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On Generalized Recurrent and Generalized Concircularly Recurrent Weyl 

Manifolds 

İlhan GÜL*1 

Abstract 

In the present work, generalized recurrent and generalized concircularly recurrent Weyl 

manifolds are examined. Nearly quasi-Einstein Weyl manifolds are defined and it is proved that 

if a generalized recurrent or generalized concircularly recurrent Weyl manifold admits a special 

concircular vector field, then the manifold is a nearly quasi-Einstein Weyl manifold. Also, some 

other results are presented. 

Keywords: Generalized recurrent Weyl manifold, generalized concircularly recurrent Weyl 

manifold, nearly quasi-Einstein Weyl manifold 

 

1. INTRODUCTION 

In 1918, H. Weyl introduced a generalization of 

Riemannian geometry to unify electromagnetism 

with gravity as a fully geometric model [1]. A 

Weyl manifold is a conformal manifold equipped 

with a torsion free connection preserving the 

conformal structure, called a Weyl connection. 

An n-dimensional Riemannian manifold is said to 

be locally symmetric if ∇ 𝑅 = 0, where ∇ denotes 

the Levi-Civita connection and R is the 

Riemannian curvature tensor. Locally symmetric 

manifold has been generalized to recurrent 

manifolds [2], generalized recurrent manifolds 

[3]-[4], concircularly recurrent manifolds [5],  

generalized concircularly recurrent manifolds [6], 

Ricci recurrent manifolds [7],  generalized Ricci 

recurrent manifolds [8] etc. Recently, there 

are some studies on generalizations of symmetric 

manifolds [9-11]. 
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On the other hand, generalized recurrent and 

generalized projectively recurrent Weyl 

manifolds are introduced by Canfes [12]; 

generalized concircularly recurrent and 

conformally recurrent Weyl manifolds are 

defined by Arsan and Yıldırım [13]. 

A non-flat Riemannian manifold of dimension (n 

> 2) is called a generalized recurrent manifold if 

its curvature tensor 𝑅𝑖𝑗𝑘
ℎ  satisfies the condition 

∇𝑠𝑅𝑗𝑘ℎ
𝑖 = 𝐴𝑠𝑅𝑗𝑘ℎ

𝑖 + 𝐵𝑠(𝑔𝑗𝑘𝛿ℎ
𝑖  − 𝑔𝑗ℎ𝛿𝑘

𝑖 ),           (1) 

where 𝐴𝑠 and 𝐵𝑠 are two 1-forms, 𝐵𝑠 is non-zero 

[3]. If 𝐵𝑠 = 0, then the manifold is a recurrent 

manifold. 

A non-flat Riemannian manifold of dimension (n 

> 2) is called a generalized concircularly recurrent 

manifold [6] if 

Sakarya University Journal of Science 25(5), 1189-1196, 2021



∇𝑠�̃�𝑗𝑘ℎ
𝑖 = 𝐴𝑠�̃�𝑗𝑘ℎ

𝑖 + 𝐵𝑠(𝑔𝑗𝑘𝛿ℎ
𝑖 − 𝑔𝑗ℎ𝛿𝑘

𝑖 ),             (2) 

where 𝐴𝑠 and 𝐵𝑠 are two 1-forms, 𝐵𝑠 is non-zero. 

The concircular curvature tensor �̃�𝑗𝑘ℎ
𝑖  is defined 

by 

�̃�𝑗𝑘ℎ
𝑖 = 𝑅𝑗𝑘ℎ

𝑖 −
𝑟

𝑛(𝑛−1)
(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 ),             (3) 

where r is the scalar curvature of the manifold.       

If 𝐵𝑠 = 0, then the manifold reduces to a 

concircularly recurrent manifold. 

A non-flat Riemannian manifold of dimension (n 

> 2) is called a generalized Ricci recurrent 

manifold if its Ricci tensor 𝑅𝑖𝑗 satisfies the 

condition 

∇𝑠𝑅𝑖𝑗 = 𝐴𝑠𝑅𝑖𝑗 + 𝐵𝑠𝑔𝑖𝑗 ,     (4) 

where 𝐴𝑠 and 𝐵𝑠 are two 1-forms, 𝐵𝑠 is non-zero 

[8].  If 𝐵𝑠 = 0, then the manifold reduces to a 

Ricci recurrent manifold. 

A non-flat Riemannian manifold (n > 2) is called 

a nearly quasi Einstein manifold if the 

components of its Ricci tensor 𝑅𝑖𝑗 are non-zero 

and satisfy the condition 

𝑅𝑖𝑗 = 𝑎𝑔𝑖𝑗 + 𝑏𝐸𝑖𝑗      (5) 

where 𝑎, 𝑏 are scalars of which 𝑏 ≠ 0 and 𝐸𝑖𝑗 is a 

symmetric (0,2) tensor [14]. 

