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Abstract 

This paper presents the development of wind energy prediction models for the Nala Danavi wind 

farm in Sri Lanka by using machine learning and statistical techniques. Wind speed and ambient 

temperature were used as the input variables in modeling while the daily wind energy production 

was the output variable. Correlation between the wind energy and each weather index was 

investigated using the Pearson’s and Spearman’s correlation coefficients and it was found that 

daily wind energy output is positively correlated with both daily averaged input variables. 

Statistical prediction models of Multiple Linear Regression (MLR) and Power Regression (PR) 

and the machine learning techniques of Support Vector Regression (SVR), Gaussian Process 

Regression (GPR), Feed Forward Backpropagation Neural Network (FFBPNN), Cascade-

Forward Backpropagation Neural Network (CFBPNN) and Recurrent Neural Network (RNN) 

were developed. The accuracy of the prediction models was measured in terms of the coefficient 

of determination, Bias, Percent Root mean square error (RMSE)Bias, and Nash-Sutcliffe 

Efficiency (NSE). Results of the performance evaluation indicated that all the models are highly 

accurate while the FFBPNN-based model demonstrates outstanding performance with very low 

error. Such prediction models are highly important for a country like Sri Lanka whose power 

generation mainly depends on imported coal followed by hydropower and expanding the on-shore 

and off-shore wind farms gradually in many potential locations scattered over the country. 
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1. INTRODUCTION 

 

Wind is a major renewable energy source, which generates electricity without combustion. However, the 

uncertain behavior of wind increases the cost of energy and limits the advantages of this pollution-free 

technology. Ability to predict wind energy brings multiple benefits in operating wind farms effectively in 

terms of regulating, scheduling and load balancing. Due to its impact on the security, reliability, and 

operational performance of power grids, wind energy prediction is of extreme significance to the energy 

sector. Further, it is useful in strategic planning, taking preventive measures, and optimizing the operation, 

which ultimately maximizes the revenue. Hence, researchers worldwide have suggested numerous machine 

learning, statistical, time series and hybrid models for wind energy prediction [1-2]. 

   

The most frequently reported wind power forecasting models are Auto Regressive Moving Average 

(ARMA) models, Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS) [3]. ARMA is a time series model, which performs linear mapping between the inputs and outputs, 

while the other two methods perform a nonlinear mapping [4]. Improved versions of ARMA such as Auto 

Regressive Integrated Moving Average (ARIMA) and Seasonal ARIMA (SARIMA) were also widely used 
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in wind energy prediction [5-6]. Statistical prediction models of Multiple Linear Regression (MLR) and 

Power Regression (PR) were developed based on historical data of a wind farm such as wind speed, power 

output, wind direction and ambient temperature [7]. Regression-based Machine learning techniques viz. 

Support Vector Regression (SVR), Nearest Neighbor Regression, Multi-Kernel Robust Ridge Regression 

[8], Local Linear Regression [9], and Gaussian Process Regression (GPR) were widely used for developing 

wind energy prediction models [10-13]. ANNs, recurrent neural networks, and Convolutional Networks are 

among the neural networks used to model nonlinear systems for wind energy prediction [14]. 

 

In keeping with global commitments towards improving renewable energy contribution to 70% by the year 

2030, Sri Lanka attach much emphasis on bolstering future electricity demand with power generated from 

solar, wind, and hydropower sources to good effect. However, operation of wind farms in Sri Lanka is still 

in the initial stage and only limited research has been conducted to predict their wind energy generation. 

