𝑡−1(1 + exp (−𝜃(𝑦𝑡−𝑑 − 𝑐)))−1 + 𝜀𝑡                 (2) 

The first-order autoregressive term becomes as 𝜙 = 𝛽 − 1. In the LSTAR model 𝜃 refers to 
the measure of reversion speed. The threshold parameter 𝑐 is another term of the ESTAR 
model that can be explained as an exhibition of time series behavior such as a repressed or 
broken appearance when the time-series approach it. This can be interpreted as a change in 
the regime when the threshold approached. When moving away from threshold 𝑐, the 
instability of the time series increases. If the stationary of the return series is being 
questioned, it can be assumed that this assumption is correct. As such, these parameters in 
the LSTAR model (the reversion speed and threshold value) must be identified. In this way, 
the unit root structure of time series can be accurately defined. Under the assumption of 𝜃 ≥
0 in the model structure, the realization of 𝛾 < 0 and 𝛾 + 𝜙 < 0 indicates global stationary. 
In the following part, developed unit root tests for LSTAR model structure in recent years are 
examined. 



Ağustos 2022, 17 (2) 

315 

Leybourne et al. (1998) examined stationarity around a linear trend with an abrupt break 
by describing the situation as a smooth transition one trend to another. They developed a 
Dickey-Fuller type unit root test against LSTAR nonlinearity by claiming under a stationary 
time series, including various forms of structural change in the deterministic structure. The 
nature of structural change can be described as a smooth transition that considers aggregate 
behavior to grade change of deterministic components rather than instantaneous ones. It can 
be seen in many economic time series. By using the nonlinear least squares (NLS) algorithm, 
estimation of deterministic component parameters is completed, and the residuals are 
calculated. The lag degrees of the obtained residuals are determined using the ordinary least 
squares (OLS) approach to apply the Dickey-Fuller type test mechanism. The power of the 
developed test compared with its linear-type origin of ADF and becomes more successful. This 
approach is suitable for determining model parameters of a nonlinear LSTAR structure; 
however, the aim is missed. The efficiency of approach is dependent on determining correctly 
the deterministic parameters of LSTAR. If the parameters obtained by NLS are biased, the 
model determination and unit root test approach will be misleading. The advantage of this 
approach is seen that it is quite practical to use. 

Sollis (2004) developed a unit root test that combines Enders and Granger (1998) and 
Leybourne et al. (1998). Their methodology uses the Dickey-Fuller tests generalize re-defining 
nonlinearity as an alternative. Enders and Granger (1998) modeled asymmetric adjustment 
toward a long-run attractor as a threshold. The value of combining these similar tests is 
shown with an empirical application. The results were influenced by rejection of the unit-root 
hypothesis for the chosen data. However, the combination of tests reveals statistically 
significant evidence against the unit root hypothesis for all time series. The methodology is 
similar to that Leybourne et al. (1998), but the difference is a dummy variable that takes value 
according to the threshold value of obtained residuals. The power characteristics of combined 
test are compared with its origins, as well as the ADF. Briefly, the most important result of the 
study is that ignoring large breaks in deterministic parameters leads to a significantly greater 
loss in power than ignoring asymmetric adjustment when testing for a unit root. Another 
remarkable point is that the ADF unit root test yields results close to those of the comparative 
tests when the break is small. As summarized previously, ignoring breaks is much more 
effective in linear unit root tests because of the power loss. It was concluded that ADF are a 
good alternative when testing the power of unit root tests against LSTAR nonlinearity when 
structural breaks are not taken into account. 

