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Abstract

In this paper, we analyse the proper curve γ(s) lying on the pseudo-sphere. We develop
an orthogonal frame {V1, V2, V3} along the proper curve, lying on pseudosphere. Next,
we find the condition for γ(s) to become Vk− slant helix in Minkowski space. Moreover,
we find another curve β(s̄) lying on pseudosphere or hyperbolic plane heaving V2 = V̄2
for which {V̄1, V̄2, V̄3}, an orthogonal frame along β(s̄). Finally, we find the condition for
curve γ(s) to lie in a plane.
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1. Introduction
The various properties of a regular curve in the Riemannian manifold can be described

by constructing the Frenet frame along the curve. In 1982, K. Sakamoto [13], defined the
helix of order d by using helical geodesic immersion from connected complete Riemannian
manifold (N) to a Riemannian manifold (M). Let f : N −→ M be an isometric immersion
and let γ be any geodesic in N and f ◦ γ be a curve of constant curvature of osculating
order d in M then f ◦ γ is known as a helix of order d in M . The proper curve and proper
helix of order d in pseudo-Riemannian manifold were defined in [14]. A general helix in
Euclidean space is a curve whose ratio of curvature and torsion is constant, this condition
was stated by M. A. Lancret in 1802 whereas the proof for the condition was given by
B. de Saint Venant and revisited by M. Barros [6] in 1997. A curve in Euclidean space
whose principal normal makes a constant angle with some fixed direction is known as a
slant helix. The curve γ(s) in Euclidean space is slant helix iff the function [10],

M(s) =
(

κ2

(κ2+τ2)
3
2

( τ
κ)′
)

(s);κ(s) ̸= 0, is constant.
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The slant helix in E3
1 is a curve whose principal normal have an inner product with

some non zero fixed direction is constant. The necessary and sufficient conditions for
curve to become the slant helix in E3

1 were given in [4]. A timelike or spacelike curve with
spacelike normal is said to be a slant helix in E3

1 iff any one of the following two functions
is constant[4],

K(s) =
(

κ2

(τ2−κ2)
3
2

( τ
κ)′
)

(s) or L(s) =
(

κ2

(κ2−τ2)
3
2

( τ
κ)′
)

(s); τ2 − κ2 ̸= 0.

But, if the curve is spacelike and its normal is timelike vector then the function,

M(s) =
(

κ2

(κ2 + τ2)
3
2

(τ
κ

)′
)

(s);κ(s) ̸= 0,

is constant. Whereas all the spacelike curves with timelike normal are slant helices in E3
1 .

To study the position vector for slant helix in Euclidean space and Minkowski space, we
refer the reader to read the papers [3, 5].

In 2009, İ. Gök, Ç. Camci and H. Hilmi Hacisalihoğlu [9], defined the Vn− slant helix in
Euclidean space. A curve γ(s) in Euclidean n− space heaving frenet frame ⟨V1, V2, ..., Vn⟩
and κi(i = 1, 2, ...n) are non zero curvatures along γ(s), then γ(s) is said to be Vn−
slant helix if there exists a fixed direction U , which makes constant angle with Frenet
vector field Vn that is, ⟨Vn, U⟩ = cosψ, ψ ̸= π

2 , ψ = constant. The Vn− slant helix in
pseudo-Riemannian manifold was studied in [16]. Let γ(s) be a unit speed curve in E3

and ⟨T,N,B⟩ be Frenet frame along the curve γ(s), then the plane spanned by ⟨T,N⟩,
⟨T,B⟩ and ⟨N,B⟩ are known as the osculating plane, the rectifying plane and the normal
plane, respectively. If the position vector of γ(s) lies in rectifying plane then the curve is
known as rectifying curve. The conditions for position vector of Euclidean curve γ(s) to
lie in the rectifying plane was studied in [8].

Saint Venant in 1845, proposed a question, whether in the surface generated by the
curve does there exist another curve whose principal normal coincides with the principal
normal to the given curve. The answer for this question was given by Bertrand in 1850
by the condition that is, a curve is Bertrand curve in E3 iff curvature κ and torsion τ of
curve satisfies the condition νκ + λτ = 1, where ν ̸= 0 and λ are constants. Generalized
Bertrand curves in Minkowski 3 - space was defined in [15], as a curve whose normal makes
the constant angle with its Bertrand mate.

Getting motivation from the above papers [2, 12], we organize our paper as follows: In
Section 2, we discuss some basic concepts and results. Section 3, we study the global view
of the helix of proper order 2 lying on pseudosphere of radius r from E3

1 . In Section 4, we
develop the orthogonal frame along the proper curve of order 2 lying on pseudosphere. In
section 5, we find the condition for proper curve of order 2 with non constant curvature
lying on S2

1(r) to become globally a Vk− slant helix in E3
1 . In section 6, we find the

condition for a proper curve to lie in a plane spanned by the vector field constructed in
Section 4. In section 7, we find the conditions for another curve whose second vector field
coincides with the second vector field of the initial one.

2. Preliminaries and some results
A smooth manifold R3 furnished with the Lorentzian metric g = −dx2

1 + dx2
2 + dx2

3 is
said to be a Minkowski 3-space E3

1 . A vector field V in E3
1 is said to be

(1) spacelike if g(V, V ) > 0,
(2) timelike if g(V, V ) < 0,
(3) lightlike if g(V, V ) = 0.
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A curve γ : [a, b] → E3
1 , where a, b ∈ R is said to be a spacelike, timelike or lightlike

according to the causal character of the tangent vector field along the curve γ(s) in E3
1 .

The pseudo-sphere and hyperbolic plane of radius r and origin 0 in E3
1 are defined by

S2
1(r) = {X ∈ E3

1 : g(X,X) = r2}, H2
0 (−r) = {X ∈ E3

1 : g(X,X) = −r2}.