The above definitions for Weyl manifolds are all 

given in the next section. In this paper, we 

investigate generalized recurrent and generalized 

concircularly recurrent Weyl manifolds. 

2. PRELIMINARIES 

An n-dimensional differentiable manifold M 

having a conformal metric tensor g and a torsion-

free connection D satisfying the following 

condition 

𝐷𝑘 𝑔𝑖𝑗  =  2 𝜔𝑘 𝑔𝑖𝑗,                                                      (6) 

where 𝜔 is  a 1-form, is called a Weyl manifold 

and it is denoted by 𝑀𝑛(𝑔, 𝜔).  

If 𝜔 is locally a gradient, 𝑀𝑛(𝑔, 𝜔)  is conformal 

to a Riemannian manifold. 

Under the conformal change of the metric tensor 

g, 

�̃�𝑖𝑗  = 𝜆2 𝑔𝑖𝑗 , 𝜆 > 0 is a function,                    (7) 

the 1-form 𝜔 changes as follows: 

�̃�𝑘  = 𝜔𝑘  + 𝐷𝑘  𝑙𝑛 𝜆.                                                  (8) 

It is not hard to see that 𝑀𝑛(�̃�, �̃�)   satisfies the 

equation (6) and therefore, we obtain the same 

Weyl manifold ([15]-[17]). 

Throughout the paper, the Einstein convention of 

summing over the repeated indices will be 

adopted. 

We have the following basic tensors for a Weyl 

manifold [18]: 

𝑣𝑗 𝑊𝑗𝑘𝑙
𝑝 = (𝐷𝑘𝐷𝑙 − 𝐷𝑙𝐷𝑘)𝑣𝑝,                             (9) 

𝑊ℎ𝑗𝑘𝑙 = 𝑔ℎ𝑝𝑊𝑗𝑘𝑙
𝑝 ,                                                 (10) 

𝑊𝑖𝑗 = 𝑊𝑖𝑗𝑝
𝑝 = 𝑔ℎ𝑘𝑊ℎ𝑖𝑗𝑘,                                          (11) 

𝑊 = 𝑔𝑖𝑗𝑊𝑖𝑗 .                                                              (12) 

Here, 𝑊𝑖𝑗 and 𝑊 represent the Ricci and the 

scalar curvature tensor, respectively. 

From (9) it follows that 

𝑊𝑗𝑘𝑙
𝑝  = 𝜕𝑘  Γ𝑗𝑙

𝑝 − 𝜕𝑙Γ𝑗𝑘
𝑝  + Γℎ𝑘

𝑝 Γ𝑗𝑙
ℎ − Γℎ𝑙

𝑝 Γ𝑗𝑘
ℎ ,        (13) 

where 𝜕𝑘 =
𝜕

𝜕 𝑥𝑘 and Γ𝑘𝑙
𝑖  are Weyl connection 

coefficients and defined by 

Γ𝑘𝑙
𝑖 = {

𝑖

𝑘𝑙
} − 𝑔𝑖𝑚(𝑔𝑚𝑘𝜔𝑙 + 𝑔𝑚𝑙𝜔𝑘 − 𝑔𝑘𝑙𝜔𝑚). 

(14)  

Here, { 𝑖
𝑘𝑙

} are the Levi-Civita connection 

coefficients. 
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The following relations hold for a Weyl manifold 

[18]: 

𝑊𝑖𝑗𝑘𝑙 + 𝑊𝑖𝑗𝑙𝑘 = 0                                              (15) 

𝑊𝑖𝑗𝑘𝑙 + 𝑊𝑗𝑖𝑘𝑙 = 4𝑔𝑖𝑗𝐷[𝑙𝜔𝑘]                                    (16) 

𝑊[𝑖𝑗] = 𝑛 𝐷[𝑖𝜔𝑗].                                                     (17) 

Here, brackets indicate the antisymmetric parts of 

the corresponding tensors. 

A quantity A is called a satellite of g with weight 

p if it admits a transformation of the form 

�̃�  = 𝜆𝑝𝐴,                                                         (18) 

under the change (7) of the metric tensor g [15]. 

The prolonged covariant derivative of a satellite A 

of g with weight p is defined by [15], 

�̇�𝑘𝐴 =  𝐷𝑘𝐴 −  𝑝𝜔𝑘𝐴.                                   (19) 

From (6) and (19) it follows that �̇�𝑘𝑔𝑖𝑗 = 0. 