Eklund (2003) aimed to determine a unit root test against the alternative of logistic 
smooth transition autoregressive nonlinearity. The novelty of this approach is that 
nonlinearity is explained under the Taylor expansion. The obtained auxiliary regression is 
redefined under the Taylor expansion of the difference equation to eliminate the definition 
problem defined by Luukonen et al. (1988). The use of the Taylor expansion, especially the 
ESTAR model structure in unit root tests is an application that is included in many nonlinear 
unit root tests. This can also be seen in the tests listed by KSS (2003), Sollis (2009) and Kruise 
(2011). Thus, the problem of determining the coefficients describing the nonlinear structure is 
eliminated by redefining the difference equation. The developed test structure considers 
determining unit root structure under nonlinearity. It is seen as the obtained auxiliary 
regression similarity with the ADF test with constant, but also including one lag of △ 𝑦𝑡−1. 
However, when Taylor expansion is applied under the ESTAR structure, the auxiliary 
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regressions turn into two or higher-order polynomial forms. Therefore, according to the 
model, the nonlinearity of the ESTAR model is more effective than that of the LSTAR model. 
The auxiliary regression obtained in this study is linear. It is thought that it would be 
incomplete to explain the nonlinear form in a linear structure. Therefore, our study was 
developed from this point. Unit root applications, which take into account the recently 
developed nonlinearity of LSTAR, have been examined, and an alternative test application has 
been implemented. 

2.1. Unit Root Tests against LSTAR Nonlinearity under the Assumptions of Symmetric-
Asymmetric Reversions and Threshold Effect.  

A logistic smooth transition autoregressive model without threshold (𝑐 = 0) was 
identified by inspiration of the redefinition of the first differences of time series by Taylor 
expansion recently used. The aim of this redefinition extinguish of the parameter estimation 
problem was introduced by Davies (1987), KSS (2003) and others expressed in nonlinear 
models. This is because the values of the nonlinear parameters are not known. The reason of 
assuming threshold value is assumed to be zero 𝑐 = 0 to avoid the same problem. Our aim is 
not to estimate the LSTAR model parameters correctly, but to determine its unit root 
structure in a correct and simple way. In many applications, the transition function parameter 
𝑦𝑡−𝑑 is accepted as 𝑦𝑡−1 for ease of solution. This is accepted in the continuation of the study. 

𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝛾𝑦𝑡−1(1 + exp (−𝜃(𝑦𝑡−𝑑)))−1 + 𝜀𝑡          (1) 

This new approach is inspired by Eklund (2003) by Taylor expansion to better explain 
nonlinearity than standard linear models. Thus, the explanation of nonlinearity reaches a 
more reasonable auxiliary model. Similarly, we assumed a threshold value of zero in a 
nonlinear unit root structure. Under this assumption, the first difference in the time series is. 

△ 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝛾𝑦𝑡−1(1 + exp (−𝜃(𝑦𝑡−𝑑)))−1 + 𝜀𝑡          (2) 

For 𝛽 = 1 or 𝜙 = 0 shows that the unit root structure. If we assume that there is a unit 
root in the time series, the first difference is obtained as follows: 

△ 𝑦𝑡 = 𝛾𝑦𝑡−1(1 + exp (−𝜃(𝑦𝑡−𝑑)))−1 + 𝜀𝑡                            

(2.1) 

The first-order Taylor approximation around 𝑦 = 0 is applied to the auxiliary regression of 

the LSTAR structure. The auxiliary regression parameters were simplied as 𝛽1 =
1

2
𝜃 and 𝛽2 =

1

4
𝛾𝜃, so the s-shaped transition mechanism can mimic the transition mechanism. Therefore, 

auxiliary regression occurs in with two parts, one of which is linear by expression of 𝑦𝑡−1 and 
the other is nonlinear by expression of𝑦𝑡−1

2. 𝛽1, 𝛽2 terms contain 𝜃 the speed of reversions. 
𝛽2 term also contains 𝛾 parameter. In short, the following situations where𝛽1 > 0, 𝛽2 < 0 are 
pointed out on the coefficient values of the auxiliary regression obtained. 