Definition 2.1 ([11]). A surface M in E3
1 is said to be a spacelike surface if the metric

induced on surface is Riemannian metric and the surface said to be timelike if the induced
metric is Lorentz metric.

Let γ : [a, b] → S2
1(r) ⊂ E3

1 be a curve parametrised by arc length parameter s lying
on S2

1(r) and γ(s) = ϕ be the position vector of curve on S2
1(r). Now, if ∇̃ and ∇ are

Levi-Civita connections on E3
1 and S2

1(r) respectively, then Gauss Wiengarten formulae
are {

∇̃XY = ∇XY − g(X,Y )
r2 ϕ,

∇̃Xϕ = −AϕX.
(2.1)

Definition 2.2 ([14]). A non null curve γ(s) is said to a proper curve of order d in pseudo-
Euclidean space if there exists an orthogonal frame {V1, ..., Vd} along γ(s) and satisfies the
Frenet formula

∇̃V1Vi = −µi−2µi−1κi−1(s)Vi−1 + κi(s)Vi+1, 1 ≤ i ≤ d,

where, V0 = Vd+1 = 0, κ0(s) = κd(s) = 0 and ∇̃ is Levi-Civita connection on pseudo-
Euclidean space. κi(s) are known as the ith curvatures of the curve γ(s) and are given
as,

κi(s) =∥ ∇̃V1Vi + µi−2µi−1κi−1Vi+1 ∥, 1 ≤ i < d,

µi−1 = g′(Vi, Vi), 1 ≤ i < d.

If the curvature functions along the proper curve γ(s) of order d are constant, then γ(s)
is known as a proper helix of order d in pseudo-Euclidean space.

Now, by getting motivation from [16], we define the Vk− slant helix in Minkowski space
E3

1 .

Definition 2.3. A curve γ(s) in Minkowski space E3
1 corresponding to an orthogonal

frame {V1, V2, V3} is said to be a Vk− slant helix if there exists a vector field parallel along
γ(s) such that g(Vk, U) = C = constant, for k ∈ {1, 2, 3}. The parallel vector field U is
said to an axis of the Vk slant helix, and if the constant C = 0 then the axis U is said to
be orthogonal to the frame field Vk.

Definition 2.4 ([1]). A curve γ(s) in E3
1 is said to be a circle if it satisfies the differential

equation ∇̃X∇̃XX+g(∇̃XX, ∇̃XX)g(X,X)X = 0, where X is a tangent vector field along
γ(s) .

Definition 2.5 ([7]). A curve γ(s) in Euclidean space E3
1 is said to be Bertrand curve if

there exist another curve β(s̄) such that the principal normal of γ(s) is linearly dependent
with the principal normal of β(s̄). β(s̄) is known as Bertrand mate of Bertrand curve
γ(s). The position vector for β(s̄), is given as β(s̄) = γ(s) + λ(s)N1(s), where N1(s) is a
principal normal of curve γ(s) .

3. Proper helix of order 2
Theorem 3.1. A curve γ(s) which is locally a geodesic in psedosphere S2

1(r) but globally
a circle in E3

1 .

Proof. Let γ(s) is a geodesic in pseudosphere and ∇, ∇̃ are Levi-Civita connections on
pseudo sphere and Minkowski-3 space respectively. Then, γ(s) satisfy the equation

∇V1V1 = 0, (3.1)
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where V1 is unit tangent vector field along γ(s) .
Case 1. Let γ(s) is a spacelike curve lying on pseudosphere. Now using set of equation
(2.1) and equation (3.1), we obtain{

∇̃V1V1 = κ1V2,

∇̃V1V2 = −κ1V1.
(3.2)

Here κ1 = 1
r , V2 = −1

rϕ and g(V2, V2) = 1. Using equation (3.2), we get

∇̃V1∇̃V1V1 + g(∇̃V1V1, ∇̃V1V1)g(V1, V1)V1 = 0.

Case 2. Let γ(s) be a timelike curve lying on pseudosphere. Then using set of equation
(2.1) and equation (3.1), we have {

∇̃V1V1 = κ1V2,

∇̃V1V2 = κ1V1.
(3.3)

Here κ1 = 1
r , V2 = 1

rϕ and g(V2, V2) = 1. Using equation (3.3), we get

∇̃V1∇̃V1V1 + g(∇̃V1V1, ∇̃V1V1)g(V1, V1)V1 = 0.
Thus from Case(1) and Case(2) we can say that γ(s) is a circle in E3

1 . □

Theorem 3.2. A curve γ(s) with curvature κ(s) (either κ(s) > 1
r or 0 < κ(s) < 1

r ) which
is a proper helix of order 2 locally in pseudosphere (S2

1(r)) but globally a circle in E3
1 .

Proof. Let γ(s) be a proper helix of order 2 with curvature function κ(s) > 1
r or κ(s) < 1

r

lying on pseudosphere. If ∇, ∇̃ are Levi-Civita connections on S2
1(r) and E3

1 , then we
have {

∇V1V1 = κY,

∇V1Y = κV1,
(3.4)

where V1 is a tangent vector field along γ(s) and Y is a vector field orthogonal to V1.

Case 1. If γ(s) is a spacelike curve with constant curvature function κ(s) ̸= 1
r . Then

from equation (3.4) and (2.1), we get{
∇̃V1V1 = κ1V2,

∇̃V1V2 = −ϵκ1V1.
(3.5)

Here κ1 =
√
κ2 − 1

r2 , V2 = 1
κ1

(κY − 1
r2ϕ) and g(V2, V2) = ϵ = ±1, ϵ is positive one if the

curvature function κ(s) < 1
r and ϵ is negative for the curvature function κ(s) > 1

r . Now
using equation (3.5), we get the equation

∇̃V1∇̃V1V1 + g(∇̃V1V1, ∇̃V1V1)g(V1, V1)V1 = 0.
Case 2 Now, let γ(s) be a timelike curve with constant curvature function, then from
(3.4) and (2.1), we have {

∇̃V1V1 = κ1V2,

∇̃V1V2 = κ1V1.
(3.6)

Here κ1 =
√
κ2 + 1

r2 , V2 = 1
κ1

(κY + 1
r2ϕ) and g(V2, V2) = 1. Now using equation (3.6) in

Definition 2.4, we get

∇̃V1∇̃V1V1 + g(∇̃V1V1, ∇̃V1V1)g(V1, V1)V1 = 0.
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Thus, from Case (1) and Case (2) we can conclude that the spacelike proper helix of
order two γ(s) with curvature function κ(s) > 1

r or κ(s) < 1
r is a circle in E3

1 .
□

Corollary 3.3. Let γ(s) be a spacelike curve and a proper helix of order 2 with curvature
κ(s) = 1

r lying on S2
1(r) then there exist a null vector field parallel along γ(s) globally in

E3
1 .

