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TUĞRUL CÖMERT AND ERHAN PIŞKIN
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Abstract. The main goal of this work is to study the inital boundary value
problem for a higher-order parabolic equation with logarithmic source term

ut + (−∆)mu = u ln |u| .
We obtain blow-up at +∞ of weak solutions, by employing potential well
technique. This improves and extends some previous studies.

1. Introduction

In this paper, we cosider the following higher-order parabolic problem with log-
arithmic nonlinearity

(1.1)

 ut +Au = u ln |u| , x ∈ Ω, t > 0,
Dγu(x, t) = 0, |γ| ≤ m− 1, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

where A = (−∆)m, m ≥ 1 a positive integer, Ω is a bound domain in Rn with
smooth boundary ∂Ω, γ = (γ1, γ2, ..., γn) is multi-index, γi (i = 1, 2, ..., n) are non-

negative integers, |γ| = γ1 + γ2 + ... + γn, D
γ = ∂|γ|

∂x
γ1
1 ∂x

γ2
2 ...∂xγn

n

are multi-index

derivative operator, ∆ =
n∑
i=1

∂2

∂x2
i

is the Laplace operator.

When m = 1, the equation (1.1) becomes a heat equation as follows

(1.2) ut −∆u = u ln |u| .
In the equation (1.2), Chen et al. [2] obtained under some suitable conditions
for the global existence, decay estimate and blow-up at +∞ of weak solutions,
via the logarithmic Sobolev inequality and potential well technique. Also, Han [5]
obtained the blow-up at infinity of solutions, via the logarithmic Sobolev inequality.
Additionally, Chen and Tian [3] obtained the global existence of solution, blow-up
at +∞ of solution, by adding strong damping term to the equation (1.2).
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Peng and Zhou [10] studied the following semilinear heat equation with logarith-
mic nonlinearity

ut −∆u = up−2u ln |u| ,
where 2 < p. They studied the existence of the unique global weak solutions and
blow-up in the finite time of weak solutions, via potential well technique and energy
technique.

Li and Liu [8] established a class of fourth-order parabolic equation with loga-
rithmic source term as follows

ut + ∆2u = up−2u ln |u| ,
where 2 < p. They studied the existence of global solutions, by using potential well
technique. In addition, they also studied result of decay and finite time blow-up
for weak solutions.

Nhan and Truong [9] studied the following nonlinear pseudo-parabolic equation

ut −∆ut − div
(
|∇u|p−2∇u

)
= |u|p−2

u log |u| .

They obtained results as regard the existence or non-existence of global solutions.
Also, He et al. [6] proved the decay and the finite time blow-up for weak solutions
of the equation.

Resently many other authors investigated higher-order hyperbolic and parabolic
type equation [4, 7, 11, 12, 13, 14, 15]. Ishige et al. [7] studied the Cauchy problem
for nonlinear higher-order heat equation as follows

ut + (−∆)mu = |u|p .
They obtained existence of solutions of the Cauchy problem by introducing a new
majorizing kernel. In addition, they studied the local existence of solutions under
the different conditions.

Xiao and Li [13] considered initial boundary value problem for nonlinear higher-
order heat equations of

ut + (−∆)mut + (−∆)mu = f(u).

They established the existence of weak solution to the static problem, by using the
potential well technique.

The remainder of our work is organized as follows. In Section2, some important
Lemmas are given. In Section 3, the main result is proved.

2. Preliminaries

Let ‖u‖Hm(Ω) =

( ∑
|γ|≤m

‖Dγu‖2L2(Ω)

) 1
2

denote Hm(Ω) norm, let Hm
0 (Ω) denote

the closure in Hm(Ω) of C∞0 (Ω). Let ‖.‖r and ‖.‖ denote the usual Lr(Ω) norm and
L2(Ω) norm.

For u ∈ Hm
0 (Ω)\{0}, we define the energy functional

(2.1) J(u) =
1

2

∥∥∥A 1
2u
∥∥∥2

− 1

2

∫
Ω

|u|2 ln |u| dx+
1

4
‖u‖2 ,

and Nehari functional

(2.2) I(u) =
∥∥∥A 1

2u
∥∥∥2

−
∫

Ω

|u|2 ln |u| dx.
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By (2.1) and (2.2), we obtain

(2.3) J(u) =
1

2
I(u) +

1

4
‖u‖2 .

Further, let

(2.4) d = inf
u∈N

J(u),

denote the potential depth, where N is the Nehari manifold, which is defined by

N = {u ∈ Hm
0 (Ω)\{0} : I(u) = 0}.

Lemma 2.1. [1]. Let k be a number with 2 ≤ k < +∞, n ≤ 2m and 2 ≤ k ≤ 2n
n−2m ,

n > 2m. Then there is a constant C depending

‖u‖k ≤ C
∥∥∥A 1

2u
∥∥∥ , ∀u ∈ Hm

0 (Ω) .