We also note that the prolonged covariant 

differentiation preserves the weights of the 

satellites of g. 

If the scalar curvature of a Weyl manifold is 

prolonged covariantly constant i.e. �̇�𝑖𝑊 = 0, and 

since the weight of  W is -2, we get 

�̇�𝑖𝑊 = 𝐷𝑖𝑊 + 2𝜔𝑖𝑊 =  0.                             (20) 

Hence, we find 

𝜔𝑖 = −
𝐷𝑖𝑊

2𝑊
,      (21) 

which means that 𝜔𝑖 is locally a gradient. 

Therefore, the Weyl manifold is conformal to a 

Riemannian manifold. 

Definition 1 A Weyl manifold is said to be 

generalized concircularly recurrent if 

�̇�𝑠𝑍𝑗𝑘ℎ
𝑖 = 𝐴𝑠𝑍𝑗𝑘ℎ

𝑖 + 𝐵𝑠(𝑔𝑗𝑘𝛿ℎ
𝑖 − 𝑔𝑗ℎ𝛿𝑘

𝑖 ),          (22) 

where 𝐴𝑠 and 𝐵𝑠 are 1-forms of weight 0 and -2, 

respectively [13].  

Here, 𝑍𝑗𝑘ℎ
𝑖  is the concircular curvature tensor of a 

Weyl manifold which is given by [19]: 

𝑍𝑗𝑘ℎ
𝑖 = 𝑊𝑗𝑘ℎ

𝑖 −
𝑊

𝑛(𝑛−1)
(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 ).           (23) 

If 𝐵𝑠 = 0 in (22), then the manifold is 

concircularly recurrent. 

Using (23) in (22), we have the following 

equation: 

�̇�𝑠𝑊𝑗𝑘ℎ
𝑖 = 𝐴𝑠𝑊𝑗𝑘ℎ

𝑖 + (𝑔𝑗𝑘𝛿ℎ
𝑖 − 𝑔𝑗ℎ𝛿𝑘

𝑖 ) (𝐵𝑠 −

                    
𝐴𝑠𝑊

𝑛(𝑛−1)
+

�̇�𝑠𝑊

𝑛(𝑛−1)
).                (24) 

Definition 2 A Weyl manifold is said to be 

generalized Ricci recurrent if 

�̇�𝑠𝑊𝑖𝑗 = 𝐴𝑠𝑊𝑖𝑗 + 𝐵𝑠𝑔𝑖𝑗 ,                                      (25) 

where 𝐴𝑠 and 𝐵𝑠 are 1-forms of weight 0 and -2, 

respectively [12]. If 𝐵𝑠 = 0 in (25), the manifold 

reduces to a Ricci recurrent manifold. 

Definition 3 A Weyl manifold is said to be 

generalized recurrent if 

�̇�𝑠𝑊𝑗𝑘ℎ
𝑖 = 𝐴𝑠𝑊𝑗𝑘ℎ

𝑖 + 𝐵𝑠(𝑔𝑗𝑘𝛿ℎ
𝑖  − 𝑔𝑗ℎ𝛿𝑘

𝑖 ),       (26) 

where 𝐴𝑠 and 𝐵𝑠 are 1-forms of weight 0 and -2, 

respectively [12]. In particular, if 𝐵𝑠 = 0 the 

manifold is recurrent. 

Definition 4 A Weyl manifold 𝑀𝑛(𝑔, 𝜔) is said 

to be a nearly quasi-Einstein Weyl manifold if 

𝑊(𝑖𝑗), the symmetric part of 𝑊𝑖𝑗, satisfies the 

condition 

𝑊(𝑖𝑗) = 𝛼𝑔𝑖𝑗 + 𝛽𝐸𝑖𝑗 ,                                               (27) 

where 𝛼 is a function of weight -2, and the sum of 

the weight of the function 𝛽 and the symmetric 

tensor 𝐸𝑖𝑗 is 0. 

Example 1 Consider a 3-dimensional Weyl 

manifold 𝑀3 with a metric by, 

𝑑𝑠2 =  𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 = 𝑒𝑥1
[(𝑑𝑥1)2  + (𝑑𝑥2)2] +

 (𝑑𝑥3)2 and a 1-form 𝜔 = 𝑒𝑥1
𝑑𝑥2 + 𝑑𝑥3. The 

nonzero Weyl connection coefficients are 

İlhan GÜL
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Γ11
1 =

1

2
,  Γ12

1 = Γ21
1 = −𝑒𝑥1

, 

Γ13
1 = Γ31

1 =  −1, Γ22
1 = −

1

2
 

Γ11
2 = 𝑒𝑥1

, Γ12
2 = Γ21

2 =  
1

2
,   

Γ22
2 =  −𝑒𝑥1

, Γ23
2 = Γ32

2 =  −1, 

Γ33
2 = 1, Γ11

3 = Γ22
3 = 𝑒𝑥1

,   

Γ23
3 = Γ32

3 =  −𝑒𝑥1
, Γ33

3 = −1. 