Proof. Let γ(s) is a spacelike curve and a proper helix of order 2 with constant curvature
function κ(s) = 1

r lying on S2
1(r) then Frenet formulae along γ(s) in S2

1(r), are given by{
∇V1V1 = 1

rY,

∇V1Y = 1
rV1,

(3.7)

where V1 is tangent vector field along γ(s) and Y is a vector field orthogonal to V1. Now
using equation (3.7) and equation (2.1), we get{

∇̃V1V1 = V2,

∇̃V1V2 = 0.
(3.8)

Where V2 = κY − 1
r2ϕ is a null vector field parallel along γ(s) in E3

1 . □

4. Orthogonal frame for proper curve of order 2 with non constant cur-
vature function

Theorem 4.1. Let γ(s) be a proper curve of order two lying on S2
1(r) with non constant

curvature function κ(s) then there exist an orthogonal frame along γ(s) in E3
1 , such that

i. If γ(s) is a spacelike proper curve of order 2 with curvature function κ(s) < 1
r then the

orthogonal frame {V1, V2, V3}, satisfies the following relations
∇̃V1V1 = κ1(s)V2,

∇̃V1V2 = −κ1(s)V1 + κ2(s)V3,

∇̃V1V3 = κ2(s)V2.

(4.1)

Here V1 and V2 are spacelike vector fields whereas V3 is a timelike vector field. Darboux
vector for corresponding frame is D = −κ2(s)V1 + κ1(s)V3.

ii. If γ(s) is a spacelike proper curve of order 2 with curvature function κ(s) > 1
r then the

orthogonal frame {V1,W2,W3}, satisfies the following relations
∇̃V1V1 = κ1(s)W2,

∇̃V1W2 = κ1(s)V1 + κ2(s)W3,

∇̃V1W3 = κ2(s)W2,

(4.2)

where g(V1, V1) = g(W3,W3) = 1 and g(W2,W2) = −1. Axis of rotation for orthogonal
frame {V1,W2,W3} is D = κ2V1 − κ1W3

iii. If γ(s) is a timelike proper curve of order 2 with non constant curvature function
then the orthogonal frame {V1, Z2, Z3}, satisfies the following relations

∇̃V1V1 = κ1(s)Z2,

∇̃V1Z2 = κ1(s)V1 + κ2(s)Z3,

∇̃V1Z3 = −κ2(s)Z2,

(4.3)

where g(Z2, Z2) = g(Z3, Z3) = 1 and g(V1, V1) = −1. The Darboux vector for an orthogo-
nal frame {V1, Z2, Z3} is D = κ2V1 + κ1Z3.
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Here V1 is a tangent vector field along γ(s) and κ1(s), κ2(s) are first and second curvature
functions which are different in all these three cases.

Proof. Let γ(s) be a proper curve of order two lying on S2
1(r) with non constant curvature

function κ(s), and ∇ ,∇̃ are Levi-Civita connections on S2
1(r) and E3

1 respectively, then
Frenet formulae along γ(s) in S2

1(r) are{
∇V1V1 = κ(s)Y,
∇V1Y = κ(s)X,

(4.4)

where V1 is a tangent vector field along γ(s) in S2
1(r) and Y is vector field orthogonal to

V1.
Case 1. If, γ(s) is a spacelike curve with non constant curvature function κ(s) < 1

r then
by using equations (2.1)and (4.4), we get the equation

∇̃V1V1 = κ1(s)V2, (4.5)

where κ1(s) =
√

1
r2 − κ2(s) and V2 = 1

κ1(s)(κ(s)Y − 1
r2ϕ). The covariant derivative of

vector field V2, with respect to V1 is

∇̃V1V2 = −κ1(s)V1 + κ2(s)V3, (4.6)

where κ2(s) = κ′(s)
κ1(s)

√
κ2(s)
κ2

1(s) + 1 and V3 = 1
κ2(s)

(
κ′(s)
κ1(s)Y + κ(s)κ′(s)

κ2
1(s) V2

)
. Covariant derivative

of V3 along V1, is given by the equation

∇̃V1V3 = κ2(s)V2. (4.7)

From above equations we see that g(V1, V1) = g(V2, V2) = 1, g(V3, V3) = −1 and g(V1, V2) =
g(V2, V3) = g(V1, V3) = 0. Thus {V1, V2, V3} is an orthogonal frame along γ(s) in E3

1 . For
positive orientation of orthogonal frame we define the cross product of vector field as
V1 ×V2 = −V3, V2 ×V3 = V1 and V3 ×V1 = V2. Let D = a1V1 + a2V2 + a3V3 be a Darboux
vector for corresponding frame, then we have

D × Vk = ∇̃V1Vk, k ∈ {1, 2, 3}. (4.8)

Now, using equation (4.8) and the cross product of vector fields we get a1 = −κ2, a2 = 0
and a3 = κ1. Hence D = −κ2(s)V1 + κ1(s)V3, is a Darboux vector for orthogonal frame
{V1, V2, V3} .