△ 𝑦𝑡 =
1

2
𝜃𝑦𝑡−1 +

1

4
𝛾𝜃𝑦𝑡−1

2 + 𝜀𝑡                       (2.2) 

△ 𝑦𝑡 = 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−1
2 + 𝜀𝑡                    (2.2.1) 

Therefore, the null hypothesis is 𝐻0: 𝛽1 = 𝛽2 = 0 against the alternative 𝐻0: 𝛽1 ≠ 𝛽2 ≠ 0. 
The standard Wald test is appropriate for deriving the critical values. This is because standard 
critical values of the F-test cannot be used because the null hypothesis contains a unit root 
structure. Let denote the test statistics for the null hypothesis for zero mean, non-zero mean 
and deterministic trend cases. 𝑦𝑡 is replaced with 𝑦̂𝑡 = 𝑦𝑡 − 𝜇 for non-zero case. The model 
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constant 𝜇 is determined as the mean of time series 𝑦𝑡. 𝑦𝑡 is replaced with 𝑦̂̂𝑡 = 𝑦𝑡 − 𝛼̂0 −
𝛼̂1𝑡 for the deterministic trend case. The model constant and trend term parameters 𝛼̂0, 𝛼̂1 
for the developed 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 tests are chosen with least squares from estimation of 𝑦𝑡. Then, 
a finite sample of critical values was obtained under the data generation process. 10000 times 
simulated series were used at each sample size 𝑡 = 50, 100, 200, 500, 1000 ,10000. The 
critical values of the developed test are tabulated as follows for %1, %5 and %10 statistical 
significances. 

Table 1: The critical values of extended developed 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 tests 

Number of observations 
Zero mean model Non-zero mean model Deterministic trend model 

%1 %5 %10 %1 %5 %10 %1 %5 %10 

50 6.88 4.73 3.81 6.91 4.66 3.76 6.77 4.74 3.85 

100 6.72 4.71 3.86 6.65 4.58 3.67 6.40 4.46 3.63 

200 6.60 4.58 3.72 6.24 4.48 3.63 6.66 4.56 3.68 

500 6.46 4.37 3.56 6.34 4.34 3.51 5.79 3.96 3.21 

1000 6.27 4.36 3.52 6.24 4.42 3.58 5.23 3.62 2.90 

10000 6.17 4.24 3.46 5.01 3.44 2.77 5.84 4.10 3.38 

 

We investigated the size properties of the test with the null data generation process. The 
data generation process was as follows: 

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡 for 𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡 under assumption of 𝑢𝑡~𝑖𝑖𝑑(0,1).  

Where 𝜌 = {−0.5, 0, 0.5} for the sample size 𝑡 = 50, 100, 200, 500, 1000 ,10000, 5000 
times were simulated. Test statistics are computed from the relevant model with one lag of 
∆𝑦𝑡 for 𝜌 = {−0.5, 0.5} and the nominal size was set to 5%. It is accepted that models are 
specified correctly, neither over nor less by in terms of lag. When the results of the size 
properties are examined, it is seen that the obtained results are examined for all three model 
structures, and the size distortion is mostly in the model with a deterministic trend. In 
general, the size distortions increased as the sample size increased. 

 

Table 2: The size properties of extended developed 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 tests 

Number of Observation 
Zero mean model Non-zero mean model Deterministic trend model 

0.5 0 -0.5 0.5 0 -0.5 0.5 0 -0.5 

50 0.0506 0.0502 0.0600 0.0562 0.0542 0.0474 0.0480 0.0424 0.0506 

100 0.0420 0.0534 0.0548 0.0548 0.0410 0.0514 0.0400 0.0460 0.0528 

200 0.0550 0.0488 0.0380 0.0506 0.0388 0.0426 0.0364 0.0422 0.0342 

500 0.0474 0.0580 0.0596 0.0324 0.0414 0.0468 0.0432 0.0556 0.0502 

1000 0.0442 0.0552 0.0386 0.0494 0.0324 0.0292 0.0640 0.0444 0.0558 

10000 0.0404 0.0396 0.0582 0.0676 0.0768 0.0826 0.0662 0.0748 0.0838 
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The finite sample power calculation results were computed for the sample size at 𝑡 =
50, 200, 1000 nominal sizes at 5% and 10000 times were repeated. The results are examined 
without adding a lag. The combination of 𝛾 = {−1.50, −1.00, −0.50 , −0.01} and 𝜃 =
{0.01, 0.05, 0.10, 0.50, 1.00} values are employed.  