For example, an adaptive filter was used for forecasting power fluctuations of a wind turbine installed in 

Kalpitiya area of the north-western region in Sri Lanka, which predicted its power generation with 5.07% 

Root Mean Square Error (RMSE) of its mean value, [15]. Another recent study, [7], has reported that ANN, 

MLR, and PR techniques are good at producing noteworthy performances with Pearson’s correlation 

coefficient (R) values of 0.97, 0.95, and 0.94 respectively, to predict wind power at Pawan Danavi wind 

farm, Sri Lanka. Nevertheless, these studies used only periodically averaged monthly data over the past 

few years and therefore the applicability of prediction models presented in them remains to be verified for 

daily averaged data that should be considered for more precise and updated forecasts in the Sri Lankan 

context where the reliance on long-term data is questionable. In order to address this aspect 

comprehensively with multiple techniques, this study focused on developing models to forecast daily wind 

power generation at a major wind farm (Nala Danavi) in Sri Lanka based on daily averaged data. In an era 

where both on-shore and off-shore wind farms are being expanded in potential locations over the country 

to reduce the expenses on importing coal and the dependency on uncertain hydropower generation, accurate 

prediction of wind energy generation is highly important in numerous aspects. Though researchers have 

recommended various machine learning or statistical techniques for the accurate prediction of energy 

generation of wind farms located all over the world, no single method could be generalized for all the case 

studies. As such, some commonly used prediction techniques are applied in this research to find the most 

accurate model from among them.  

 

More specifically, this paper presents the use of two statistical techniques in MLR and PR and five machine 

learning techniques: SVR, GPR, Feed Forward Backpropagation Neural Network (FFBPNN), Cascade-

Forward Backpropagation Neural Network (CFBPNN) and Recurrent Neural Network (RNN) on daily 

averaged weather data at Nala Danavi area for the prediction of daily energy generation. Section 2 

elaborates wind farm data, prediction models, and performance evaluation criteria. The performance of the 

models and the results obtained are presented in Section 3 with a discussion on related work and the 

conclusions are summarized in Section 4.  

 

2. METHODOLOGY 

 

2.1. Wind Farm Data 

 

Nala Danavi wind farm (08°05′23″N 79°42′33″E) has established itself as one of the major onshore 

installations on the western coast of Sri Lanka within the Puttalam district, which could generate up to 

6𝗑850 KW rated power by six Gamesa G58 turbines. Each turbine has cut-in wind speed of 3.0 m/s and 

cut-out speed of 20.0 m/s. As per the data analyzed over the 5-year period from 2016 to 2020, the daily 

production of wind energy varies between 0.3 MWh and 107.8 MWh having a mean of about 33 MWh and 

a standard deviation of 31.8 MWh. Figure 1 shows the variation of daily wind energy in the year 2019. The 

annual pattern of energy production is characterized by mostly optimum values within 50-100 MWh with 

some drops to within 20- 40 MWh, during the generally warmer months of the year from May to September. 

During the other months, i.e. from October to April of the ensuing year, the daily energy generation is less 

than 20 MWh. 
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Figure 2 shows the relationship between wind energy and the weather indices of wind speed and ambient 

temperature. A linear correlation with R² = 0.7969 can be inferred between the daily wind energy output 

and the average daily wind speed when the latter varies between 3-12 m/s. Nevertheless, the relationship 

of the daily wind energy output with the ambient temperature, which varies within 25oC- 53oC, is not as 

linear as that with the wind speed due to relatively wide scattering of some data points around the line of 

best fit resulting R² = 0.5696. 

 

In order to quantify the seemingly linear relationships mentioned above and the presumably pairwise 

correlations among the wind energy, wind speed, and the ambient temperature, the Pearson’s correlation 

(R) and the Spearman’s correlation (ρ) were calculated (Table 1) for each pair of these variables. As was 

suggested by the scatter plots of Figure 2, the strongest correlation was found between the wind speed and 

wind energy substantiated by the higher values of both correlation coefficients (> 0.80). Similarly, a 

significant correlation is also indicated between the wind energy and the ambient temperature with both 

coefficients being 0.75. Coherent with the higher energy output during the warmer months of May to 

September noticed in Figure 1, wind speed and ambient temperature are also strongly correlated as evident 

from the higher values of both coefficients. Hence, it can be deduced that all three variables are 

intercorrelated and the daily wind energy depends on both wind speed and the ambient temperature 

prevalent on the day. 