Lemma 2.2. J(t) is a nonincreasing function for t ≥ 0 and

(2.5) J ′ (u) = −
∫
Ω

u2
tdx ≤ 0.

Proof. Multiplying the equation (1.1) by ut and integrating on Ω, we get∫
Ω

u2
tdx+

∫
Ω

Auutdx =

∫
Ω

uut ln |u| dx.

By straightforward calculation, we obtain∫
Ω

u2
tdx+

1

2

d

dt

∥∥∥A 1
2u
∥∥∥2

=
1

2

d

dt

∫
Ω

|u|2 ln |u| dx− 1

4

d

dt
‖u‖2 ,

which yields that

1

2

d

dt

∥∥∥A 1
2u
∥∥∥2

− 1

2

d

dt

∫
Ω

|u|2 ln |u| dx+
1

4

d

dt
‖u‖22 = −

∫
Ω

u2
tdx.

Thus, we get

(2.6)
d

dt

(
1

2

∥∥∥A 1
2u
∥∥∥2

− 1

2

∫
Ω

|u|2 ln |u| dx+
1

4
‖u‖22

)
= −

∫
Ω

u2
tdx.

By 2.1 and 2.6, we obtain

(2.7)
d

dt
J(u) = −

∫
Ω

u2
tdx.

Moreover, Integrating (2.7) with respect to t on [0, t], we arrive at

(2.8)

∫ t

0

‖us(s)‖2 ds+ J(u(t) = J(u0).

�

Lemma 2.3. Let u ∈ Hm
0 (Ω)\{0} and j (λ) = J(λu). Then we get

(i) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) = −∞,
(ii) there is a unique λ∗ > 0 such that j′(λ∗) = 0,
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(iii) j(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and taking the maxi-
mum at λ∗,

(iv) I(λu) > 0 for λ ∈ (0, λ∗) , I(λu) < 0 for λ ∈ (λ∗,+∞) and I(λ∗u) = 0.

Proof. By the definition of j, for u ∈ H1
0 (Ω)\{0}, we get

(2.9) j(λ) =
λ2

2

∥∥∥A 1
2u
∥∥∥2

− λ2

2

∫
Ω

|u|2 ln |u| dx− λ2

2
lnλ ‖u‖22 +

λ2

4
‖u‖2 .

By (2.9), we have

d

dλ
j(λ) = λ

∥∥∥A 1
2u
∥∥∥2

− λ
∫

Ω

|u|2 ln |u| dx

−λ lnλ ‖u‖2 − λ

2
‖u‖2 +

λ

2
‖u‖2

= λ

(∥∥∥A 1
2u
∥∥∥2

−
∫

Ω

|u|2 ln |u| dx− lnλ ‖u‖2
)
.

Moreover, by taking

λ∗ = λ∗(u) = exp


∥∥∥A 1

2u
∥∥∥2

−
∫

Ω
|u|2 ln |u| dx

‖u‖2


By (2.2), we get

I(λu) =
∥∥∥A 1

2 (λu)
∥∥∥2

−
∫

Ω

|λu|2 ln |λu| dx

= λ2
∥∥∥A 1

2u
∥∥∥2

− λ2

∫
Ω

|u|2 ln |u| dx− λ2 lnλ ‖u‖2

= λj′(λ).

So, I(λu) > 0 for λ ∈ (0, λ∗) , I(λu) < 0 for λ ∈ (λ∗,+∞) and I(λ∗u) = 0.
Therefore, the proof is completed. �

Lemma 2.4. d defined by (2.4) is positive and there exists a positive function
u ∈ N such that J(u) = d.

Proof. Let {ur}∞r ⊂ N be a minimizing sequence for J, which means that

(2.10) lim
r→∞

J(ur) = d.

We can easy show that {|ur|}r ⊂ N is also a minimizing sequence for J due to
|ur| ∈ N and J(|ur|) = J(ur). Therefore, we can suppose that ur > 0 a.e. Ω for all
r ∈ N.

Moreover, we have already observed that J is coercive on N which satisfies that
{ur}∞r is bounded in Hm

0 (Ω). Let µ > 0 be small enough such that 2 + µ < 2n
n−2 .

Since Hm
0 (Ω) ↪→ L2+µ(Ω) is compact, so there exists a function u and a subsequence

of {ur}∞r , still denote by {ur}∞r , such that

ur → u weakly in Hm
0 (Ω),

ur → u strongly in L2+µ(Ω),

ur(x)→ u(x) a.e. in Ω.
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Also, u ≥ 0 a.e. in Ω. First, we prove u 6= 0. From the dominated convergence
theorem, we have

(2.11)

∫
Ω

|u|2 ln |u| dx = lim
r→∞

∫
Ω

|ur|2 ln |ur| dx,

and

(2.12)

∫
Ω

|u|2 dx = lim
r→∞

∫
Ω

|ur|2 dx.