In the case of non-zero model, 𝑦𝑡 is replaced with 𝑦𝑡
∗ = 𝑦𝑡 − 𝜇̂ to deal with a non-zero 

mean. 𝜇̂ is mean of 𝑦𝑡. In addition, the deterministic trend model 𝑦𝑡 is replaced with 𝑦𝑡
∗ =

𝑦𝑡 − 𝛼̂1 − 𝛼̂2𝑡 to deal with non-zero mean and deterministic trend. 𝛼̂1 and 𝛼̂2 population 
parameters were estimated by least squares. KSS (2003), Dickey-Fuller (1979) and developed 
tests 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 were compared to determine the power characteristics. The results are 

tabulated for each model in Table 3, 4 and 5. The specific lag lengths were chosen by using 
information criteria for all experimentation.  

Table 3: The comparison of power properties of KSS (2003), DF (1979) and developed test 
𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 (LSTAR) for zero mean models 

Zero mean model 
DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 

T=50 T=200 T=1000 

𝛾 = −1.50 𝜃 = 0.01 1.000 0.803 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.05 1.000 0.799 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.10 1.000 0.780 0.999 1.000 0.999 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.50 0.991 0.462 0.982 0.997 0.855 0.997 0.996 0.960 0.997 

𝛾 = −1.50 𝜃 = 1.00 0.220 0.035 0.230 0.238 0.024 0.262 0.246 0.005 0.278 

𝛾 = −1.00 𝜃 = 0.01 1.000 0.431 0.966 1.000 0.998 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.05 0.999 0.424 0.962 1.000 0.998 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.10 0.999 0.419 0.956 1.000 0.996 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.50 0.893 0.231 0.787 0.960 0.542 0.966 0.959 0.726 0.966 

𝛾 = −1.00 𝜃 = 1.00 0.142 0.018 0.147 0.157 0.009 0.169 0.154 0.002 0.166 

𝛾 = −0.50 𝜃 = 0.01 0.930 0.085 0.359 1.000 0.886 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.05 0.927 0.083 0.358 1.000 0.869 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.10 0.916 0.084 0.357 1.000 0.838 1.000 1.000 0.999 1.000 

𝛾 = −0.50 𝜃 = 0.50 0.426 0.037 0.205 0.561 0.122 0.549 0.596 0.132 0.629 

𝛾 = −0.50 𝜃 = 1.00 0.083 0.005 0.074 0.096 0.004 0.097 0.100 0.01 0.097 

𝛾 = −0.01 𝜃 = 0.01 0.072 0.001 0.038 0.104 0.002 0.030 0.361 0.009 0.052 

𝛾 = −0.01 𝜃 = 0.05 0.071 0.001 0.040 0.098 0.001 0.024 0.338 0.008 0.056 

𝛾 = −0.01 𝜃 = 0.10 0.057 0.001 0.042 0.078 0.001 0.038 0.243 0.006 0.058 

𝛾 = −0.01 𝜃 = 0.50 0.041 0.001 0.050 0.055 0.001 0.041 0.113 0.003 0.057 

𝛾 = −0.01 𝜃 = 1.00 0.046 0.000 0.053 0.056 0.001 0.044 0.116 0.002 0.060 

Note: In the ADF test, the critical values were used -1.947 for 50 observations, -1.942 for 200 observations and -1.941 
for 1000 observations. The critical value was used -2.22 in the KSS test. In the developed test, the critical values were 
used 4.73 for 50 observations, 4.58 for 200 observations and 4.36 for 1000 observations. 
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Table 4: The comparison of power properties of KSS (2003), DF (1979) and developed test 
𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 (LSTAR) for non-zero mean models 

Non-zero mean model  
DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 

T=50 T=200 T=1000 

𝛾 = −1.50 𝜃 = 0.01 1.000 0.940 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.05 1.000 0.941 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.10 1.000 0.936 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.50 0.989 0.812 0.984 0.999 0.954 0.999 0.999 0.977 0.999 