 

 
Figure 1. Variation of daily wind energy production 

 

 
(a) (b)  

Figure 2. Relationship between wind energy and weather indices (a) Wind Speed (b) Ambient 

Temperature 
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Table 1. Correlation between wind energy and weather indices 

 

Wind Energy 1   

Ambient Temperature 
R= 0.75 

ρ = 0.75 
1  

Wind Speed 
R= 0.89 

ρ = 0.84 

R= 0.82 

ρ = 0.78 
1 

 Wind Energy Ambient Temperature Wind Speed 

 

The optimum wind power can be produced if the rotor blades capture the direction of the wind. At Nala 

Danavi wind towers, all rotors are rotated according to the wind direction with angled blades ensuring 

optimum energy generation at any given time. All wind data were separated into sixteen categories based 

on the direction of the wind and compiled with the percentage of data in each direction, as illustrated in the 

wind rose diagram (Figure 3).  

 

 
Figure 3. Wind rose diagram 

 

It could be discovered that 16-20% of wind blown in the direction of southwest have made the highest 

single contribution from among all directions, followed by 12-16% blown in the direction of south-

southwest. The lowest percentage up to 4% of wind data were found towards east and between north and 

west. 

 

2.2. Prediction Models 

 
Daily wind energy prediction models were developed by using averaged daily wind speed and ambient 

temperature as inputs. Modelling was performed in MATLAB Version R2018a (Figure4). The performance 

of the models was evaluated in terms of the coefficient of determination (R2), Bias, Percent Bias (PBias), 
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RMSE, RMSE-observations standard deviation ratio (RSR), and Nash-Sutcliffe efficiency (NSE). 

Mathematical basis behind each regression method can be explained as follows. 

 

 
Figure 4. The overall framework of developing model 

 

Multiple Linear Regression (MLR) is an extension of the simple linear regression. The relationship between 

the dependent variable and the explanatory variables is represented as a linear relationship as given in the 

following equation [16]:  

 

y = β0 +  β1 x1 +  β2 x2 + ⋯ +  βn xn + e      (1) 

 

where, β0 is a constant, β1 to βn are the coefficients relating n number of explanatory variables to the 

variables of interest and e_ is the error term. Power regression (PR) develops a relationship by modeling 

the nonlinearity of data. The dependent variable is expressed proportional to the product of powers of the 

independent variables as follows [17] 

 

𝑦 = 𝑎𝑥1
𝑏𝑥2

𝑐 … 𝑥𝑛
𝑝

        (2) 

 

where, n is the number of observations and a,b,c,…,p are constants. Support Vector Regression (SVR) is a 

relatively new and promising supervised learning technique. For a one-dimensional problem, SVR 

expresses the continuous-valued function as [18] 

 

𝑦 =  ∑ 𝑤𝑗𝑥𝑗 + 𝑏𝑛
𝑗=1   (3) 

 

where, w is the slope and b is the intercept. For multidimensional data, x is augmented by one and b is 

included in the w vector to express the multivariate regression as follows 

 

𝑦 = [
𝑤
𝑏

]
𝑇

[
𝑥
1

]            (4) 

 

where, T is the transpose of the vector. A Gaussian process is a stochastic process described by its mean 

function, which is a real-valued function, and its covariance function which models the joint variability of 

the Gaussian process random variables [19]. MATLAB enables the application of Kernel functions of 

Rational Quadratic, Exponential, Squared Exponential, and Matern 5/2.   

 

FFBPNN is a layered feed-forward ANN in which the back propagation algorithm, which uses supervised 

learning, is applied [20]. The backpropagation neural network architecture is a hierarchical design 

consisting of fully interconnected processing layers including one or more intermediate hidden layers. 

