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Abstract
In the article, the existence of a solution for a class of boundary value problem for a fuzzy differential equation
with finite delay is discussed. By applying the contraction mapping principle, we gain an existence of a solution
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1. Introduction
The idea of this paper is to look into the existence of fuzzy solution for three-point boundary value problem for ψ-type fractional
differential equation:

Dα;ψ x(t) = f
(
t,xt ,Dβ ;ψ x(t)

)
, t ∈ J := [0,1], 1 < α < 2,

x(t) = φ(t), t ∈ [−r,0],
x(ζ ) = x(1),

(1.1)

where Dα;ψ , Dβ ;ψ are ψ-type Riemann-Liouville (R-L) fractional derivatives, α−β ≥ 1, ε ∈ [0,1), f : J×C0×En→ En is a
fuzzy function, φ ∈C0, φ(0) = 0̂, and C0 =C ([−r,0],En). For any function x defined on [−r,1] and any t ∈ J. We denote by xt
the element of C0 defined by xt(θ) = x(t +θ), θ ∈ [−r,0].

To the best of our information, even if various results for fuzzy differential equations (FDEs) have been established until
now, results for FDEs with fractional order are rarely seen, papers [1, 2, 3] related to it only. The plan of the present paper is
to establish some simple criteria for the existence and uniqueness of solution of the problem (1.1). The paper is structured
as follows. In Section 2, we present some preliminaries and lemmas. In Section 3, we discuss the existence of solution for
problem (1.1).

2. Prerequisites

Let Pk(R) be the family of all nonempty compact convex subsets of Rn. For A,B ∈ Pk(Rn), the Hausdorff metric is defined by

dH(A,B) = max
{

sup
a∈A

inf
b∈B
‖a−b‖ , sup

b∈B
inf
a∈A
‖a−b‖

}
.
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A fuzzy set in Rn is a function with domain Rn and values in [0,1], that is, an element of [0,1]R
n
.

Let u ∈ [0,1]R
n
, the α-level set is

[u]α = {x ∈ Rn|u(x)≥ α} , α ∈ (0,1].

By En, we denote the all upper-semi continuous, normal fuzzy convex sets with [u]0 = cl {x ∈ R|u(x)> 0} is compact.
Let d : En×En→ [0,+∞) be defined by

d(u,v) = sup{dH ([u]α , [v]α) |α ∈ [0,1]} .

Then, (En,d) is a complete metric space. We define 0̂ ∈ En as 0̂(0) = 1 if x = 0 and 0̂ = 0 if x 6= 0.

Definition 2.1. [4] The ψ-type R-L fractional integral of order α for a function f : [a,b]→ En is defined by

Iα;ψ
a+ f (t) =

1
Γ(α)

∫ b

a
ψ
′
(s)(ψ(t)−ψ(s))α−1 f (s)ds, α > 0.

When a = 0, we write Iα;ψ f (t).

Definition 2.2. [4] For a function f : [a,b]→ En, the ψ-type R-L derivative of fractional order α > 0 is defined by

Dα;ψ f (t) =
1

Γ(n−α)

(
d
dt

)n ∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 f (s)ds, n = [α]+1.

Denote by C(J,En) the set of all continuous mapping from J to En the metric on C(J,En) is defined by H(u,v) =
supt∈J d (u(t),v(t)). And we metricize C0 by setting

H0(x,y) = max{d(x,y),y(t)|t ∈ [−r,0]} ,

for all x,y ∈C0. Set X =
{

x|x ∈C ([−r,1],En) ,Dβ x ∈C(J,En), and x(t) = φ(t), t ∈ [−r,0]
}

, the metric on X will be defined
later.

3. Main Result
Theorem 3.1. Assume that f : J×Dr×En→ En and there exist positive constant K,L such that

d
(

f (t,u,Dβ ;ψ u), f (t,v,Dβ ;ψ v)
)
≤ KH0(u,v)+Ld

(
Dβ ;ψ u,Dβ ;ψ v

)
for all t ∈ J and all u,v ∈C0. Then(

K
Γ(α +1)

+
L

Γ(α−β +1)

)(
1+

1+(ψ(ζ ))α

1− (ψ(ζ ))α−1

)
< 1,

implies that the problem (1.1) has a unique fuzzy solution on [−r,1].