𝛾 = −1.50 𝜃 = 1.00 0.045 0.005 0.098 0.043 0.005 0.194 0.057 0.030 0.036 

𝛾 = −1.00 𝜃 = 0.01 1.000 0.716 0.969 1.000 0.999 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.05 1.000 0.712 0.970 1.000 0.999 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.10 0.999 0.698 0.966 1.000 0.998 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.50 0.904 0.554 0.829 0.985 0.808 0.989 0.986 0.846 0.989 

𝛾 = −1.00 𝜃 = 1.00 0.039 0.005 0.210 0.053 0.005 0.134 0.066 0.005 0.172 

𝛾 = −0.50 𝜃 = 0.01 0.925 0.258 0.369 1.000 0.972 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.05 0.925 0.254 0.365 1.000 0.970 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.10 0.922 0.250 0.375 1.000 0.956 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.50 0.046 0.006 0.093 0.047 0.006 0.173 0.783 0.651 0.780 

𝛾 = −0.50 𝜃 = 1.00 0.050 0.005 0.057 0.046 0.004 0.087 0.091 0.066 0.092 

𝛾 = −0.01 𝜃 = 0.01 0.075 0.008 0.043 0.096 0.012 0.029 0.383 0.055 0.049 

𝛾 = −0.01 𝜃 = 0.05 0.070 0.008 0.042 0.102 0.011 0.032 0.357 0.055 0.052 

𝛾 = −0.01 𝜃 = 0.10 0.045 0.004 0.056 0.088 0.010 0.027 0.295 0.044 0.045 

𝛾 = −0.01 𝜃 = 0.50 0.043 0.004 0.057 0.061 0.005 0.044 0.081 0.006 0.051 

𝛾 = −0.01 𝜃 = 1.00 0.051 0.006 0.053 0.062 0.005 0.043 0.080 0.005 0.051 

Note: In the ADF test, the critical values were used as -2.921 for 50 observations, -2.875 for 200 observations and -
2.864 for 1000 observations. The critical value was used -2.93 in the KSS test. In the developed test, the critical values 
were used 4.66 for 50 observations, 4.48 for 200 observations and 4.42 for 1000 observations. 
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Table 5: The comparison of power properties of KSS (2003), DF (1979) and developed test 
𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 (LSTAR) for deterministic trend models 

Deterministic trend model 
DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 DF KSS 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 

T=50 T=200 T=1000 

𝛾 = −1.50 𝜃 = 0.01 0.998 0.825 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.05 0.999 0.823 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.10 0.999 0.820 1.000 1.000 0.999 1.000 1.000 1.000 1.000 

𝛾 = −1.50 𝜃 = 0.50 0.945 0.678 0.990 0.999 0.922 1.000 0.999 0.988 0.999 

𝛾 = −1.50 𝜃 = 1.00 0.091 0.001 0.096 0.097 0.001 0.106 0.344 0.094 0.416 

𝛾 = −1.00 𝜃 = 0.01 0.898 0.476 0.963 1.000 0.999 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.05 0.901 0.472 0.962 1.000 0.999 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.10 0.887 0.470 0.963 1.000 0.997 1.000 1.000 1.000 1.000 

𝛾 = −1.00 𝜃 = 0.50 0.673 0.241 0.823 0.973 0.753 0.990 0.983 0.819 0.991 

𝛾 = −1.00 𝜃 = 1.00 0.077 0.001 0.085 0.156 0.003 0.189 0.163 0.018 0.196 

𝛾 = −0.50 𝜃 = 0.01 0.310 0.103 0.366 1.000 0.907 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.05 0.305 0.101 0.361 1.000 0.897 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.10 0.294 0.100 0.350 0.999 0.878 1.000 1.000 1.000 1.000 