However, in FFBPNN the number of layers is kept low to reduce the training time. The connection formed 
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between input and output through an activation function in the hidden layer is indirect and nonlinear. 

Further, the signals are sent forward and the errors are propagated backwards. After finding the error, the 

weights are adjusted using the gradient descendent method [21]. In contrast, CFBPNN forms a network 

with direct connection between the input and the output layers besides the indirect connection [22]. These 

additional connections improve the modeling speed. RNN architectures range from fully interconnected to 

partially connected networks. In fully connected networks, each node receives inputs from all other nodes 

and sends feedback to the node itself [23]. RNNs use feedback loops to process a sequence of data allowing 

information to persist. Therefore, RNNs outperform many other algorithms in forming a much deeper 

understanding of a sequence. 

 

2.3. Performance Evaluation Criteria 

 

The R2 describes the degree of collinearity between observed and predicted data. It indicates the proportion 

of the variance in observed data explained by the model. In the range from 0 to 1, higher R2 values indicate 

less error variance. Typically, a prediction model with R2 ≥ 0.5 is considered acceptable [24] 

 

𝑅2 =
(∑ (𝑂𝑖−𝑂𝑚𝑒𝑎𝑛)(𝑃𝑖−𝑃𝑚𝑒𝑎𝑛)𝑁

𝑖=1 )2

∑ (𝑂𝑖−𝑂𝑚𝑒𝑎𝑛)2𝑁

𝑖=1
∑ (𝑃𝑖−𝑃𝑚𝑒𝑎𝑛)2𝑁

𝑖=1

  (5) 

 

where, 𝑂𝑖 and 𝑃𝑖 represent observed and predicted energy data. Although it is widely used for the evaluation 

of prediction models, it is oversensitive to outliers. On the other hand, it is insensitive to additive and 

proportional differences between the observed and predicted data. 

 

Bias is the mean error, which signifies whether the method over-estimates or under-estimates the forecast 

variable. However, it does not indicate the level of skill of the forecast method 

 

𝐵𝐼𝐴𝑆 =
∑ (𝑃𝑖−𝑂𝑖)𝑁

𝑖=1

𝑁 
 . (6) 

 

PBias is the deviation of data being evaluated, which is expressed as a percentage. It measures whether the 

average tendency of the predicted data is larger or smaller than their observed counterparts. PBias = 0 

indicates a perfect prediction model. Positive PBIAS values indicate model overestimation while negative 

PBias values indicate underestimation 

 

PBias =
∑ (𝑃𝑖−𝑂𝑖)∗ 100𝑁

𝑖=1

∑ (𝑂𝑖)𝑁
𝑖=1  

 . (7) 

 

RMSE is expressed in the same units as the forecast variable. RMSE= 0 indicates a perfect fit 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑃𝑖−𝑂𝑖)2𝑁
𝑖=1

𝑁
 . 

 

(8) 

RSR standardizes RMSE using the standard deviation of the observations and combining an error index 

with additional information. It is the ratio of the RMSE and standard deviation of observed data. RSR 

incorporates the benefits of error index statistics and includes a normalization factor. It is a positive value 

with optimal value of 0, which indicates zero RMSE or residual variation implying a perfect prediction 

 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝜎𝑜
 . (9) 

 

NSE is a normalized statistic, which indicates how well the plot of observed versus predicted values fits 

[25]. It is the relative magnitude of the residual variance (noise) compared to the measured data variance 

(information). NSE is in the range between −∞ and 1. Values between 0 and 1 are considered as acceptable 

levels of performance and NSE = 1 is the optimal value. NSE ≤ 0 indicates unacceptable performance as 

the mean observed value is a better predictor than the value given by the model (predicted value) 
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𝑁𝑆𝐸 = 1 − [
∑ (𝑃𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−𝑂𝑚𝑒𝑎𝑛)2𝑁
𝑖=1  

] . (10) 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Results 

 

