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A B S T R A C T  

Even though North-Eastern Mediterranean (NE Med) is classified as oligotrophic, inshore areas 
are highly eutrophic due to the discharge of silicate and nitrate-rich surface waters. Aim of this study 
was to investigate the nutrient load coming from the Göksu River and to estimate its impact on the 
river domain using satellite images. Monthly, average nitrite (NO2), nitrate (NO3), ammonium (NH4) 
and phosphate (PO4) load found to be varying between 0.07-31.2 ton/month, 15-1226 ton/month, 
0.5-539 ton/month, 1-267 ton/month, respectively. Satellite images showed that surface chlorophyll–
a (chl-a) in the river downstream had an increase in both winter and spring seasons as a result of 
intense precipitation; while, primary production at the offshore regions was mainly impacted by 
winter mixing and summer stratification. The highest chl-a concentration was observed at the river 
impacted zone and decreased by more than two folds at the offshore regions. Increased NO3 load 
observed during winter and spring leads to phytoplankton blooms in the river downstream. The high 
P content of Göksu River surface waters has increased the productivity at all seasons. As a 
consequence, correlation analysis showed significant relationship between surface chl-a 
concentration and PO4-NO3 load. 

 

Please cite this paper as follows: 

Kılıç, E., & Yücel, N. (2021). Impact of nutrient load coming from Göksu River on the northeastern Mediterranean. Marine Science 
and Technology Bulletin, 10(3), 295-305. https://doi.org/10.33714/masteb.963649 

 

Introduction 

Human-induced activities cause variations in the land use 
patterns that lead to the alteration in both quality and quantity 
of surface runoff reaching the surface waters. Surface waters 
become vulnerable for several types of polluters including high 
nitrogen and phosphorus concentrations (Song, 2009). 
Incoming pollutant and nutrient load cause an alteration in the 
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bio-physicochemical balance of receiving environments 
(Kangur & Möls, 2008) such as decrease in dissolved oxygen 
concentration, light penetration. This phenomena is called as 
eutrophication (Nixon, 1995). 

The inshore area of Northeastern Mediterranean (NE Med) 
is classified as eutrophic due to the discharge of silicate and 
nitrate-rich surface waters (Tugrul et al., 2016); whereas, the 
offshore area is classified as oligotrophic (Krom et al., 1991). 
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Göksu River; among other surface waters; is mainly suffered 
from domestic and agricultural discharges that increase the 
organic content of the surface flow. These nutrient-rich waters 
could not diffuse offshore due to the blockage of Asian Minor 
Current (AMC) which increases the eutrophication risk of the 
receiving environment (Akpınar et al., 2016). 

Knowledge of nutrient load coming from surface waters to 
open sea is crucial; since it directly affects the chemical and 
biological loop in the surrounding environment. This study was 
conducted to (i) determine the nutrient load coming from 
Göksu River (NH4, PO4, NO2, and NO3), (ii) to evaluate the 
seasonal variations in the nutrient load, (iii) to determine the 
impact of Göksu River on the primary production using 
satellite images. 

Material and Methods 

Göksu River descends from the Taurus Mountains and 
discharges its waters to NE Med from Silifke. As a result of the 
Mediterranean climate, its flowrate starts to increase during 
winter, and reach its maximum level in spring due to the rainy 
season, and decrease in the hot summer as a consequence of the 
powerful evaporation (DSİ, 2019). Almost 95% of the Göksu 
Basin is forest, semi-natural areas, and agricultural lands 
(Figure 1). So, the Göksu River carries a significant amount of 
nutrient load to the NE Med (Ayaz et al., 2013). 

Figure 1. Land use map of Göksu River surrounding 

Monitoring study results that belong to the downstream of 
Göksu River station were taken from the State of Hydraulic of 
Turkey including seasonal flow rate (Q), nitrite (NO2), nitrate 
(NO3), ammonium (NH4), and phosphate (PO4) concentrations 
from 1992 to 2016. Dataset was used to calculate nutrient load 
using an interpolation-based average estimator model (Quilbé 
et al., 2006) (Eq. 1).  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐾𝐾(∑ )𝑛𝑛
𝑖𝑖=1 (𝐶𝐶𝑖𝑖𝑄𝑄𝑖𝑖

𝑛𝑛
) (1) 

where; 
K = conversion factor to take account of the period of record 

Ci = instantaneous concentration associated with individual 
samples (mg/L) 

Qi = instantaneous discharge at the time of sampling (m3/L) 
n = number of samples 