Case 2. If γ(s) is a spacelike curve with non constant curvature function κ(s) > 1
r then

by using equations (2.1) and (4.4), we obtain

∇̃V1V1 = κ1(s)W2, (4.9)

where κ1(s) =
√
κ2(s) − 1

r2 and W2 = 1
κ1(s)(κ(s)Y − 1

r2ϕ). The covariant derivative of
vector field W2, with respect to V1 is given as

∇̃V1W2 = κ1(s)V1 + κ2(s)W3. (4.10)

where κ2(s) = κ′(s)
κ1(s)

√
κ2(s)
κ2

1(s) − 1 and W3 = 1
κ2(s)

(
κ′(s)
κ1(s)Y − κ(s)κ′(s)

κ2
1(s) V2

)
. Covariant derivative

of W3 along V1, is given by the equation

∇̃V1W3 = κ2(s)W2. (4.11)

From above equations we see that g(V1, V1) = g(W3,W3) = 1, g(W2,W2) = −1 and
g(V1,W2) = g(W2,W3) = g(V1,W3) = 0. Thus {V1,W2,W3} is an orthogonal frame along
γ(s) in E3

1 . For positive orientation of orthogonal frame {V1,W2,W3} we define the cross
product of vector field as V1 × W2 = W3,W2 × W3 = V1 and W3 × V1 = −W2. Let
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D = a1V1 +a2W2 +a3W3 be a Darboux vector for an orthogonal frame {V1,W2,W3}, then
we have

D ×Wk = ∇̃V1Wk, k ∈ {1, 2, 3},W1 = V1. (4.12)
Now using equation (4.12) and the cross product of vector fields we get a1 = κ2, a2 = 0
and a3 = −κ1. Hence D = κ2(s)V1 − κ1(s)W3, is a Darboux vector of the corresponding
orthogonal frame.
Case 3. If γ(s) is a timelike curve with non constant curvature function κ(s) then by
using equations (2.1) and (4.4), we get the equation

∇̃V1V1 = κ1(s)Z2, (4.13)

where κ1(s) =
√
κ2(s) + 1

r2 and Z2 = 1
κ1(s)(κ(s)Y + 1

r2ϕ). The covariant derivative of
vector field Z2, with respect to V1 is given by

∇̃V1Z2 = κ1(s)V1 + κ2(s)Z3, (4.14)

where κ2(s) = κ′(s)
κ1(s)

√
1 − κ2(s)

κ2
1(s) and Z3 = 1

κ2(s)

(
κ′(s)
κ1(s)Y − κ(s)κ′(s)

κ2
1(s) V2

)
. Covariant derivative

of Z3 along V1, is given by the equation
∇̃V1Z3 = −κ2(s)Z2. (4.15)

From above equations we see that g(V1, V1) = −1, g(Z3, Z3) = g(Z2, Z2) = 1 and
g(V1, Z2) = g(Z2, Z3) = g(V1, Z3) = 0. Thus {V1, Z2, Z3} is an orthogonal frame along γ(s)
in E3

1 . For positive orientation of orthogonal frame {V1, Z2, Z3} we define the cross product
of vector field as V1×Z2 = Z3, Z2×Z3 = −V1 and Z3×V1 = Z2. Let D = a1V1+a2Z2+a3Z3
be a Darboux vector for an orthogonal frame {V1, Z2, Z3}, then we have

D ×Wk = ∇̃V1Zk, k ∈ {1, 2, 3}, Z1 = V1. (4.16)
Now using equation (4.16) and the cross product of vector fields we get a1 = κ2, a2 = 0
and a3 = κ1. Hence D = κ2(s)V1 + κ1(s)Z3, is a Darboux vector of the corresponding
orthogonal frame. □

Note. In theorem 4.1 we get the different orthogonal frame depending on the causal
character and curvature function κ(s) of γ(s). So for any proper curve of order 2 which is
lying on pseudosphere to study its characterizations, we have to discuss the three cases.
To eliminate these cases, we are going to use symbols S2 and S3, where S2 ∈ {V2,W2, Z2}
and S3 ∈ {V3,W3, Z3}, such that if S2 = V2 then S3 must be V3. Similarly if S2 = Z2,
then S3 must be Z3 and for S2 = W2 implies S3 = W3. Same argument we will use for
the symbols A2 and A3.

5. Proper curve of order 2 with non constant curvature function
Theorem 5.1. Let γ(s) be a proper curve of order 2 with non constant positive curvature
function (either κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r) be globally a V1− slant helix in
E3

1 with an axis U not orthogonal to V1 corresponding to orthogonal frame constructed
in Theorem 4.1, iff the ratio of first curvature function and second curvature function is
constant.

Proof. Let γ(s) is V1− slant helix with non constant curvature function (either κ(s) < 1
r

or κ(s) > 1
r ) in E3

1 lying on S2
1(r), then according to Theorem 4.1 there exist an orthogonal

frame along γ(s) and the axis U of V1− slant helix in E3
1 with respect to the corresponding

frame can be written as
U = λV1 + ν1S2 + ν2S3,

where λ is non zero constant and ν1(s), ν2(s) are functions of parameter s. Here S2 ∈
{V2,W2, Z2} and S3 ∈ {V3,W3, Z3} according to the orthogonal frame defined in Theorem
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4.1. Taking covariant derivative of vector field U with respect to V1 and comparing the
equation on both sides , we obtain

ν ′
1 + ϵλκ1 + ν2κ2 = 0,
ν1κ1 = 0,
ν ′

2 + ν1κ2 = 0.
(5.1)

Here ϵ is negative if the curve γ(s) is timelike otherwise ϵ is positive. Since κ1 ̸= 0, there-
fore from first and third part of the equation (5.1) , we get ν2 = C = −ϵλκ1

κ2
where C

is some constant. Thus, for V1− slant helix γ(s) the ratio of first curvature function and
second curvature function is constant.