𝛾 = −0.50 𝜃 = 0.50 0.190 0.009 0.195 0.544 0.144 0.596 0.626 0.128 0.641 

𝛾 = −0.50 𝜃 = 1.00 0.060 0.002 0.063 0.057 0.001 0.057 0.056 0.001 0.099 

𝛾 = −0.01 𝜃 = 0.01 0.051 0.002 0.041 0.049 0.002 0.029 0.080 0.012 0.112 

𝛾 = −0.01 𝜃 = 0.05 0.052 0.002 0.037 0.052 0.001 0.037 0.080 0.010 0.098 

𝛾 = −0.01 𝜃 = 0.10 0.048 0.001 0.042 0.053 0.002 0.039 0.068 0.003 0.085 

𝛾 = −0.01 𝜃 = 0.50 0.047 0.001 0.048 0.050 0.001 0.040 0.058 0.001 0.085 

𝛾 = −0.01 𝜃 = 1.00 0.052 0.002 0.049 0.050 0.002 0.043 0.058 0.004 0.067 

Note: In the ADF test, the critical values were used -3.502 for 50 observations, -3.432 for 200 observations and -3.414 
for 1000 observations. The critical value was used -3.40 in the KSS test. In the developed test, the critical values were 
used 4.74 for 50 observations, 4.56 for 200 observations and for 3.62 1000 observations. 

 

It was determined that the power characteristics of the three tests were similar. However, 
when all the results were evaluated under the selected conditions, it was seen that the 
developed test 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 stood out a more. 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 was found to be as successful as its 
alternatives under the selected conditions. As the 𝛾 parameter of the LSTAR model 
approaches zero, the power of the evaluated tests decreases. As the speed parameter 𝜃 of 
the LSTAR model approaches zero, the power of the 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 increases. To summarize, the 
performance of the developed test is revealed when the transition speed slows down, that is, 
the transition becomes smoother. The high speed of the transition indicates that the model 
transitions suddenly between regimes. Under model structures with zero mean, non-zero 
mean, and deterministic trend variables, the evaluated tests show similar power behaviors. 
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3. Empirical results 

𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 is applied to the four-quarter differences industrial production growth rates of 

Austria, Belgium, Canada, Germany, Norway, Sweden, United States of America, Japan and 
Europe (OECD) which are sourced from the OECD database2. In this study, industrial 
production growth rates were used only as an application tool. The importance, its elements 
or its effects of these economic data for the national economies are not included. 

The macroeconomic rates from 1961 (i) to 1986 (iv) which were used by Teräsvirta and 
Anderson (1992). The results of this study show that these series can be successfully 
expressed using the LSTAR model structure. The logarithmic index series was assumed to be 
stationary by after taking the seasonal difference in the main paper, so we applied the same 
procedure. The main difference in the series used is that the base year taken for the creation 
of the index is 2015; the behavior of the data will remain the same, and only their values will 
change. The unit root structure of the series was analyzed using the developed test, ADF and 
KSS, and the results obtained were tabulated. Teräsvirta and Anderson (1992) chose a specific 
lag length by using Akaike information criteria. In all cases, we accept their modeling to 
investigate the unit root structure.  

 
2 The data were taken from https://data.oecd.org/industry/industrial-production.htm  

https://data.oecd.org/industry/industrial-production.htm
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Figure 2: The four-quarter differences Industrial production growth rates of selected countries 
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Table 6: The Unit root tests results of Industrial production growth rates  

Countries 
Zero mean model Non-zero mean model Deterministic trend model 

KSS ADF 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 KSS ADF 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 KSS ADF 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 