Satellite images were used to evaluate the impact of Göksu 
River on NE Med by evaluating the surface chlorophyll-a 
distribution. Satellite images were obtained from NASA’s 3rd 
level browser belonging to the Ocean Color Web application 
(https://oceancolor.gsfc.nasa.gov/). NASA emerges in-situ chl-
a measurements with remote sensing to predict the surface chl-
a concentration. Current implementation, algorithm 
description and constraints of the model was described in 
Morel & Maritorena (2001), Hu et al. (2012) and can be 
obtained from official webpage 
(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). The monthly 
chl-a images were downloaded from the MODIS-Aqua sensor 
with a resolution of 4 km (NASA Goddard Space Flight Center, 
2014) and processed using the SeaDAS program (Baith et al., 
2001). Surface chl-a imaging was coherently conducted to the 
nutrient sampling time. 

Pearson correlation analysis was used to test the existence of 
a linear relationship between the surface chl-a concentration 
obtained from satellite images and nutrient load. 

Results and Discussion 

Properties of Göksu River Surface Waters 

Coastal area of NE Med is fed by nutrients coming from 
surface waters (Tugrul et al., 2016) which could not be penetrate 
to the offshore due to the blockage of AMC (Akpınar et al., 
2016). For that reason, eutrophic conditions prevail in coastal 
areas, which make monitoring of upcoming nutrient load from 
surface waters an issue. As a result of these concerns, several 
studies were undertaken in the Göksu River basin. Demirel et 
al. (2011) reported that the NO2, NO3 and PO4 concentration in 
different parts of the Göksu basin as 0.03-1.31 mg/L, 3.6-17.3 
mg/L, and 0.03-0.88 mg/L, respectively. Yıldırım et al. (2018) 
reported that the NO2 concentration in the Göksu River ranged 
between 0.001-0.091 mg/L in October, reaching to 0.107-1.46 
mg/L in May. They also reported the NO3 concentration 
variation as 2.69-7.95 mg/L and 1.77-5.9 mg/L in October and 
May, respectively. Similar to the previous studies, in this study, 
NO2, NO3, NH4 and PO4 concentration were varied from 0.001 
mg/L to 0.114 mg/L, from 0.18 mg/L to 4.8 mg/L, 0.008 mg/L 
to 2.8 mg/L and from 0.01 mg/L to 0.92 mg/L, respectively 
(Table 1). 

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
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Table 1. Nutrient concentration in the downstream of Göksu River and estimated nutrient load 

Year 
Concentration (mg/L) Load (ton/year) 

NO2  NO3  NH4  PO4  NO2  NO3  NH4  PO4  
1992 0.002 0.84 0.33 0.03 17 4 264 850 260 
1993 0.003 0.71 0.26 0.08 17 2 720 1 831 215 
1994 0.006 0.62 0.27 0.10 8 1 147 314 107 
1995 0.003 0.89 0.47 0.06 3 1 150 593 66 
1996 0.003 0.59 0.22 0.11 13 2 225 948 444 
1997 0.005 0.79 0.24 0.11 19 2 476 956 368 
1998 0.007 0.83 0.19 0.24 19 2 502 403 863 
1999 0.006 0.86 0.15 0.11 17 2 875 399 252 
2000 0.009 0.95 0.43 0.12 36 3 418 747 418 
2001 0.009 0.81 0.57 0.09 44 3 071 2 472 362 
2002 0.013 0.77 0.62 0.12 28 2 293 1 393 300 
2003 0.005 0.66 0.53 0.10 12 1 646 1 256 268 
2004 0.008 0.80 0.46 0.15 17 1 912 1 032 436 
2005 0.010 0.87 1.06 0.15 15 1 431 1 756 264 
2006 0.014 0.85 0.64 0.13 18 1 526 1 021 219 
2007 0.010 0.97 1.54 0.09 9 1 046 1 578 94 
2008 0.004 1.02 0.36 0.08 4 1 172 490 90 
2009 0.004 0.59 0.09 0.06 13 1 665 236 123 
2010 0.016 0.85 0.25 0.41 15 1 209 246 955 
2011 0.018 1.15 0.31 0.28 22 1 645 525 546 
2012 0.039 1.36 0.42 0.38 66 2 466 1 060 479 
2013 0.056 2.15 0.38 0.14 196 7 304 1 338 486 
2014 0.058 1.25 0.25 0.11 105 1 819 547 167 
2015* 0.033 1.20 0.25 0.01 
2016 0.017 1.45 0.06 0.23 48 2 585 158 649 
2017 0.041 0.81 0.02 0.06 74 1 789 37 110 
Mean 0.015 0.95 0.40 0.14 33 2 294 887 342 

Note: *load calculation could not be carried out due to missing instantaneous flowrate data. 

