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Abstract

In this short note, we investigate the Allen-Cahn equation with the appearance of the Caputo-Fabizzio
derivative. We obtain a local solution when the initial value is small enough. This is an equation that has
many practical applications. The power term in the nonlinear component of the source function and the
Caputo-Fabizzio operator combine to make �nding the solution space more di�cult than the classical prob-
lem. We discovered a new technique, connecting Hilbert scale and Lp spaces, to overcome these di�culties.
Evaluation of the smoothness of the solution was also performed. The research ideas in this paper can be
used for many other models.
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1. Introduction

Let D be a C2 bounded open set of RN with su�cient smooth boundary and T > 0. In this paper, we
consider the fractional Sobolev equation

CFD
α
t u = ∆u+ u− u3, (x, t) ∈ D × (0, T ),

u = 0, (x, t) ∈ ∂D × (0, T ),

u(x, 0) = u0(x), x ∈ D
(1.1)

where CFD
α
t is the Caputo-Fabrizio operator for fractional derivatives of order α which is de�ned as (see

[24])

CFD
α
t v(t) =

H(α)

1− α

∫ t

0
Dα(t− s)

∂v(s)

∂s
ds, for t ≥ 0,
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where we denote by the kernel Dα(z) = exp
(
− α

1−αz
)
andH(α) satis�esH(0) = H(1) = 1, (see e.g. [22, 23]).

The main goal of this note is to prove the existence of a local solution to the problem given the input data
u0 in the space Lp space. If α = 1, Problem (1.1) is called Allen-Cahn equation with classical derivative. If
we replace Caputo-Fabizzio derivative by Caputo derivative, Problem (1.1) is studied by [28]. Allen-Cahn
model was originally introduced to transform the description of boundaries in coherent solids [29].

Fractional calculus has a long history and has many applications in simulations of physical phenomena
or real life for example, mechanics, electricity, chemistry, biology,.. Many mathematical models cannot be
expressed in terms of classical derivatives because of the e�ects of external forces. Therefore, the introduction
of fractional calculus has important implications for modeling physical and engineering processes in cases
where classical derivatives are not available. Some works are attracting the attention of the community for
fractional di�erential equations, like A. Debbouche and his group [4, 5, 6], E. Karap�nar et al [11, 12, 13,
14, 15, 16, 17, 18]. The Caputo-Fabrizio fractional derivative was �rst introduce by [22] which makes sense
to avoid singular kernels. It is detemined by the convolution of the exponential function and the �rst order
derivative. This operator has been widely applied to a number of derivative modes in many �elds, such as
biology, physics, control systems [19, 20, 26].

There are two main challenges and di�culties when we consider this problem. The �rst di�culty is that
it is di�cult for us to apply the Lp estimate to the semigroup heat operators because of the appearance of
the Caputo-Fabizzio operator. Indeed, in F. Weisler's work [27], they have the advantage of using the Lp

evaluation for the half heat group where we do not apply. The second challenge is that we cannot evaluate
the function up on Hilbert scale spaces but can only estimates on Lp while the Caputo-Fabizzio operator can
only handle in Hilbert scale space. Those are the hard points that we need to overcome. Our novel idea is
to connect the evaluations together by embeddings between Lp and Hilbert scales. This new technique can
be applied to prove the existence of solutions to a wide range of problems.

2. Main results

Before giving the main result, we recall some knowledge about function spaces and embeddings. Note
that A = −∆ is a symmetric uniformly elliptic operator, hence it possesses a non-negative, non-decreasing
and discrete spectrum 0 < λ1 ≤ λ2 ≤ ... ≤ λn ↗ ∞. The corresponding eigenvectors of A are denoted by
en ∈ D(A), which satisfy Aen(x) = λnen(x) for x ∈ D. Let us introduce the Hilbert scale space, which is
given as follows

Hr(D) =

{
f ∈ L2(D),

∞∑
n=1

λ2r
n ⟨f, en⟩2L2(D) < ∞

}
,

for any r ≥ 0. Here the symbol ⟨·, ·⟩L2(M) denotes the inner product in L2(M). It is well-known that Hr(D)
is a Hilbert space corresponding to the following norm

∥f∥Hr(D) =

√√√√ ∞∑
n=1

λ2r
n ⟨f, en⟩2L2(D)

, f ∈ Hr(D).

In view of Hr(D) ≡ D((−A)r) is a Hilbert space. Then D((−A)
−r

) is a Hilbert space with the norm

∥v∥D((−A)−r) =

( ∞∑
n=1

|⟨v, en⟩|2 λ−2r
j

) 1
2

,

where ⟨·, ·⟩ in the latter equality denotes the duality between D((−A)−r) and D((−A)r).
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Lemma 1. The following inclusions hold true:

Lp(Ω) ↪→ D(Aσ), if − N

4
< σ ≤ 0, p ≥ 2N

N − 4σ
,

D(Aσ) ↪→ Lp(Ω), if 0 ≤ σ <
N

4
, p ≤ 2N

N − 4σ
.