Conversely, assume that γ(s) is proper curve of order 2 with curvature function (either
κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r), and the ratio of first curvature function and
second curvature function of curve γ(s) is constant. According to Theorem 4.1 there ex-
ist an orthogonal frame along γ(s) in E3

1 and we take a vector field U in E3
1 such that

U = λV1 − ϵλκ1
κ2
S3. Now taking the covariant derivative of U with respect to V1, we get

∇̃V1U = 0. Thus vector field U is parallel along γ(s) such that g(V1, U) = λ = constant.
Hence γ(s) is V1− slant helix in E3

1 with axis U not orthogonal to V1.
□

Corollary 5.2. Let γ(s) be a proper curve of order 2 with non constant curvature function
(either κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r) and γ(s) is a V1− slant helix in E3
1 then axis

of γ(s) can never be orthogonal to V1.

Proof. Let γ(s) is V1− slant helix with non constant curvature function (either κ(s) < 1
r

or κ(s) > 1
r ) in E3

1 lying on S2
1(r), then according to Theorem 4.1 there exist an orthogonal

frame along γ(s) and the axis U orthogonal to vector field V1, of V1− slant helix in E3
1

with respect to the corresponding frame can be written as

U = ν1S2 + ν2S3,

where ν1(s), ν2(s) are functions of some parameter s and S2 ∈ {V2,W2, Z2} and S3 ∈
{V3,W3, Z3} according to the orthogonal frame defined in Theorem 4.1. Taking covariant
derivative of vector field U with respect to V1 and comparing the equation on both sides
, we obtain 

ν ′
1 + ν2κ2 = 0,
ν1κ1 = 0,
ν ′

2 + ν1κ2 = 0.
(5.2)

On solving the equation (5.2), we get ν1 = ν2 = 0 which implies that U = 0 but according
to the definition 2.3 U must be non zero vector field. Hence we can conclude that axis of
V1− slant helix can never be orthogonal to tangent vector field along γ(s). □

Corollary 5.3. Let γ(s) be a proper curve of order 2 with non constant curvature function
(either κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r), then γ(s) be a V1− slant helix in E3
1 iff γ(s)

is a V3− slant helix in E3
1 .

Proof. Let γ(s) be a proper curve of order 2 with non constant curvature function (either
κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r), and γ(s) is a V1− slant helix in E3
1 , then according to

Theorem 5.1 an axis for γ(s) is U = λV1 − ϵλκ1
κ2
S3, where ratio of first curvature function

and second curvature function is constant. Because g(U, S3) = constant, which implies
that γ(s) is S3− slant helix in E3

1 .
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To prove the converse part we consider the axis U = ν1V1 + ν2S2 + λS3 for S3− slant
helix and follow the same steps which we used to prove the above argument. Here ν1, ν2
are functions of some parameter s and λ is some constant. □
Theorem 5.4. Let γ(s) be a proper curve of order 2 with non constant positive curvature
function (either κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r). Then with respect to orthogonal
frame constructed in Theorem 4.1, we have

i. The spacelike curve γ(s) with curvature function κ(s) < 1
r will be a V2− slant helix

if and only if the curvature functions k1(s) and k2(s) of γ(s) in E3
1 are given by

κ1(s) = f ′(s)cosh(f(s)) and κ2(s) = f ′(s)sinh(f(s)),
for some smooth function f(s) on S2

1(r). And the axis for V2− slant helix is
U = λsinh(f(s))V1 + λV2 − λcosh(f(s))V3,

where 0 ̸= λ ∈ R .

ii. The spacelike curve γ(s) with curvature function κ(s) > 1
r will be a W2− slant helix

if and only if the curvature functions k1(s) and k2(s) of γ(s) in E3
1 are given by

κ1(s) = g′(s)cos(g(s)) and κ2(s) = g′(s)sin(g(s)),
for some smooth function g(s) on S2

1(r). An axis for W2− slant helix is given by U =
−λsin(g(s))dsV1 + λW2 + λcos(g(s))W3, where λ is non zero constant.

iii. The timelike curve γ(s) will be a Z2− slant helix in E3
1 if and only if the curvature

functions k1(s) and k2(s) of γ(s), are given by
κ1(s) = f ′(s)cosh(f(s)) and κ2(s) = f ′(s)sinh(f(s)),

for some smooth function f(s) on S2
1(r). And an axis for Z2− slant helix not orthogonal

to Z2 is given by U = −λsinh(f(s))V1 +λZ2 −λcosh(f(s))V3, for some λ = contant ̸= 0.

Proof. Case 1. Let γ(s) is spacelike V2− slant helix with curvature function κ(s) < 1
r in

E3
1 lying on S2

1(r), then according to Theorem 4.1 there exist an orthogonal frame along
γ(s). The axis U of V2− slant helix in E3

1 with respect to the corresponding frame can be
written as

U = ν1V1 + λV2 + ν2V3,

where λ is non zero constant and ν1(s), ν2(s) are functions of parameter s. Taking covariant
derivative of vector field U with respect to V1 and comparing the equation on both sides
, we obtain, 

ν ′
1 − λκ1 = 0,
ν1κ1 + ν2κ2 = 0,
ν ′

2 + λκ2 = 0.
(5.3)

From first and third part of the equation (5.3) , we obtain the following set of solutions{
ν1 = λ

∫
κ1(s)ds,

ν2 = −λ
∫
κ2(s)ds.

(5.4)

Substituting ν1 and ν3 from set of solutions of equation (5.4) into second part of set of
equation (5.3), we get

κ1(s)
∫
κ1(s)ds− κ2(s)

∫
κ2(s)ds = 0. (5.5)

Then, from the equation (5.5), we obtain
κ1(s) = f ′(s)cosh(f(s)) and κ2(s) = f ′(s)sinh(f(s)),
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where f(s) is some smooth function on S2
1(r).