From the weak lower semicontinuity of Hm
0 (Ω), we get

(2.13)
∥∥∥A 1

2u
∥∥∥2

≤ lim inf
r→∞

∥∥∥A 1
2ur

∥∥∥2

.

Then it follows from (2.1), (2.10), (2.11), (2.12) and (2.13) that

J(u) =
1

2

∥∥∥A 1
2u
∥∥∥2

− 1

2

∫
Ω

|u|2 ln |u| dx+
1

4
‖u‖2

≤ lim inf
r→∞

1

2

∥∥∥A 1
2ur

∥∥∥2

− lim
r→∞

1

2

∫
Ω

|ur|2 ln |ur| dx+ lim
r→∞

1

4
‖ur‖2

= lim inf
r→∞

(
1

2

∥∥∥A 1
2ur

∥∥∥2

− 1

2

∫
Ω

|ur|2 ln |ur| dx+
1

4
‖ur‖2

)
= lim inf

r→∞
J(ur) = d.(2.14)

Using (2.2), (2.11) and (2.13), we have

I(u) =
∥∥∥A 1

2u
∥∥∥2

−
∫

Ω

|u|2 ln |u| dx

≤ lim inf
r→∞

∥∥∥A 1
2ur

∥∥∥2

− lim
r→∞

∫
Ω

|ur|2 ln |ur| dx

= lim inf
r→∞

(∥∥∥A 1
2ur

∥∥∥2

−
∫

Ω

|ur|2 ln |ur| dx
)

= lim inf
r→∞

I(ur) = 0.(2.15)

Since ur ∈ N , we have I(ur) = 0. So, by Lemma 1 and the fact x−µ lnx ≤ (eµ)−1

for x ≥ 1, we get ∥∥∥A 1
2ur

∥∥∥2

=

∫
Ω

|ur|2 ln |ur| dx

≤ (eµ)−1

∫
Ω

|ur|2+µ
dx

= (eµ)−1 ‖ur‖2+µ
2+µ

≤ C
∥∥∥A 1

2ur

∥∥∥2+µ

2
,

where C is Sobolev emdedding constant. This satisfies that

(2.16)

∫
Ω

|ur|2 ln |ur| dx =
∥∥∥A 1

2ur

∥∥∥2

≥ C.

By (2.11) and (2.16), we have ∫
Ω

|u|2 ln |u| dx ≥ C.
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Thus, we have u ∈ Hm
0 (Ω)\{0}.

If I(ur) < 0, from Lemma 3, there exists a λ∗ such that I(λ∗u) = 0 and 0 <
λ∗ < 1. Thus, λ∗u ∈ N . It follows from (2.3), (2.4), (2.12) and (2.13) that

d ≤ J(λ∗u)

=
1

2
I(λ∗u) +

1

4
‖λ∗u‖2

=
(λ∗)2

4
‖u‖2

≤ (λ∗)2lim inf
r→∞

1

4
‖ur‖2

= (λ∗)2lim inf
r→∞

J(ur)

= (λ∗)2d,

which indicates λ∗ ≥ 1 by d > 0. It contradicts 0 < λ∗ < 1. By (2.15), we have
I(u) = 0. For this reason, u ∈ N . From (2.10), we have J(u) ≥ d. From (2.14), we
have J(u) ≤ d. So, J(u) = d. �

3. Main results

Definition 3.1. (Maximal Existence Time). Assume that u(t) be weak solutions
of problem (1.1). We define the maximal existence time Tmax as follows

(i) If u(t) exists for all 0 ≤ t <∞, then Tmax = +∞ ;
(ii) If there exists a t0 ∈ (0,∞) such that u(t) exists for 0 ≤ t < t0, but doesn’t

exists at t = t0, then Tmax = t0.

Definition 3.2. (Blow-up at +∞). Let u(t) be a weak solution of (1.1). We call
u(t) blow-up at +∞ if the maximal existence time Tmax = +∞ and

lim
t→+∞

‖u(t)‖2 = +∞.

Theorem 3.3. Assume that u0 ∈ Hm
0 (Ω)\{0}, J(u0) < d and I(u0) < 0. Let u(t)

be a weak solution to the problem (1.1). Then u(t) blows up at +∞ such that

lim
t→+∞

‖u(t)‖2 =∞.

Proof. Let u(t) be weak solution of (1.1) with J(u0) < d and I(u0) < 0. Let F :
[0,∞)→ R+, and

(3.1) F (t) =

∫ t

0

‖u(s)‖2 ds.

Then, a direct calculation gives

(3.2) F ′(t) = ‖u(t)‖2 .