It is easy to see that 𝑀3(𝑔, 𝜔) is a Weyl manifold. 

We can find the nonzero components of the Ricci 

tensor as follows: 

𝑊11 = 𝑒𝑥1
(1 + 𝑒𝑥1

), 𝑊12 =  −𝑊21 =  
3

2
𝑒𝑥1

, 

  𝑊22 = 𝑒𝑥1
, 𝑊23 = 𝑊32 =  −𝑒𝑥1

, 𝑊33 = 𝑒𝑥1
. 

Moreover, we have 

𝑊(11) = 𝑒𝑥1
(1 + 𝑒𝑥1

), 𝑊(22) = 𝑒𝑥1
, 

  𝑊(23) = −𝑒𝑥1
, 𝑊(33) = 𝑒𝑥1

, 

𝑊 =  2(1 + 𝑒𝑥1
). 

If 𝛼 = 1 + 𝑒𝑥1
, 𝛽 = −(1 + 𝑒𝑥1

) and the 

components of the symmetric (0,2) tensor 𝐸𝑖𝑗 are 

𝐸11 = 𝐸12 = 𝐸13 = 𝐸21 = 𝐸31 = 0, 

  𝐸22 =
𝑒2𝑥1

1 + 𝑒𝑥1 , 𝐸33 =
1

1 + 𝑒𝑥1 , 

  𝐸23 = 𝐸32 =
𝑒𝑥1

1 + 𝑒𝑥1 , 

then, (27) holds. 

Thus, 𝑀3(𝑔, 𝜔) is a nearly quasi-Einstein Weyl 

manifold. 

3. GENERALIZED RECURRENT AND 

GENERALIZED CONCIRCULARLY 

RECURRENT WEYL MANIFOLDS 

A generalized recurrent Weyl manifold is 

concircularly recurrent [13]. Conversely, assume 

that 𝑀𝑛(𝑔, 𝜔)  is concircularly recurrent i.e. 

�̇�𝑠𝑍𝑗𝑘ℎ
𝑖 = 𝐴𝑠𝑍𝑗𝑘ℎ

𝑖 .      (28) 

Then, using (23) in (28), we get  

�̇�𝑠 (𝑊𝑗𝑘ℎ
𝑖 −

𝑊

𝑛(𝑛−1)
(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 )) =

𝐴𝑠 (𝑊𝑗𝑘ℎ
𝑖 −

𝑊

𝑛(𝑛−1)
(𝑔𝑗𝑘𝛿ℎ

𝑖 − 𝑔𝑗ℎ𝛿𝑘
𝑖 )).  (29) 

Now, the above equation can be written 

�̇�𝑠𝑊𝑗𝑘ℎ
𝑖 = 𝐴𝑠𝑊𝑗𝑘ℎ

𝑖 + 𝐵𝑠(𝑔𝑗𝑘𝛿ℎ
𝑖  − 𝑔𝑗ℎ𝛿𝑘

𝑖 ),      (30) 

where 𝐵𝑠 =
�̇�𝑠𝑊−𝐴𝑠𝑊

𝑛(𝑛−1)
. Therefore, we can state the 

following theorem: 

Theorem 1 A necessary and sufficient condition 

for 𝑀𝑛(𝑔, 𝜔) to be  generalized recurrent is that 

the 𝑀𝑛(𝑔, 𝜔)  is concircularly recurrent. 

Theorem 2 A generalized concircularly recurrent 

Weyl manifold is generalized recurrent. 

Proof. Assume that 𝑀𝑛(𝑔, 𝜔) is generalized 

concircularly recurrent. Then (24) can be written   

�̇�𝑠𝑊𝑗𝑘ℎ
𝑖 = 𝐴𝑠𝑊𝑗𝑘ℎ

𝑖 + 𝐶𝑠(𝑔𝑗𝑘𝛿ℎ
𝑖 − 𝑔𝑗ℎ𝛿𝑘

𝑖 ),       (31) 

where 𝐶𝑠 = 𝐵𝑠 −
�̇�𝑠𝑊−𝐴𝑠𝑊

𝑛(𝑛−1)
 from which we 

conclude that 𝑀𝑛(𝑔, 𝜔) is generalized recurrent. 