Conversely, assume that γ(s) be a spacelike proper curve of order 2 with curvature
function κ(s) < 1

r lying on S2
1(r), and γ(s) have curvature functions in E3

1 are, κ1(s) =
f ′(s)cosh(f(s)) and κ2(s) = f ′(s)sinh(f(s)), for some smooth function f(s) in S2

1(r). Let
us assume a vector field U = λsinh(f(s))V1 +λV2 −λcosh(f(s))V3, where λ = constant ̸=
0. Taking the covariant derivative of U with respect to tangent vector field V1 along γ(s),
we obtain, ∇̃V1U = 0. Thus U is parallel along γ(s), and g(V2, U) = λ. Hence, γ(s) is a
V2− slant helix in E3

1 and the axis is U not orthogonal to V2.

Case 2. Let γ(s) is spacelike W2− slant helix with curvature function κ(s) > 1
r in

E3
1 lying on S2

1(r), then according to Theorem 4.1 there exist an orthogonal frame along
γ(s) and the axis U of W2− slant helix in E3

1 with respect to the corresponding frame can
be written as

U = ν1V1 + λW2 + ν2W3,

where λ is non zero constant and ν1(s), ν2(s) are functions of some parameter s. Taking
covariant derivative of vector field U with respect to V1 and comparing the equation on
both sides , we obtain 

ν ′
1 + λκ1 = 0,
ν1κ1 + ν2κ2 = 0,
ν ′

2 + λκ2 = 0.
(5.6)

From first and third part of the equation (5.6) , we obtain the following set of solutions{
ν1 = −λ

∫
κ1(s)ds,

ν2 = −λ
∫
κ2(s)ds.

(5.7)

Substituting ν1 and ν3 from set of solutions of equation (5.7) into second part of set of
equations (5.6), we get

κ1(s)
∫
κ1(s)ds+ κ2(s)

∫
κ2(s)ds = 0. (5.8)

Thus, from equation (5.8), we have
κ1(s) = g′(s)cos(g(s)) and κ2(s) = g′(s)sin(g(s)),

where g(s) is a some smooth function on S2
1(r).

Conversely, assume that γ(s) be a proper curve of order 2 with curvature function
κ(s) > 1

r lying on S2
1(r), and the curvature functions along γ(s) in E3

1 are, κ1(s) =
g′(s)cos(g(s)) and κ2(s) = g′(s)sin(g(s)), for some smooth function g(s) in S2

1(r). Con-
sider a vector field U = −λsin(g(s))V1 + λW2 + λcos(g(s))W3, where λ is some non zero
constant. Taking the covariant derivative of U with respect to tangent vector field V1
along γ(s), we obtain, ∇̃V1U = 0. Therefore, U is parallel along γ(s) and g(W2, U) = λ.
Thus, γ(s) is a W2− slant helix in E3

1 and the axis U is not orthogonal to V2.

The third part of the theorem can be proved in similar way as we prove first and sec-
ond part of the theorem. □
Corollary 5.5. Let γ(s) be a S2− slant helix with non constant positive curvature function
(either κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r) with the axis U is not orthogonal to S2 then
γ(s) is neither V1 nor S3− slant helix.

Proof. Here, S2 ∈ {V2,W2, Z2} and S3 ∈ {V3,W3, Z3} according to the orthogonal frame
defined in Theorem 4.1. Let γ(s) be a S2− slant helix with non constant positive curvature
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function (either κ(s) < 1
r or κ(s) > 1

r ) lying on S2
1(r) with an axis U not orthogonal to

S2. Then by Theorem 5.4, we have
UV2 = λsinh(f(s))V1 + λV2 − λcosh(f(s))V3,

UW2 = −λsin(g(s))dsV1 + λW2 + λcos(g(s))W3,

UZ2 = −λsinh(f(s))V1 + λZ2 − λcosh(f(s))Z3,

(5.9)

where λ is some constant and US2 is the axis of S2− slant helix. Then{
g(US2 , V1) ̸= constant,

g(US2 , S3) ̸= constant.
(5.10)

These implies, if γ(s) be a S2− slant helix with axis US2 is not orthogonal to S2 then γ(s)
is neither V1 nor S3− slant helix. □

Corollary 5.6. Let γ(s) be a S2− slant helix with non constant positive curvature function
(either κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r) with the axis U is orthogonal to S2 then γ(s)
is also V1 and S3− slant helix with same axis.

Proof. Let γ(s) is S2− slant helix with non constant positive curvature function (either
κ(s) < 1

r or κ(s) > 1
r ) in E3

1 lying on S2
1(r), then according to Theorem 4.1 there exist

an orthogonal frame along γ(s) and the axis U orthogonal to vector field S2, of S2− slant
helix in E3

1 with respect to the corresponding frame can be written as

U = ν1V1 + ν2S3,

where ν1(s), ν2(s) are functions of parameter s. Taking covariant derivative of vector field
U with respect to V1 and comparing the equation on both sides, we obtain

ν ′
1 = 0,
ν1κ1 + ϵν2κ2 = 0,
ν ′

2 = 0.
(5.11)

Here, ϵ will be positive if γ(s) is a spacelike curve and ϵ will be negative if γ(s) is a
timelike curve. From set of equation (5.11) we find that ratio of first curvature function
and second curvature function is constant. Thus from Theorem 5.1 and Corollary 5.3, we
can conclude that γ(s) is a V1 and S3− slant helix. □

6. Conditions for proper curve of order 2 with non constant curvature
function to lie in plane.

Theorem 6.1. Let γ(s) be a proper curve of order 2 with positive curvature function
(either κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r). If the position vector of γ(s) is lying on
some plane then γ(s) will never lie in the plane spanned by a tangent vector field along
the curve γ(s).

Proof. Let γ(s) be a proper curve of order 2 with positive curvature function (either
κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r) and the position vector of γ(s) is lying on the plane
spanned by a tangent vector fields along γ(s), then the position vector of γ(s) can be
written as either γ(s) = ν1V1 + ν2S2 or γ(s) = ν1V1 + ν3S3, where ν1 and ν2 are smooth
functions of parameter s.