From (2.2) and (3.2), we get

F ′′(t) = 2

∫
Ω

uutdx

= 2

∫
Ω

u2 ln |u| dx− 2

∫
Ω

Au2dx

= −2I(u).(3.3)
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By (3.2) and (3.3), we get

F ′(t) lnF ′(t)− F ′′(t) = ‖u(t)‖2 ln ‖u(t)‖2 + 2I(u)

= 2 ‖u(t)‖2 ln ‖u(t)‖+ 2
∥∥∥A 1

2u
∥∥∥2

− 2

∫
Ω

|u|2 ln |u| dx

≥ 0,

which, in turn, yields that

(lnF ′(t))
′ ≤ lnF ′(t).

This means

lnF ′(t) ≤ et lnF ′(0) = et ln ‖u0‖2 .

Then

‖u(t)‖2 ≤ ‖u0‖e
t

, ∀t ≥ 0,

which yields that u(t) does not blow up in finite time.
On the other hand, using the Hölder inequality and combining (3.3), we have

1

4
(F ′(t))

2
=

1

4

(∫ t

0

F ′′(s)ds

)2

=

(∫ t

0

∫
Ω

uusdxds

)2

≤
∫ t

0

‖u(s)‖2 ds
∫ t

0

‖us‖2 ds.(3.4)

From (2.3) and (3.3), it follows

F ′′(t) = −2I(u)

= −4J(u) + ‖u‖2

≥ −4J(u0) + 4

∫ t

0

‖us(s)‖2 ds+ ‖u‖2 .(3.5)

By Lemma 3, there exists a λ∗ ∈ (0, 1) such that I(λ∗u(t)) = 0. Thus, by the
definition of d, it follows that

d = inf
u∈N

J(u) ≤ J(λ∗u(t))

=
1

2
I(λ∗u(t)) +

1

4
‖λ∗u(t)‖2

=
1

2
I(λ∗u(t)) +

(λ∗)
2

4
‖u(t)‖2

≤ 1

4
‖u(t)‖2 .(3.6)

Combining (3.5) and (3.6), we have

F ′′(t) ≥ −4J(u0) + 4

∫ t

0

‖us(s)‖2 ds+ ‖u‖2

≥ 4 (d− J(u0)) + 4

∫ t

0

‖us(s)‖2 ds.(3.7)
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Using (3.1), (3.4) and (3.7), we get

F (t)F ′′(t) ≥ 4 (d− J(u0))F (t) + 4

∫ t

0

‖u(s)‖2 ‖us(s)‖2 ds

≥ 4 (d− J(u0))F (t) + (F ′(t))
2
.(3.8)

Then, we see that

F (t)F ′′(t)− (F ′(t))
2 ≥ 4 (d− J(u0))F (t).

By J(u0) < d and I(u) < 0, then we know

F (t)F ′′(t)− (F ′(t))
2
> 0.

On the other hand, by straightforward calculation, it is clear that

(3.9) (lnF (t))
′

=
F ′(t)

F (t)
,

and

(3.10) (lnF (t))
′′

=
F (t)F ′′(t)− (F ′(t))

2

(F (t))
2 > 0.

From (3.10), we know that (lnF (t))
′

is increasing with respect to t, using this fact,
integrating (3.9) from t0 to t, we get

(lnF (t))
′

= (lnF (t0))
′
+

∫ t

t0

F (s)F ′′(s)− (F ′(s))
2

(F (s))
2 ds,

and

lnF (t)− lnF (t0) =

∫ t

t0

(lnF (s))
′
ds

=

∫ t

t0

F ′(s)

F (s)
ds

≥ F ′(t0)

F (t0)
(t− t0) ,

where 0 ≤ t0 ≤ t. Then

F (t) ≥ F (t0) exp

(
F ′(t0)

F (t0)
(t− t0)

)
.

Since F (0) = 0 and F ′(0) > 0, we can take t0 small enough such that F ′(t0) > 0
and F (t0) > 0. Then for sufficiently large t,

‖u(t)‖2 = F ′(t)

≥ F ′(t0)

F (t0)
F (t)

≥ F ′(t0) exp

(
F ′(t0)

F (t0)
(t− t0)

)
= ‖u(t0)‖2 exp

(
F ′(t0)

F (t0)
(t− t0)

)
≥ ‖u0‖2 exp

(
F ′(t0)

F (t0)
(t− t0)

)
, t ≥ t0,
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i.e.,

lim
t→+∞

‖u(t)‖2 = +∞.

This shows that weak solution u(t) of the problem (1.1) blows up at +∞. �

4. Conclusion

In this paper, we examined the initial boundary value problem for a higher-order
parabolic equation with logarithmic nonlinearity. We obtained blow-up at infinity
of weak solution, by using the potential well method and logarithmic convexity
method.
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