United States 
-1.670 
k=12 

-1.655*** 
k=12 

5.337** 
k=12 

-2.773*** 
k=12 

-2.477 
k=12 

3.909*** 
k=12 

-2.679 
k=12 

-2.357 
k=12 

3.913*** 
k=12 

Sweden 
-2.002*** 

k=8 
-2.079** 

k=8 
2.758 
k=8 

-2.252 
k=8 

-2.568 
k=8 

3.283*** 
k=8 

-2.245 
k=8 

-2.598 
k=8 

3.480 
k=8 

Norway 
-1.041 
k=12 

-1.041 
k=12 

1.042 
k=12 

-4.693* 
k=7 

-4.642* 
k=7 

10.769* 
k=7 

-4.641* 
k=7 

-4.629* 
k=7 

10.855* 
k=7 

Japan 
-1.778 
k=12 

-0.936 
k=12 

2.586 
k=9 

-2.759*** 
k=12 

-1.286 
k=12 

2.553 
k=9 

-2.791 
k=12 

-2.666 
k=10 

4.228*** 
k=10 

Germany 
-1.254 

k=4 
-2.556** 

k=4 
5.297** 

k=4 
-2.360 

k=4 
-2.854* 

k=8 
5.706** 

k=4 
-2.740 

k=7 
-3.169*** 

k=8 
8.976* 

k=6 

Europe (OECD) 
-1.344 

k=8 
-1.231 
k=12 

1.386 
k=8 

-1.843 
k=8 

-1.792 
k=12 

2.392 
k=8 

-1.875 
k=8 

-2.033 
k=12 

3.601 
k=8 

Canada 
-0.279 
k=12 

-1.562 
k=12 

4.399*** 
k=9 

-2.626 
k=9 

-3.176** 
k=9 

5.193** 
k=9 

-2.253 
k=9 

-3.526** 
k=9 

6.575* 
k=9 

Belgium 
-3.204* 

k=8 
-1.526 
k=12 

2.502 
k=8 

-2.338 
k=8 

-2.664** 
k=8 

3.507 
k=8 

-2.406 
k=8 

-3.140 
k=8 

5.030** 
k=8 

Austria 
-2.451** 

k=8 
-1.476 

k=8 
1.192 
k=8 

-1.712 
k=8 

-2.347 
k=8 

3.092 
k=8 

-2.668 
k=4 

-2.805 
k=8 

4.350*** 
k=8 

Note: In all tests, the relevant maximum number of lags was set at 12. The most appropriate lag value (k) in terms of model structure is 
given under the test statistics. The results obtained for the developed test were compared with the critical value obtained for 100 samples. 
Statistical significance of 1%, 5% and 10% is indicated by ***, ** and *. 
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Teräsvirta and Anderson (1992), determined that Japan and Europe (OECD) DGPs from 
1961 (i) to 1986 (iv) can be explained by LSTAR or ESTAR structures. Other countries, as 
Austria, Belgium, Canada, Germany, Norway, Sweden and the United States, are suitably 
explained by the LSTAR model structure. In the original study, the seasonal effect was 
removed by taking the difference of four quarters of the series. Therefore, the series is 
indexed values that become all ratios. Under the assumption of non-zero mean and 
deterministic trend structures for time series, the most successful test is shown as a 
developed test 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 by comparison with each other.  

4.Discussion 

This study aims to determine a simple unit root test against the alternative of logistic 
smooth transition autoregressive nonlinearity with a non-threshold. Recently, the re-
definition of nonlinear models, such as ESTAR, based on expressed alternatively by using 
Taylor expansion. This auxiliary regression which prevents the unknown coefficient issue of 
nonlinear structure with Taylor expansions, it is aimed at determining the unit root structure. 
After obtaining critical values, the developed test, in which assumptions are extended, 
examined its size and power characteristics. In particular, the power characteristics of this 
developed test gave better results in any conditions from comparing ones. The empirical 
application of data driven by Teräsvirta and Anderson (1992) supports this, but also shows the 
shortcomings of the test. In the main study, all the series were used in the form of LSTAR. 
Shortcomings can be expressed by neglecting regime changes caused by structural breakage. 
If structural breaks are not taken into account, it is reasonable to find the non-stationary for 
time series.  

Another shortcoming is that the threshold value is assumed to be zero. It is beneficial to 
re-define the LSTAR model for Taylor expansion, but smooth transaction models are based on 
behavioral changes. This behavioral change occurs when the time series approximates the 
threshold value. As a result, the developed test 𝐹𝐿𝑆𝑇𝐴𝑅,𝑐=0 could be used as an alternative to 
the questioning of unit root structure by considering the LSTAR structure in a simple way. It 
has been observed in the empirical experiment that the developed model is useful in practice. 
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