Case 1. Let γ(s) is lying on {V1, S2} plane, then position vector of γ(s) is

γ(s) = ν1V1 + ν2S2. (6.1)
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Taking the covariant derivative on (6.1) with respect to vector filed V1 and comparing the
equation on both sides, we get 

ν ′
1 + ϵν2κ1 = 1,
ν ′

2 + ν1κ1 = 0,
ν2κ2 = 0,

(6.2)

where ϵ = ±1, ϵ = 1 for S2 = V2 and ϵ = −1 for S2 = W2 = Z2. But set of equation (6.2)
have no solution for non zero first and second curvature functions.

Case 2. Let γ(s) is lying on {V1, S3} plane, then position vector of γ(s) can be written
as follows

γ(s) = ν1V1 + ν2S3. (6.3)
Taking the covariant derivative on (6.1) with respect to vector filed V1 and comparing the
equation on both sides, we get the following set of equations

ν ′
1 = 1,
ν ′

2 = 0.
ν1κ1 + ϵν2κ2 = 0,

(6.4)

where ϵ = ±1, ϵ is negative for S3 = Z2 and ϵ will positive for S3 is either of W3 or V3. So
from set of equation (6.4), we get ν1 = S +C1 and ν2 = C2 for some constant C1 and C2.
Substituting ν1 and ν2 into equation (6.3), we get

γ(s) = (S + c1)V1 + C2S2.

Since γ(s) lying on S2
1(r), therefore we have

(S + C1)2 + C2
2 = r2, (6.5)

but equation (6.5) is not possible because left side of the equation is variable and right
side of the equation is constant.
Thus from Case 1. and Case 2, we can conclude that γ(s) will never lie in the plane
spanned by tangent vector fields along the curve γ(s). □

Theorem 6.2. Let γ(s) be a proper curve of order two in S2
1(r) ⊂ E3

1 then with respect
to an orthogonal frame constructed in Theorem 4.1.,

i. If γ(s) is a spacelike curve with curvature function (either κ(s) < 1
r or κ(s) > 1

r )
and lying on some plane, then the first and second curvature functions of γ(s) satisfy the
following relation

ϵ( 1
κ1(s)

)′ − ϵκ2(s)
∫
κ2(s)
κ1(s)

ds = 0.

The position vector for γ(s) in a plane is given by γ(s) = ϵ 1
κ1(s)A2 − ϵκ2(s)

∫ κ2(s)
κ1(s)dsA3,

where A2 ∈ {V2,W2} and A3 ∈ {V3,W3} such that if A2 = V2 then A3 = V3 and if we take
A2 = W2 then A3 = W3 . Here ϵ = ±1, ϵ is positive if γ(s) is with curvature function
κ(s) > 1

r and is negative if γ(s) have curvature function is κ(s) < 1
r .

ii. If γ(s) is a timelike curve and lying in the plane not spanned by a tangent vector
field along the curve γ(s), then the first and second curvature function of the curve satisfy
the condition

( 1
κ1(s)

)′ + κ2(s)
∫
κ2(s)
κ1(s)

ds = 0.

The position vector for γ(s) in the plane is given by γ(s) = 1
κ1(s)Z2 + κ2(s)

∫ κ2(s)
κ1(s)dsZ3.
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Proof. Let γ(s) be a proper curve of order 2 with positive curvature function (either
κ(s) < 1

r or κ(s) > 1
r ) lying on S2

1(r) and the position vector of γ(s) is lying on the plane
not spanned by the tangent vector fields along γ(s). Then the position vector of γ(s)
is either γ(s) = ν2A2 + ν3A3 or γ(s) = ν2Z2 + ν3Z3, where ν2 and ν3 are functions of
parameter s. Here A2 ∈ {V2,W2} and A3 ∈ {V3,W3} such that if A2 = V2 then A3 = V3
and if we take A2 = W2 then A3 = W3.

Case 1. Let γ(s) is spacelike with position vector in {A2, A3} plane, then
γ(s) = ν2A2 + ν3A3. (6.6)

Taking the covariant derivative of (6.6) with respect to vector filed V1 and comparing the
equation on both sides, we get the following set of equations

ν2κ1 = ϵ,

ν ′
2 + ν3κ2 = 0,
ν ′

3 + ν2κ2 = 0,
(6.7)

where (ϵ = ±1), ϵ is positive if γ(s) is with curvature function κ(s) > 1
r and is negative if

γ(s) have curvature function is κ(s) < 1
r . From first and third part of the set of equation

(6.7), we get the following set of solutions{
ν2 = ϵ 1

κ1
,

ν3 = −ϵ
∫ κ2

κ1
ds.

(6.8)

By using (6.8), in (6.6) and in second part of (6.7), we obtain the required condition and
position vector for γ(s) in {A2, A3} plane.

Case 2. Let γ(s) is timelike and lying on {Z2, Z3} plane then position vector of γ(s), can
be define as follows

γ(s) = ν2Z2 + ν3Z3. (6.9)
Taking covariant derivative on (6.9) with respect to vector filed V1 and comparing the
equation on both sides, we get the following set of equations

ν2κ1 = 1,
ν ′

2 − ν3κ2 = 0,
ν ′

3 + ν2κ2 = 0.
(6.10)

From first and third part of (6.10), we get{
ν2 = 1

κ1
,

ν3 = −
∫ κ2

κ1
ds.

(6.11)

Substituting ν2 and ν3 from (6.11) into second part of (6.10) and in (6.9), we obtain the
required condition and position vector for γ(s) in {Z2, Z3} plane. □
Note. To discuss the solutions of the above differential equations, given in Theorem 6.2,
we obtain the following possibilities:

i. In that case, we may take κ1(s) = 1
sinh(

∫
κ2(s)ds) or κ1(s) = e

∫
κ2(s)ds.

ii. In that case, we can consider the solution

κ1(s) = C2
cos(C1 −

∫
κ2(s)ds)

,

where C1, C2 ̸= 0, are constants.
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7. Conditions for another curve β(s̄) whose V̄2 vector field coincide with
V2 vector field of γ(s) .