Theorem 3 If a generalized recurrent Weyl 

manifold admits a special concircular vector field 

of weight -2, then the manifold is a nearly quasi-

Einstein Weyl manifold. 

Proof. A vector field 𝜌 of weight -2 defined by 

𝐴𝑗 = 𝜌𝑖𝑔𝑖𝑗 is said to be special concircular vector 

field if 

�̇�𝑖𝐴𝑗 = 𝛼𝑔𝑖𝑗,                                                        (32) 
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where 𝛼 is a function of weight -2. It is easy to see 

that the weight of the 1-form 𝐴𝑗 is 0. 

Assume that a generalized recurrent Weyl 

manifold admits a special concircular vector field 

as defined in (32). Then applying the Ricci 

identity to (32) gives 

𝐴𝑠𝑊𝑘𝑖𝑗
𝑠 =  �̇�𝑖�̇�𝑗𝐴𝑘  − �̇�𝑗�̇�𝑖𝐴𝑘  

             = �̇�𝑖(𝛼𝑔𝑗𝑘) − �̇�𝑗(𝛼𝑔𝑖𝑘)  

               =  𝑔𝑗𝑘 �̇�𝑖𝛼 −  𝑔𝑖𝑘�̇�𝑗𝛼.                              (33) 

Transvecting (33) with 𝑔𝑗𝑘, we get 

𝐴𝑠𝑊𝑘𝑖𝑗
𝑠 𝑔𝑗𝑘 = (𝑛 − 1)�̇�𝑖𝛼.    (34) 

Now, taking the covariant derivative of (34), we 

have 

 (𝑛 − 1)�̇�𝑟�̇�𝑖𝛼 = �̇�𝑟(𝐴𝑠𝑊𝑘𝑖𝑗
𝑠 𝑔𝑗𝑘) =

𝐴𝑠𝑔𝑗𝑘�̇�𝑟𝑊𝑘𝑖𝑗
𝑠 + 𝑊𝑘𝑖𝑗

𝑠 𝑔𝑗𝑘�̇�𝑟𝐴𝑠.                             (35) 

If we use (26) and (32) in the above equation, we 

obtain 

(𝑛 − 1)�̇�𝑟�̇�𝑖𝛼

= 𝐴𝑠𝑔𝑗𝑘 (𝐴𝑟𝑊𝑘𝑖𝑗
𝑠 + 𝐵𝑟(𝑔𝑖𝑘𝛿𝑗

𝑠  − 𝑔𝑘𝑗𝛿𝑖
𝑠))

+ 𝑊𝑘𝑖𝑗
𝑠 𝑔𝑗𝑘(𝛼𝑔𝑟𝑠)

=  𝐴𝑟  𝐴𝑠𝑊𝑘𝑖𝑗
𝑠 𝑔𝑗𝑘  +  𝐴𝑠𝐵𝑟𝑔𝑗𝑘𝑔𝑖𝑘𝛿𝑗

𝑠  

− 𝐴𝑠𝐵𝑟𝑔𝑗𝑘𝑔𝑘𝑗𝛿𝑖
𝑠  + 𝛼𝑔𝑟𝑠𝑊𝑘𝑖𝑗

𝑠 𝑔𝑗𝑘

= 𝐴𝑟(𝑛 − 1)�̇�𝑖𝛼 + (1 − 𝑛)𝐴𝑖𝐵𝑟  
+ 𝛼𝑔𝑗𝑘𝑔𝑟𝑠𝑊𝑘𝑖𝑗

𝑠 ,                                                   (36) 

and hence we get 

 (𝑛 − 1)( �̇�𝑟�̇�𝑖𝛼 − 𝐴𝑟�̇�𝑖𝛼 + 𝐴𝑖𝐵𝑟) =
𝛼𝑔𝑗𝑘𝑊𝑟𝑘𝑖𝑗.                                                        (37) 

Now, transvecting (16) with 𝑔𝑗𝑘 gives 

𝑊𝑟𝑘𝑖𝑗𝑔𝑗𝑘 = −𝑊𝑘𝑟𝑖𝑗𝑔𝑗𝑘 + 4𝑔𝑘𝑟𝐷𝑗[𝜔𝑖] 𝑔
𝑗𝑘 =

−𝑊𝑟𝑖 + 4𝐷[𝑟𝜔𝑖]      (38) 

Also, we have 

𝐴𝑟�̇�𝑖𝛼 = �̇�𝑖(𝛼𝐴𝑟) − 𝛼�̇�𝑖𝐴𝑟 = �̇�𝑖(𝛼𝐴𝑟) −
𝛼2𝑔𝑖𝑟.        (39) 