 (2.1)

De�nition 1. The function v is called a mild solution of Problem (1.1) if it satis�es that

v(t) = Sα(t)u0 +

∫ t

0
Sα(t− s)G(v(s))ds (2.2)

where G(v) = v − v3 and Sα(t) is de�ned by

Sα(t)f = (1 + αλn)
−1 exp

(
−αλn

1 + αλn
t

)
⟨f, en⟩L2(D)en(x), α = 1− α.

for any w ∈ L2(D).

Lemma 2. Let f ∈ Hm−2(D). Then∥∥∥Sα(t)f
∥∥∥
Hm(D)

≤ 1

1− α
∥f∥Hm−2(D). (2.3)

Proof. Using Parseval' s equality, we get that

∥∥∥Sα(t)f
∥∥∥
Hm(D)

=

( ∞∑
n=1

λm
n (1 + αλn)

−2 exp

(
−2αλn

1 + αλn
t

)
⟨f, en⟩2L2(D)

)1/2

≤ 1

α

( ∞∑
n=1

λm−2
n ⟨f, en⟩2L2(D)

)1/2

=
1

1− α
∥f∥Hm−2(D) (2.4)

Remark 1. The hardest part about proving the theorem is that we don't immediately get the Lp estimate
for the operator Sα(t). For classical problem, we are available for apply Lp estimate since the ideas of [27].
However, we face the operator Sα(t) as above, we have di�culty things for considering Lp estimate. The
second di�culty is that we cannot evaluate the source function on Hilbert scales space.

Theorem 1. Let u0 ∈ Lq/3(D) where 2 ≤ q ≤ 6 and q ≥ 2N . Then problem (1.1) has a local mild solution

u ∈ Xβ,q ∩ Lp(0, T ;Lq(D)) where 0 < β < 1/3 and 1 < p < 1
β .

Remark 2. Since the assumption 2 ≤ q ≤ 6 and q ≥ 2N , we can see that 1 ≤ N ≤ 3. Hence, we only study
the local existence for the dimensional of the domain D is about 1 to 3.

Proof. It is obvious to see that∣∣G(u)−G(v)
∣∣ = ∣∣(u− v)− (u3 − v3)

∣∣ ≤ 2(|u− v|)(1 + |u|2 + |v|2). (2.5)

Using Hölder inequality, we continue to get the following estimate∥∥∥G(v1)−G(v2)
∥∥∥
L

q
3 (D)

=
(∫

D

∣∣∣G(v1)−G(v2)
∣∣∣ q3dx) 3

q

≤ 2

(∫
D

∣∣∣(|v1 − v2|)(|v1 − v2|2 + |v1 − v2|2)
∣∣∣ q3dx) 3

q
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≤ 2
(∫

D

(
|v1 − v2|

q
3

)3) 1
3

3
q
(∫

D

(
(|v1|2 + |v2|2)

q
3

) 3
2
) 2

3
3
q

≤ 2∥v1 − v2∥Lρ(D)

[(∫
D

(
|v1|q

) 2
q
+

∫
D

(
|v2|q

) 2
q

]
= 2∥v1 − v2∥Lq(D)

[
∥v1∥2Lq(D) + ∥v2∥2Lq(D)

]
. (2.6)

De�ne the Banach space Xβ,q of all Bochner integrable functions u : [0, T ] → Lq(D) such that tεu are
bounded continuous functions, endowed with the norm

sup
0≤t≤T

tβ∥u(t, .)∥Lq(D) < ∞.

Let the function J be as follows

Jv(t) = Sα(t)u0 +

∫ t

0
Sα(t− s)G(v(s))ds. (2.7)

Let v, w ∈ Xβ,q. Since Sobolev embedding H
Nq−2N

4q (D) ↪→ Lq(D) for any q > 2, we get that∥∥∥Jv − Jw
∥∥∥
Xβ,q

= sup
0≤t≤T

tβ∥Jv(., t)− Jw(., t)∥Lq(D)

≤ sup
0≤t≤T

tβ∥Jv(., t)− Jw(., t)∥
H

Nq−2N
4q (D)

(2.8)

It is obvious to see that∥∥∥∫ t

0
Sα(t− s)G(v(s))ds−

∫ t

0
Sα(t− s)G(w(s))ds

∥∥∥
H

Nq−2N
4q (D)

≤ 1

1− α

∫ t

0

∥∥∥G(v(s))−G(w(s))
∥∥∥
H

Nq−2N
4q −2

(D)
ds

≤ C(N, q)

∫ t

0

∥∥∥G(v(s))−G(w(s))
∥∥∥
H

Nq−6N
4q (D)

ds (2.9)

where we note that
H

Nq−6N
4q (D) ↪→ H

Nq−2N
4q

−2
(D)

since the condition q ≥ 2N .