According to the quality standards of Surface Water Quality 
Management Regulation (Ministry of Forestry and Water 
Management, 2015) which determines the procedures and 
principles required to protect the water quality of surface waters 
in Turkey, Göksu River was suffered from nitrite, ammonium, 
and phosphate pollution (Figure 2). Depending on this high 
nutrient load, Göksu River and its downstream were 
categorized as sensitive area (Ayaz et al., 2013; Ministry of 
Forestry and Water Management, 2016). 

Nitrite and nitrate salts are chemically active in water 
(Birkinshaw & Ewen, 2000; Shamrukh et al., 2001; Demirel et 
al., 2011), and their presence in water usually associated with 
agricultural activities (Ledoux et al., 2007; Ogwueleka, 2015). 
Similarly, the presence of dissolved phosphate in water is 
usually linked with fertilizer usage in agricultural activities 
(Sing et al., 2005; Ogwueleka, 2015), as well as, natural causes 
like soil and rock erosion (Koçak et al., 2010; Beusen et al., 

2016). In addition to diffuse pollution, the presence of nitrate 
and phosphate pollution indicates the existence of point 
pollution sources.  

Similar to findings in this study, Beusen et al. (2016) 
reported that agricultural surface runoff is the primary source 
of N and P inputs to the ocean globally. Also, NE Med received 
a significant amount of mineral dust coming from Sahra, 
Middle East, and Arabian deserts (Guerzoni et al., 1999; 
Kubilay et al., 2000; Koçak et al., 2004). 90% of dissolved 
nitrogen and 40% of dissolved phosphate were obtained from 
atmospheric sources in NE Med (Koçak et al., 2010).  

Nutrient Load Estimation 
Similar to the nutrient concentrations, the monthly average 

nutrient load reaching the NE Med varied in time. Monthly 
average of NO2, NO3, NH4 and PO4 load varied between 0.07-
31.2 ton/month, 15-1226 ton/month, 0.5-539 ton/month, 1-267 
ton/month, respectively (Table 1). 
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Figure 2. Comparison of nutrient concentration of Göksu River with surface water quality management regulation 

Figure 3. Annual nutrient load reaching to NE Med 

Akçay & Tuğrul (2018) estimated the annual average NO2, 
NO3, NH4, PO4 load coming from Seyhan, Ceyhan, Berdan, 
Lamas, and Göksu Rivers as 966, 19 420, 2 796, 10 214 ton/year, 
respectively. In this study, the nutrient load coming from the 
Göksu River was estimated as 33 ton NO2/year, 2.294 ton 

NO3/year, 887 ton NH4/year, and 342 ton PO4/year (Table 1). 
As compared with the data from Akçay & Tuğrul (2018), the 
amount of NO2, NO3, NH4, PO4 coming from the Göksu River 
constitutes 3 %, 11 %, 32 %, and 33 % of the collected food load 
reaching the NE Med, respectively. 
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Figure. 4. Seasonal variation in nutrient load and nutrient concentration 

Riverine nutrient load was estimated to be highest between 
2012 and 2014. According to Eastern Mediterranean Climate 
Center database, precipitation observed in February and May 
of 2010-2013 was significantly greater than annual precipitation 
average of 1970-2010 (EMCC, 2020). This intense precipitation 
could increase the phosphate and nitragen load in the surface 
runoff considering the intense agricultural activity in the 
downstream of Göksu River (Figure 1). 

Results revealed that nutrient load was increased with 
increasing nutrient concentration (Figure 3) throughout the 
sampling period as expected; since, both quality and quantity of 
surface runoff affect the nutrient load carried by rivers 
(Ackerman & Schiff, 2003). Also, both annual average load and 
concentration of NO2, NO3, and PO4 were seen to be increasing 
between 2010 and 2015 which is coherent with the previous 
studies conducted in Cilician Basin (Akçay & Tuğrul, 2018; 
Kılıç et al., 2018). 

Even though there was no statistically significant seasonal 
variation observed in both nutrient load and nutrient 
concentration (p>0.05), a high standard deviation was observed 
depending on seasons (Figure 4). In general, the highest 
nutrient concentrations observed in summer seasons due to 
significant evaporation, and the highest nutrient load observed 
in winter-spring when precipitation is dominant.  

Satellite Images 

The chemical composition of phytoplankton in the ocean is 
known as the Redfield ratio which is 106 C:16 N:1 P (Goldman, 
1979).  