Using (38) and (39) in (37), we obtain 

(𝑛 − 1)(�̇�𝑟�̇�𝑖𝛼 −  �̇�𝑖(𝛼𝐴𝑟) + 𝛼2𝑔𝑖𝑟  + 𝐴𝑖𝐵𝑟)

= 𝛼(−𝑊𝑟𝑖 + 4𝐷[𝑟𝜔𝑖]),           (40) 

from which we get 

𝑊𝑟𝑖 = (1 − 𝑛)𝛼𝑔𝑖𝑟

+ (
1 − 𝑛

𝛼
) ( �̇�𝑟�̇�𝑖𝛼 −  �̇�𝑖(𝛼𝐴𝑟)

+ 𝐴𝑖𝐵𝑟) + 4𝐷[𝑟𝜔𝑖].                 (41) 

If we define a (0,2) tensor 𝐸𝑟𝑖 such that 𝐸𝑟𝑖 =
�̇�𝑟�̇�𝑖𝛼 −  �̇�𝑖(𝛼𝐴𝑟) + 𝐴𝑖𝐵𝑟, then (41) can be 

written as follows: 

𝑊𝑟𝑖 = (1 − 𝑛)𝛼𝑔𝑖𝑟 + (
1 − 𝑛

𝛼
) 𝐸𝑟𝑖 + 4𝐷[𝑟𝜔𝑖]. 

Taking the symmetric part of the above equation, 

we find that 

𝑊(𝑟𝑖) = 𝜑𝑔𝑟𝑖 + 𝜙𝐸(𝑟𝑖),     (42) 

where 𝜑 = (1 − 𝑛)𝛼, 𝜙 =
1−𝑛

𝛼
 are functions of 

weight -2 and 2, respectively and 𝐸(𝑟𝑖) is the 

symmetric part of  𝐸𝑟𝑖 with weight -2. Hence, the 

manifold is a nearly quasi-Einstein. 

Lemma 1 Scalar curvature tensor of a generalized 

concircularly recurrent Weyl manifold is 

prolonged covariantly constant if and only if 

𝐴𝑠𝑊 =
𝑛

2
(𝐴𝑗𝑊𝑗𝑠 + 𝐴𝑖𝑔𝑗𝑘𝑊𝑗𝑘𝑠

𝑖 ) −
𝑛(𝑛−1)(𝑛−2)

2
𝐵𝑠. 

Proof. Suppose that the Weyl manifold is 

generalized concircularly recurrent. Permuting 

(24) cyclically with respect to s, k, h, we obtain 

two more equations such that 

 �̇�𝑘𝑊𝑗ℎ𝑠
𝑖 = 𝐴𝑘𝑊𝑗ℎ𝑠

𝑖 + (𝑔𝑗ℎ𝛿𝑠
𝑖 − 𝑔𝑗𝑠𝛿ℎ

𝑖 )(𝐵𝑘 −
𝐴𝑘𝑊

𝑛(𝑛−1)
+

�̇�𝑘𝑊

𝑛(𝑛−1)
,      (43) 

�̇�ℎ𝑊𝑗𝑠𝑘
𝑖 = 𝐴ℎ𝑊𝑗𝑠𝑘

𝑖 + (𝑔𝑗𝑠𝛿𝑘
𝑖 − 𝑔𝑗𝑘𝛿𝑠

𝑖)(𝐵ℎ −
𝐴ℎ𝑊

𝑛(𝑛−1)
+

�̇�ℎ𝑊

𝑛(𝑛−1)
,      (44) 

Now taking the sum of (24), (43), (44) and then 

applying second Bianchi Identity, we have 
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0 =  𝐴𝑠𝑊𝑗𝑘ℎ
𝑖 + 𝐴𝑘𝑊𝑗ℎ𝑠

𝑖 + 𝐴ℎ𝑊𝑗𝑠𝑘
𝑖    

+(𝑔𝑗𝑘𝛿ℎ
𝑖 − 𝑔𝑗ℎ𝛿𝑘

𝑖 ) (𝐵𝑠 −
𝐴𝑠𝑊

𝑛(𝑛−1)
+

𝐷�̇�𝑊

𝑛(𝑛−1)
)  

+(𝑔𝑗ℎ𝛿𝑠
𝑖 − 𝑔𝑗𝑠𝛿ℎ

𝑖 ) (𝐵𝑘 −
𝐴𝑘𝑊

𝑛(𝑛−1)
+

�̇�𝑘𝑊

𝑛(𝑛−1)
)  

+(𝑔𝑗𝑠𝛿𝑘
𝑖 − 𝑔𝑗𝑘𝛿𝑠

𝑖) (𝐵ℎ −
𝐴ℎ𝑊

𝑛(𝑛−1)
+

𝐷ℎ̇𝑊

𝑛(𝑛−1)
).   (45) 