The daily wind energy predicted by the two statistical models of MLR and PR and the five machine learning 

models of SVR, GPR, FFBPNN, CFBPNN and RNN were plotted against the actual energy within the 

range of 0 to 120 MWh as shown in Figure 4. In order to compare the performance of these models and to 

identify the differences of predictions generated by them, the statistical measures of R2, Bias, PBias, RMSE, 

RSR, and the NSE were calculated for each model and summarized into Table 2. In general, all the models 

have shown their dexterity with reasonable accuracy in predicting the daily wind energy output as indicated 

by the higher values of the coefficient of determination (R2≥ 0.82). Further, the models can be distinguished 

based on the degree of overestimation or the underestimation of daily energy predicted by them, as 

interpreted in Section 2.3. 

 

     
                      (a) MLR                                              (b) PR                                       (c) SVR 
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                       (f) CFBPNN                                                                        (g) RNN 

Figure 4. Variation of the predicted energy against the actual energy 

 

Table 2. Comparison of the performance 

Model R2 Bias PBias RMSE RSR NSE 

MLR 0.82 -0.039 -0.061 10.7 0.450 0.798 

PR 0.91 1.345 2.103 13.3 0.557 0.690 

GPR 0.82 0.772 1.281 11.0 0.450 0.797 

SVR 0.82 1.799 3.441 9.9 0.400 0.840 

FFBPNN 0.91 -0.671 -1.049 9.5 0.398 0.842 

CFBPNN 0.92 -3.845 -6.012 15.8 0.665 0.557 

RNN 0.82 -0.821 -1.283 10.2 0.428 0.816 

 

According to the performance of the prediction models (Table 2), the FFBPNN model was proved to be the 

most accurate due to the lowest RMSE and RSR, NSE value close to 1, and low values of Bias/ PBias. The 

model based on CFBPNN has underestimated a number of predicted values as indicated by much negative 

values of Bias/ PBias. Its RMSE is the highest and NSE is the lowest among the corresponding values 

generated by the other models thus deviating from the best fit. On the contrary, the SVR model has 

overestimated some predicted values as proved by the highest positive Bias/ PBias among the prediction 

models. Nevertheless, this slight overestimation has not affected the values of RMSE, RSR, and NSE. The 

PR model has also overestimated some energy values within the range 50-100 MWh, in particular, as 

indicated by similarly higher positive values of Bias/ PBias. All statistical measures except Bias/ PBias 

with respect to both MLR and the RNN are very close to each other but the much negative Bias/ PBias 

values of the RNN indicate a greater tendency for its predicted values to be smaller than observed values, 

particularly within 60- 110 MWh range. 

 

3.2. Discussion 

 

The outstanding performance of the FFBPNN may be due to its capability in realizing arbitrary complex 

nonlinear mapping between input and output data. Further, its self-learning ability considers both inputs 

and predicted outputs in the training process, enabling the adjustment of the network parameters based on 

the errors. In addition to the performance comparison among the models developed in this research, similar 

research studies were also explored (Table 3). It could be observed that the accuracy of the proposed 

prediction models is comparable.  Though some prediction models were developed for another wind farm 

in Sri Lanka, forecasting was possible only on the monthly scale [7]. More importantly, no previous 

research has been conducted on the Nala Danawi wind farm. 

 

Table 3. Comparison of wind energy prediction models proposed in similar research studies 

Reference Country Input Variables Modeling Technique Performance of 

the Model 

0

50

100

0 50 100

P
re

d
ic

te
d

 E
n

e
rg

y 
(M

W
h

)

Actual Energy (MWh)

0

50

100

0 50 100

P
re

d
ic

te
d

 E
n

e
rg

y 
(M

W
h

)

Actual Energy (MWh)



1367  Jeevani JAYASINGHE et al. / GU J Sci, 35(4): 1359-1370 (2022) 

 
 