Based on Sobolev embedding L
q
3 (D) ↪→ H

Nq−6N
4q (D) for any q < 6, we derive that∫ t

0

∥∥∥G(v(s))−G(w(s))
∥∥∥
H

Nq−6N
4q (D)

ds ≤ C(N, q)

∫ t

0

∥∥∥G(v(s))−G(w(s))
∥∥∥
L

q
3 (D)

ds (2.10)

Set the following ball

B(R) :=
{
w : [0, T ] → Lq(D),

∥∥∥w∥∥∥
Xβ,q

≤ R
}

(2.11)

If v, w ∈ Xβ,q then we get

∥v(., s)∥Lq(D) ≤ s−β
∥∥v∥∥

Xβ,q
≤ s−βR. (2.12)

In view of (2.6), we obtain∫ t

0

∥∥∥G(v(s))−G(w(s))
∥∥∥
L

q
3 (D)

ds
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≤ 2

∫ t

0
∥v(., s)− w(., s)∥Lq(D)

[
∥v(., s)∥2Lq(D) + ∥w(., s)∥2Lq(D)

]
≤ 4R2

∫ t

0
s−2β∥v(., s)− w(., s)∥Lq(D)ds

= 4R2

∫ t

0
s−3βsβ∥v(., s)− w(., s)∥Lq(D)ds ≤ 4R2

(∫ t

0
s−3βds

)∥∥∥v − w
∥∥∥
Xβ,q

(2.13)

Under the condition β < 1/3, we know that
∫ t
0 s

−3βds is convergent. So, we get that∫ t

0

∥∥∥G(v(s))−G(w(s))
∥∥∥
L

q
3 (D)

ds ≤ 4R2 t1−3β

1− 3β

∥∥∥v − w
∥∥∥
Xβ,q

. (2.14)

Combining (2.8), (2.9), (2.14), we arrive at

∥∥∥Jv − Jw
∥∥∥
Xβ,q

≤

(
sup

0≤t≤T
tβ+1−3β

)
C(N, q)4R2 1

1− 3β

∥∥∥v − w
∥∥∥
Xβ,q

≤ 4C(N, q)R2T 1−2β

1− 3β

∥∥∥v − w
∥∥∥
Xβ,q

. (2.15)

Let us choose R, T such that
4C(N, q)R2T 1−2β

1− 3β
< 1/2.

We next evaluate∥∥∥Sαu0

∥∥∥
Xβ,q

= sup
0≤t≤T

tβ∥Sα(t)u0∥Lq(D) ≤ C(N, q) sup
0≤t≤T

tβ∥Sα(t)u0∥
H

Nq−2N
4q (D)

. (2.16)

By looking back Lemma (2), we �nd that

∥Sα(t)u0∥
H

Nq−2N
4q (D)

≤ 1

1− α
∥u0∥

H
Nq−2N−8q

4q (D)
(2.17)

Since the condition q ≥ 2N , we remind the Sobolev embedding

H
Nq−6N

4q (D) ↪→ H
Nq−2N−8q

4q (D)

. This allows us to provide that the following estimate∥∥∥Sαu0

∥∥∥
Xβ,q

≤ C(N.q)

1− α
∥u0∥

H
Nq−6N

4q (D)
(2.18)

The condition q < 6 give us the embedding

L
q
3 (D) ↪→ H

Nq−6N
4q (D)

which leads to

∥u0∥
H

Nq−6N
4q (D)

≤ C(N, q)∥u0∥L q
3 (D)

(2.19)

Hence, we deduce that ∥∥∥J(0)∥∥∥
Xβ,q

=
∥∥∥Sαu0

∥∥∥
Xβ,q

≤ T βC(N, q)∥u0∥L q
3 (D)

. (2.20)
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Let us choose T such that

T βC(N, q)∥u0∥L q
3 (D)

≤ R

2
.

It follows from (2.15) that ∥∥∥Jv∥∥∥
Xβ,q

≤
∥∥∥Jv − J(0)

∥∥∥
Xβ,q

+
∥∥∥J(0)∥∥∥

Xβ,q

≤ 1

2

∥∥v∥∥
Xβ,q

+ T βC(N, q)∥u0∥L q
3 (D)

for any v ∈ Xβ,q. This says that ∥∥∥Jv∥∥∥
Xβ,q

< R (2.21)

which allows us to deduce that J is a mapping from B(R) to itself B(R). Using the Banach mapping
theorem, we conclude that J have a �xed point u in B(R).

Our aim is to investigate the regularity of the mild solution u. Indeed, we get∥∥u∥∥
Xβ,q

≤
∥∥∥Ju− J(0)

∥∥∥
Xβ,q

+
∥∥∥J(0)∥∥∥

Xβ,q

≤ 1

2

∥∥u∥∥
Xβ,q

+ T βC(N, q)∥u0∥L q
3 (D)

. (2.22)

This implies that ∥∥u∥∥
Xβ,q

≤ 2T βC(N, q)∥u0∥L q
3 (D)

.

Hence, we �nd that ∥∥u(., t)∥∥
Lq(D)

≤ 2T βt−βC(N, q)∥u0∥L q
3 (D)

(2.23)

The above expression allows us to obtain that(∫ T

0

∥∥u(., t)∥∥p
Lq(D)

dt

)1/p

≤ 2T βC(N, q)∥u0∥L q
3 (D)

(∫ T

0
t−βpdt

)1/p

(2.24)

Since 1 < p < 1
β , we deduce that the proper integral

∫ T
0 t−βpdt is convergent. Therefore, we can say that

u ∈ Lp(0, T ;Lq(D)).
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