Parameters which cause deflection from this ratio are 
referred to as limiting nutrient for growth (Redden et al., 2009). 
Göksu River contains a large amount of phosphate to sustain 

the growth; whereas, suffers from a lack of nitrogen (Figure 5). 
Therefore, high phosphate-containing waters of the Göksu 
River cause an increase in the primary productivity of NE Med 
where growth is mainly nitrogen-limited as a result of high N/P 
ratio (Krom et al., 1991; Koçak et al., 2010). 

Figure 5. Redfield ratio of Göksu River 

Satellite images representing the impact of the Göksu River 
on NE Med were also confirmed the relationship between river 
effluents and coastal waters (Figure 6). It is found that nutrient-
rich waters of Göksu River transported along the coastline 
toward the west and southwest via Asian Minor current that 
results in the enrichment in the surface chl-a concentration of 
coastal zone. Also, chl-a concentration in the inshore area is 
increasing depending on nutrient load coming from the Göksu 
River. 

Satellite images showed unique oceanology features of the 
NE Med which occupy a very important place in primary 
production in the region (Figure 6). During winter when 
nutrient-rich waters of deep waters were brought to the surface 
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Figure 6. Seasonal surface chlorophyll-a concentration between 2003 and 2017 

Figure 7. Seasonal variation in surface chlorophyll-a concentration 

Figure 8. Variation of surface chl-a concentration (mg/m3) depending on station type 
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Figure 9. Relationship between nutrient salts and surface chl-a concentration 

with mixing (Doğan Sağlamtimur & Tuğrul, 2008), surface chl-
a concentrations were reached to the peak levels in the offshore 
station (Figure 6, Figure 7). On the contrary, strong summer 
stratification observed in the NE Med caused a strong decrease 
curve in the nutrient concentration in the euphotic zone (Latasa 
et al., 2017; Mena et al., 2019), which leads to the decrease in 
chl-a concentration in summer (Figure 6, Figure 7). Even 
though, these conditions were also valid for the river discharge 
area, increasing nutrient load as a result of increased 
precipitation alter the primary production dynamics. Nutrient 
rich-low salinity waters of Göksu River could not diffuse 
offshore due to blockage of Asian Minor current (Akpınar et al., 
2016). As a result, chl-a concentration was increased in the river 
discharge area; whereas; it was still low in the offshore region 
(Figure 6). Therefore, as a consequence of physicochemical 
dynamics of NE Med, surface chl-a concentration was sorted 
from lowest to highest as winter>spring>fall>summer. 

To understand the impact of Göksu River on the 
productivity of receiving environment, surface chl-a 
concentration in 3 different stations representing the river 

downstream (34.14 N, 36.43 E), river impact area (34.05 N, 
36.25 E), and open waters (33.01 N, 35.85 E) were examined 
from satellite images (Figure 8). 

The average surface chl-a concentration in the Göksu River 
downstream, impact area, and offshore area were determined 
as 0.29 mg/m3, 0.31 mg/m3, and 0.15 mg/m3, respectively 
(Figure 8). In the river downstream phytoplankton have to 
adapt to the changing environmental conditions such as low 
salinity; while, in the river impact area phytoplankton grow 
under more stable physical conditions (Uysal et al., 2019). For 
that reason, the highest surface chl-a concentration was 
observed at the river impacted area. On the other hand, the 
lowest surface chl-a concentration was observed at the offshore 
station where chl-a concentration was decreased by more than 
2 folds (Figure 8). 

Besides, surface chl-a concentration at the Göksu River 
downstream and river impact area have a higher variation range 
than offshore waters (Figure 8). This indicates that surface chl-
a concentration in the coastal zone was more sensitive to 
anthropogenic activities; whereas, variations in the offshore 
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Table 2. Results of Pearson correlation analysis 

Chl-a 
(mg/m3) 

NO2 
(mg/L) 

NO2 

(ton/month) 
NO3 
(mg/L) 

NO3 
(ton/month) 

NH4 
(mg/L) 

NH4 
(ton/month) 

PO4 

(mg/L) 
PO4 

(ton/month) 

Chl-a (mg/m3) r 1 
s 

NO2 (mg/L) r -0.06 1 
s 0.659 

NO2 (ton/month) r 0.117 0.783(**) 1 
s 0.387 0 

NO3 (mg/L) r 0.056 0.484(**) 0.510(**) 1 
s 0.68 0 0 

NO3 (ton/month) r 0.273(*) 0.419(**) 0.675(**) 0.719(**) 1 
s 0.04 0.001 0 0 

NH4 (mg/L) r -0.199 -0.132 -0.115 -0.088 -0.125 1 
s 0.137 0.329 0.395 0.514 0.355

NH4 (ton/month) r 0.107 -0.111 0.09 -0.11 0.239 0.649(**) 1 
s 0.426 0.413 0.506 0.417 0.073 0 