Proof. The metric H on X is defined by

H(u,v) = K max
t∈[−r,1]

d(u(t),v(t))+L max
t∈[0,1]

d(Dβ ;ψ u,Dβ ;ψ v),

u,v ∈ X . Then (X ,H) is a complete metric space.
Transform the problem into a fixed point problem. It is clear that the solutions of problem (1.1) are fixed points of the

problem F : X → X defined by

F(x)(t) =


φ(t), t ∈ [−r,0],

1
Γ(α)

∫ t
0 ψ

′
(ψ(t)−ψ(s))α−1 f (s,xs,Dβ ;ψ x(s))ds

+ 1
Γ(α)(1−(ψ(ζ ))α−1)

∫ ζ

0 ψ
′
(ψ(ζ )−ψ(s))α−1 f (s,xs,Dβ ;ψ x(s))ds

− 1
Γ(α)(1−(ψ(ζ ))α−1)

∫ 1
0 ψ

′
(ψ(1)−ψ(s))α−1 f (s,xs,Dβ ;ψ x(s))ds, t ∈ (0,1).

For u,v ∈ X , then

d(Fu(t),Fv(t)) = 0, t ∈ [−r,0], (3.1)
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and for t ∈ J, we have

d (Fu(t),Fv(t))

≤ 1
Γ(α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1d

(
f (s,us,D

β ;ψ u(s)), f (s,vs,D
β ;ψ v(s))

)
ds

+
(ψ(t))α−1

Γ(α)(1− (ψ(ζ ))α−1)

∫
ζ

0
ψ
′
(s)(ψ(ζ )−ψ(s))α−1d

(
f (s,us,D

β ;ψ u(s)), f (s,vs,D
β ;ψ v(s))

)
ds

+
(ψ(t))α−1

Γ(α)(1− (ψ(ζ ))α−1)

∫ 1

0
ψ
′
(s)(ψ(1)−ψ(s))α−1d

(
f (s,us,D

β ;ψ u(s)), f (s,vs,D
β ;ψ v(s))

)
ds

≤ 1
Γ(α)

(∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1

[
Kd(us(θ),vs(θ))+Ld(Dβ ;ψ u(s),Dβ ;ψ v(s))

]
ds

+
(ψ(t))α−1

(1− (ψ(ζ ))α−1)

∫
ζ

0
ψ
′
(s)(ψ(ζ )−ψ(s))α−1

[
Kd(us(θ),vs(θ))+Ld(Dβ ;ψ u(s),Dβ ;ψ v(s))

]
ds

+
(ψ(t))α−1

(1− (ψ(ζ ))α−1)

∫ 1

0
ψ
′
(s)(ψ(t)−ψ(s))α−1

[
Kd(us(θ),vs(θ))+Ld(Dβ ;ψ u(s),Dβ ;ψ v(s))

]
ds
)

≤ 1
Γ(α)

(∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1ds+

(ψ(t))α−1

(1− (ψ(ζ ))α−1)

∫
ζ

0
ψ
′
(s)(ψ(ζ )−ψ(s))α−1ds

+
(ψ(t))α−1

(1− (ψ(1))α−1)

∫ 1

0
ψ
′
(s)(ψ(ζ )−ψ(s))α−1ds

)
H(u,v)

≤ 1
Γ(α +1)

sup
t∈J

(
(ψ(t))α +

(ψ(ζ ))α(ψ(t))α−1

1− (ψ(ζ ))α−1 +
(ψ(t))α−1

1− (ψ(ζ ))α−1

)
H(u,v)

and similarly,

d
(
Dβ ;ψ Fu(t),Dβ ;ψ Fv(t)

)
≤ 1

Γ(α−β )

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−β−1d

(
f (s,us,D

β ;ψ u(s)), f (s,vs,D
β ;ψ v(s))

)
ds

+
(ψ(t))α−β−1

(1− (ψ(ζ ))α−1)

∫
ζ

0
ψ
′
(s)(ψ(ζ )−ψ(s))α−β−1d

(
f (s,us,D

β ;ψ u(s)), f (s,vs,D
β ;ψ v(s))

)
ds

+
(ψ(t))α−β−1

(1− (ψ(ζ ))α−1)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−β−1d

(
f (s,us,D

β ;ψ u(s)), f (s,vs,D
β ;ψ v(s))

)
ds

≤ 1
Γ(α−β +1)

sup
t∈J

(
(ψ(t))α−β +

(ψ(ζ ))α(ψ(t))α−β−1

(1− (ψ(ζ ))α−1)
+

(ψ(t))α−β−1

(1− (ψ(ζ ))α−1)

)
H(u,v).

Therefore, for each t ∈ J, we have

H(Fu,Fv)≤
(

K
Γ(α +1)

+
L

Γ(α−β +1)

)(
1+

1+(ψ(ζ ))α

1− (ψ(ζ ))α−1

)
H(u,v).

So, F is contraction and thus F has a unique fixed point x on X , then x(t) is the unique solution to problem (1.1) on [−r,1].
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