Contracting the above equation with respect to i 

and h, we get 

0 =  𝐴𝑠𝑊𝑗𝑘 − 𝐴𝑘 𝑊𝑗𝑠 + 𝐴𝑖𝑊𝑗𝑠𝑘
𝑖

+ (𝑛 − 2) 𝑔𝑗𝑘 (𝐵𝑠 −
𝐴𝑠𝑊

𝑛(𝑛 − 1)

+
𝐷�̇�𝑊

𝑛(𝑛 − 1)
)

+  (2 − 𝑛)𝑔𝑗𝑠 (𝐵𝑘 −
𝐴𝑘𝑊

𝑛(𝑛 − 1)

+
𝐷�̇�𝑊

𝑛(𝑛 − 1)
)                            (46) 

Transvecting (46) with 𝑔𝑗𝑘 and using 𝑊𝑗𝑠𝑘
𝑖 =

−𝑊𝑗𝑘𝑠
𝑖  we find that 

0 =  𝐴𝑠𝑊 − 𝐴𝑗𝑊𝑗𝑠 − 𝑔𝑗𝑘𝐴𝑖𝑊𝑗𝑘𝑠
𝑖 + (𝑛 −

1)(𝑛 − 2) (𝐵𝑠 −
𝐴𝑠𝑊

𝑛(𝑛−1)
+

�̇�𝑠𝑊

𝑛(𝑛−1)
).    (47) 

After rearranging the terms, we obtain the 

following equation 

𝐴𝑠𝑊 =
𝑛

2
(𝐴𝑗𝑊𝑗𝑠 + 𝐴𝑖𝑔𝑗𝑘𝑊𝑗𝑘𝑠

𝑖 ) −
𝑛(𝑛−1)(𝑛−2)

2
𝐵𝑠 − (

𝑛−2

2
) �̇�𝑠𝑊.     (48) 

By hypothesis to be prolonged covariantly 

constant i.e.  �̇�𝑠𝑊 = 0, we conclude the proof.  

Theorem 4 If the scalar curvature of a generalized 

concircularly recurrent Weyl manifold is 

prolonged covariantly constant, then the manifold 

reduces to a generalized Ricci recurrent manifold. 

Proof.  Contracting (24) with respect to i and h, 

we find that 

�̇�𝑠𝑊𝑗𝑘 = 𝐴𝑠𝑊𝑗𝑘 + (𝑛 − 1)𝑔𝑗𝑘 (𝐵𝑠 −
𝐴𝑠𝑊

𝑛(𝑛−1)
+

�̇�𝑠𝑊

𝑛(𝑛−1)
).      (49) 

Using (48) and �̇�𝑠𝑊 = 0 in the above equation, 

we get 

�̇�𝑠𝑊𝑗𝑘 = 𝐴𝑠𝑊𝑗𝑘 + 𝑔𝑗𝑘 (
𝑛(𝑛−1)

2
𝐵𝑠  −

1

2
(𝐴𝑗𝑊𝑗𝑠 +

𝑔𝑗𝑘𝐴𝑖𝑊𝑗𝑘𝑠
𝑖 )).       (50) 

Hence the above equation can be written 

�̇�𝑠𝑊𝑗𝑘 = 𝐴𝑠𝑊𝑗𝑘 + 𝐶𝑠𝑔𝑗𝑘, 

where 𝐶𝑠 =
𝑛(𝑛−1)

2
𝐵𝑠  −

1

2
(𝐴𝑗𝑊𝑗𝑠 + 𝑔𝑗𝑘𝐴𝑖𝑊𝑗𝑘𝑠

𝑖 ) 

from which we conclude that the manifold is Ricci 

recurrent. 

Here, we also note that the manifold under 

consideration is conformal to Riemannian 

manifold, since �̇�𝑠𝑊 = 0. 

Theorem 5 If a generalized concircularly 

recurrent Weyl manifold admits a special 

concircular vector field of weight -2, then the 

manifold is a nearly quasi-Einstein Weyl 

manifold. 