Theorem 7.1. Let γ(s) be a curve with curvature function κ(s) > 1
r lying on S2

1(r), and
if there exist a regular curve β(s̄) = γ(s) + η(s)W2 in E3

1 such that W2 = W̄2, where
s̄ = s̄(s), W̄2 = 1

κ̄1
∇̃V̄1

V̄1 and ∇̃V1β = V̄1
ds̄
ds then the image of curve will lie in either S2

1(a)
or H2

0 (b) for some constant a and b.

Proof. Let γ(s) be a curve with curvature function κ(s) > 1
r is lying on S2

1(r) ⊂ E3
1 , and

β(s̄) = γ(s) + η(s)W2 is regular curve lying in E3
1 such that the W2 = W̄2 where s̄ = s̄(s),

W̄2 = 1
κ̄1

∇̃V̄1
V̄1 and ∇̃V1β = V̄1

ds̄
ds .

β(s̄) = γ(s) + η(s)W2. (7.1)
Taking the covariant derivative of equation (7.1) along the vector field V1, we obtain

V̄1
ds̄

ds
= V1 + η′(s)W2 + η(s)(κ1(s)V1 + κ2(s)W3, (7.2)

since W2 = W̄2, taking the inner product of equation (7.2) with W2, we get
η′(s) = 0 ⇒ η(s) = C1 = constant. (7.3)

Using equation (7.3) and equation (7.1), we obtain
g(β(s̄), β(s̄)) = r2 − C2

1 . (7.4)
Case 1. If C2

1 > r2 implies that there exist a hyperbolic plane H2
0 (b) where b = C2

1 − r2,
such that curve β(s̄) will lie in H2

0 (b). From equation (7.2), we get β(s̄) is a spacelike
curve and {V̄1, W̄2, W̄3} is an orthogonal frame along β(s̄) where V̄1 and W̄3 are spacelike
vector fields and W̄2 is timelike vector field.

Case 2. If C2
1 < r2 implies that there exist a pseudosphere S2

1(a) where a = r2 −C2
1 , such

that curve β(s̄) will lie in S2
1(a). From equation (7.2), we have β(s̄) is a spacelike curve

with orthogonal frame {V̄1, W̄2, W̄3} along β(s̄). Where V̄1 and W̄3 are spacelike vector
fields and W̄2 be a timelike vector field. □
Theorem 7.2. Let γ(s) be a curve with curvature function κ(s) < 1

r and lying on S2
1(r),

and if there exist a regular curve β(s̄) = γ(s) + η(s)V2 in E3
1 such that V2 = V̄2, where

s̄ = s̄(s), V̄2 = 1
κ̄1

∇̃V̄1
V̄1 and ∇̃V1β = V̄1

ds̄
ds then the image of curve will lie in S2

1(a) for
some constant a. The curve β(s̄) can be spacelike or timelike depends on the following
conditions

(i) If |η(s| < 1
|κ2(s)|−|κ1(s)| then curve β(s̄) will be spacelike in S2

1(a) ⊂ E3
1 ,

(ii) If |η(s| > 1
|κ2(s)|+|κ1(s)| then curve β(s̄) will be timelike in S2

1(a) ⊂ E3
1 .

Proof. Let γ(s) is a curve with curvature function κ(s) < 1
r and lying on S2

1(r), and
β(s̄) = γ(s) + η(s)V2 is regular curve lying in E3

1 such that the V2 = V̄2 where s̄ = s̄(s),
V̄2 = 1

κ̄1
∇̃V̄1

V̄1 and ∇̃V1β = V̄1
ds̄
ds . Now

β(s̄) = γ(s) + η(s)V2. (7.5)
Taking the covariant derivative of equation (7.5) along the vector field V1, we obtain

V̄1
ds̄

ds
= V1 + η′(s)V2 + η(s)(−κ1(s)V1 + κ2(s)V3, (7.6)

since, V2 = V̄2, taking the inner product of equation (7.6) with V2, we get
η′(s) = 0 ⇒ η(s) = C1 = constant. (7.7)
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Using equation (7.7) and equation (7.6), we obtain

g(β(s̄), β(s̄)) = r2 + C2
1 . (7.8)

From equation (7.6), we get

g(V̄1, V̄1)(ds̄
ds

)2 = (1 − η(s)κ1(s))2 − (η(s)κ2(s))2. (7.9)

Thus from (7.8) we can conclude that the curve β(s̄) will lie in S2
1(a) , where a =

r2 +C2
1 . Also from equation 7.9 we see that the β(s̄) is spacelike curve in S2

1(r) if |η(s| <
1

|κ2(s)|−|κ1(s)| and the curve is timlike when |η(s| > 1
|κ2(s)|+|κ1(s)| . □

Corollary 7.3. Let γ(s) be a timelike and proper curve of order 2 is lying on S2
1(r), and

if there exist a regular curve β(s̄) = γ(s) + η(s)Z2 in E3
1 such that the Z2 = Z̄2, where

s̄ = s̄(s), Z̄2 = 1
κ̄1

∇̃V̄1
V̄1 and ∇̃V1β = V̄1

ds̄
ds then the image of curve will lie in S2

1(a) for
some constant a. The curve β(s̄) can be spacelike or timelike depends on the following
conditions

(i) If |η(s| < 1
|κ2(s)|−|κ1(s)| then curve β(s̄) will be timelike in S2

1(a) ⊂ E3
1 ,

(ii) If |η(s| > 1
|κ2(s)|+|κ1(s)| then curve β(s̄) will be spacelike in S2

1(a) ⊂ E3
1 .

Proof. Using third part of Theorem 4.1 and Theorem 7.2, one can prove Corollary 7.3
easily. □
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