[3] Wind Atlas of 

South Africa  

 

wind speed  

wind direction  

temperature  

atmospheric pressure  

relative humidity  

 

ANN RMSE=5.6% 

MAE=3.8% 

 

Adaptive-network-

based Fuzzy 

Inference System 

(ANFIS)  

 

RMSE=5.7% 

MAE=3.9% 

ARMA 

 

RMSE=5.8% 

MAE=4.2% 

 

[4] Bonneval 

(Southwest of 

Paris, France) 

Surface variables 

Altitude variables 

Computed variables 

ARMA  

𝛥RMSE = 2.7% 

ANN 𝛥RMSE = 0.1% 

Downscaling method 

1 (LRno-obs) 

- 

Downscaling method 

2 (LRobs) 

- 

[5] Morelia 

(Michoacán, 

Mexico) 

Wind turbine 

characteristics 

ARIMA (High Power 

Sample) 

MAE=0.155 

MSE=0.212 

 

ARIMA (Low Power 

Sample) 

MAE=0.161 

MSE=0.176 

 

ANN MAE=0.060 

MSE=0.079 

 

[6] US 

East and West 

coast 

Wind speed 

Wind direction 

Air temperature 

Surface air pressure 

Air density 

ARIMA ARIMA-RF and 

ARIMA-BCART 

have boosted the 

prediction 

accuracy by 15%-

32% and by 12%- 

24% respectively. 

Random Forest(RF) 

Bagging 

Classification & 

Regression 

Trees(BCART) 

ARIMA-RF 

ARIMA-BCART 

[7] Kalpitiya, Sri 

Lanka 

mean wind speed 

mean ambient temperature 

ANN R=0.97 

RMSE=109 

Bias=-0.0003 

Nash=0.98 

 

MLR R=0.95 

RMSE=279 

Bias=0 

Nash=0.9 

 

PR R=0.94 

RMSE=287 

Bias=0.0074 

Nash=0.89 

 

[10] Greece  wind speed  ANN R2=99.52% 
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 wind direction at hub 

height  

 

index of 

agreement= 

99.71% 

SVR R2=99.60% 

index of 

agreement= 

98.99% 

 

4. CONCLUSIONS 

Accurate prediction of daily wind energy generation at Nala Danavi wind farm in Sri Lanka was modelled 

in this research by applying two statistical techniques and five machine learning techniques. Data comprised 

of daily wind energy generation, wind speed, ambient temperature, and the direction of the wind though 

the latter is automatically adjusted to produce the optimum energy continuously. The possible correlations 

among these variables were explored first using the Spearman’s and Pearson’s correlation coefficients. 

Based on the pairwise correlation coefficients it could be concluded that strong intercorrelations exist 

among the above variables and the daily wind energy output is proportional to both wind speed and ambient 

temperature. Data further revealed that the wind at Nala Danavi blows mostly in the directions of southwest 

and south- southwest. The windy weather prevalent during the warmer months of the year accounts for 

higher wind power output. 

 

The efficacy of the seven models for prediction purpose was evaluated using the six statistical measures 

viz. R2, Bias , PBias , RMSE, RSR and NSE. Generally speaking, all the models were found capable of 

predicting the daily wind energy generation at Nala Danavi using weather data. There was enough evidence 

to conclude that the model based on the machine learning technique FFBPNN is the most suitable 

instrument to predict the daily wind energy output, provided the availability of data on wind speed and 

ambient temperature. Though reasonably accurate, the models based on the techniques CFBPNN and the 

RNN tend to underestimate the predicted values while the regression-based models of SVR and PR tend to 

overestimate the predictions. Thus, this study has presented not only a viable set of models for the prediction 

of daily wind energy output at Nala Danavi wind farm in Sri Lanka but also temporal information on 

optimum wind power generation, which can be appropriately utilized to control the integration of daily 

wind power into the national grid and thereby preserve much valued other renewable energy sources like 

hydro power and more expensive thermal power. 
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