Proof.  Suppose that a generalized concircularly 

recurrent Weyl manifold admits a special 

concircular vector field of weight -2, then we have 

�̇�𝑖𝐴𝑗 = 𝛼𝑔𝑖𝑗 , 

where 𝛼 is a function of weight -2. As in the proof 

of Theorem 3, if we apply the Ricci identity to the 

above equation, and then transvecting the resulted 

equation with 𝑔𝑗𝑘, we get 

𝐴𝑠𝑊𝑘𝑖𝑗
𝑠 𝑔𝑗𝑘 = (𝑛 − 1)�̇�𝑖𝛼.     (51) 

Now, the covariant derivative of the above 

equation gives 

 (𝑛 − 1)�̇�𝑟�̇�𝑖𝛼 = �̇�𝑟(𝐴𝑠𝑊𝑘𝑖𝑗
𝑠 𝑔𝑗𝑘)

= 𝐴𝑠𝑔𝑗𝑘�̇�𝑟𝑊𝑘𝑖𝑗
𝑠 + 𝑊𝑘𝑖𝑗

𝑠 𝑔𝑗𝑘�̇�𝑟𝐴𝑠. 

If we use (24) in the above equation, we obtain 
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 (𝑛 − 1)�̇�𝑟�̇�𝑖𝛼 = 𝐴𝑠𝑔𝑗𝑘 (𝐴𝑟𝑊𝑘𝑖𝑗
𝑠  + (𝑔𝑘𝑖𝛿𝑗

𝑠 −

𝑔𝑘𝑗𝛿𝑖
𝑠) (𝐵𝑟 −

𝐴𝑟𝑊

𝑛(𝑛−1)
+

�̇�𝑟𝑊

𝑛(𝑛−1)
)) +

𝑊𝑘𝑖𝑗
𝑠 𝑔𝑗𝑘(𝛼𝑔𝑟𝑠)  

                     =  𝐴𝑟(𝑛 − 1)�̇�𝑖𝛼 + (1 − 𝑛)𝐴𝑖 (𝐵𝑟 −

𝐴𝑟𝑊

𝑛(𝑛−1)
+

�̇�𝑟𝑊

𝑛(𝑛−1)
) + 𝛼𝑔𝑟𝑠𝑊𝑘𝑖𝑗

𝑠 𝑔𝑗𝑘,  

and hence we get 

(𝑛 − 1) [�̇�𝑟�̇�𝑖𝛼 − 𝐴𝑟�̇�𝑖𝛼 + 𝐴𝑖 (𝐵𝑟 −
𝐴𝑟 𝑊

𝑛(𝑛−1)
+

�̇�𝑟𝑊

𝑛(𝑛−1)
)] = 𝛼𝑔𝑗𝑘𝑊𝑟𝑘𝑖𝑗.     (52) 

Using (38) and (39) in (52), we obtain 

 (𝑛 − 1) (�̇�𝑟�̇�𝑖𝛼 − �̇�𝑖(𝛼𝐴𝑟) + 𝛼2𝑔𝑟𝑖 +

𝐴𝑖 (𝐵𝑟 −
𝐴𝑟𝑊

𝑛(𝑛−1)
+

�̇�𝑟𝑊

𝑛(𝑛−1)
)) = 𝛼(−𝑊𝑟𝑖 +

4𝐷[𝑟𝜔𝑖]), 

from which we get 

𝑊𝑟𝑖 = (1 − 𝑛)𝛼𝑔𝑖𝑟 + (
1−𝑛

𝛼
) ( �̇�𝑟�̇�𝑖𝛼 −

 �̇�𝑖(𝛼𝐴𝑟) + 𝐴𝑖 (𝐵𝑟 −
𝐴𝑟 𝑊

𝑛(𝑛−1)
+

�̇�𝑟𝑊

𝑛(𝑛−1)
)) +

4𝐷[𝑟𝜔𝑖].       (53) 

If we define a (0,2) tensor �̅�𝑟𝑖 such that �̅�𝑟𝑖 =

�̇�𝑟�̇�𝑖𝛼 − �̇�𝑖(𝛼𝐴𝑟) + 𝐴𝑖 (𝐵𝑟 −
𝐴𝑟 𝑊

𝑛(𝑛−1)
+

�̇�𝑟𝑊

𝑛(𝑛−1)
), 

then (53) can be written as follows: 

𝑊𝑟𝑖 = (1 − 𝑛)𝛼𝑔𝑖𝑟 + (
1−𝑛

𝛼
) �̅�𝑟𝑖 + 4𝐷[𝑟𝜔𝑖].  

 Taking the symmetric part of the above equation, 

we find that 

𝑊(𝑟𝑖) = 𝜑𝑔𝑟𝑖 + 𝜙 �̅�(𝑟𝑖), 

where 𝜑 = (1 − 𝑛)𝛼, 𝜙 =
1−𝑛

𝛼
 are functions of 

weight -2 and 2, respectively and �̅�(𝑟𝑖) is the 

symmetric part of �̅�𝑟𝑖 with weight -2. Hence, the 

manifold is a nearly quasi-Einstein. 
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