PO4 (mg/L) r 0.322(*) 0.042 -0.054 -0.029 -0.046 -0.105 -0.086 1 
s 0.015 0.76 0.691 0.832 0.738 0.441 0.528

PO4 (ton/month) r 0.592(**) -0.071 0.044 -0.144 0.148 -0.159 0.106 0.760(**) 1 
s 0 0.602 0.747 0.29 0.277 0.241 0.436 0 

Note: (*) Correlation is significant at 0.05 level. (**)  Correlation is significant at 0.01 level. Where r: Pearson correlation coefficient, s: 
significance. 

zone mainly driven by climatic variations like winter mixing 
and summer stratification. 

To evaluate the relationship between nutrient load coming 
from Göksu River and surface chl-a concentration in the 
downstream of Göksu River, Pearson correlation analysis was 
used. The results revealed a linear relationship between PO4 
concentration from the river and surface chl-a concentration 
(p<0.01) and a statistically significant correlation between NO3 
concentration and surface chl-a concentration. On the other 
hand, there was no significant relationship detected between 
chl-a and NO2 and NH4 salts (Table 2, Figure 9).  

The amount of NO3 and NH4 reaching the NE Med by wet 
or dry deposition is reported to be significantly higher than PO4 
(Koçak et al., 2010). Therefore, in P-limited NE Med, 
phytoplankton meets the PO4 amount essential for growth from 
riverine inputs. In other words, a combination of P-rich waters 
of Göksu River with N-rich NE Med increases the primary 
productivity in the Göksu River impact area sharply. The linear 
relationship observed between chl-a and PO4 load also confirm 
this relationship (Figure 9). 

NE Med coasts are known with the large size phytoplankton 
(mainly diatom) blooms observed during rainy seasons when 
nutrient load coming from surface waters was significant 
(Siokou-Frangou et al., 2010; Yücel et al., 2017). It was reported 
that NO3 uptake affinity of diatoms and pico-eukaryotes were 
comparatively higher than other phytoplankton groups 

(Painter et al., 2014; Moschonas et al., 2017). As a result, a 
significant relationship between NO3 salt and surface chl-a 
concentration was observed during bloom seasons (p<0.05) 
(Table 2; Figure 9). 

Interpolation-based average estimator model was reported 
as a sufficient tool in nutrient load calculations (Laznik et al., 
1999; Stalnacke et al., 1999; Bettiol et al., 2005; Johnes, 2007; 
Buhvestova et al., 2011; Kılıç et al., 2018). Such models are 
particularly satisfactory in monitoring long-term seasonal 
trends and time-dependent changes (Johnes, 2007). However, 
underestimation and overestimation could be also possible due 
to many reasons. Firstly, it is possible to observe different 
nutrient concentrations depending on the river section (Johnes, 
2007) or flow rate variation depending on season. Secondly, 
mass transport and transformation kinetics were related to the 
many environmental constraints which are usually hard to 
interpret (Kılıç et al., 2018). Lastly, some uncertainties were also 
possible in using seasonal data to estimate annual nutrient load 
since it also may cause deflection from the actual load.  In order 
to overcome these existing uncertainties, it is necessary to 
ensure the accuracy, effectiveness of the monitoring program, 
and the accuracy of the statistical method in which the nutrient 
load is calculated (Stalnacke et al., 1999). Long-term (1992-
2017) monitoring results from the national monitoring 
program were used to ensure the accuracy of the data obtained 
in this study. 
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Conclusion 

This study is conducted to evaluate the impact of the 
nutrient load of the Göksu River on the NE Med. Monthly 
average NO2, NO3, NH4 and PO4 load varied between 0.07-31.2 
ton/month, 15-1226 ton/month, 0.5-539 ton/month, 1-267 
ton/month, respectively. Even though, there was no statistically 
significant seasonal variation observed in both nutrient load 
and nutrient concentration (p>0.05), a high standard deviation 
was observed depending on season. The greatest nutrient load 
observed in the winter-spring season lead to an increase in 
primary productivity the downstream of Göksu River. Surface 
chl-a concentration showed more than a two-fold decrease 
from inshore to an offshore area that proves the positive impact 
of the Göksu River. The linear relationship between discharged 
PO4 load and surface chl-a concentration was detected which 
represents the positive impact of the combination of P-rich 
waters of Göksu River with N-rich NE Med (p<0.01). Also, a 
significant relationship observed between discharged NO3 load 
and surface chl-a concentration (p<0.05) was represent the 
impact the phytoplankton blooms observed during the winter-
spring season. 
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