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ABSTRACT. We introduce a method to construct general multivariate positive definite kernels on a nonempty set
X that employs a prescribed bounded completely monotone function and special multivariate functions on X . The
method is consistent with a generalized version of Aitken’s integral formula for Gaussians. In the case in which X is a
cartesian product, the method produces nonseparable positive definite kernels that may be useful in multivariate inter-
polation. In addition, it can be interpreted as an abstract multivariate version of the well-established Gneiting’s model
for constructing space-time covariances commonly highly cited in the literature. Many parametric models discussed
in statistics can be interpreted as particular cases of the method.
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1. INTRODUCTION

LetX be a nonempty set and writeMq(C) to denote the set of all q×q matrices with complex
entries. A kernel K = [Km,n]qm,n=1 : X × X → Mq(C) is positive definite if for every positive
integer N at most the cardinality of X and distinct points x1, . . . , xN in X , the block matrix
[[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1 of order Nq is positive semi-definite, that is,

(1.1)
N∑

µ,ν=1

c∗µK(xµ, xν)cν =

q∑
m,n=1

N∑
µ,ν=1

cmµ c
n
νKm,n(xµ, xν) ≥ 0,

whenever c1, . . . , cN are column vectors in Cq and cµ = [c1µ . . . c
q
µ]ᵀ. The star notation refers to

conjugate transposition of column vectors in Cq . If the matrices [[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1 are
all positive definite, that is, the inequalities in (1.1) are strict when at least one of the vectors cµ
is nonzero, then the positive definite kernel K is termed strictly positive definite on X . The two
classes of kernels introduced above will be denoted by PDq(X) and SPDq(X), respectively.
Kernels in these classes correspond to the standard positive definite kernels studied in [4] when
we set q = 1 and identify Mq(C) with C. The importance of matrix valued positive definite
kernels in their various formats may be ratified in the references [2, 18, 19, 25].

Examples of kernels in PDq(X) and SPDq(X) can be easily constructed. If A is a positive
semi-definite matrix in Mq(C), then the constant kernel

K(x, x′) = A, x, x′ ∈ X,
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belongs to PDq(X). If f1, . . . , fq are kernels in PD1(X), then the kernelK given by the formula

K(x, x′) = Diag(f1(x, x′), . . . , fq(x, x
′)), x, x′ ∈ X,

belongs to PDq(X). Further, if all the fm belong to SPD1(X), then K belongs to SPDq(X).
Moving the other way around, if K is a kernel in PDq(X) and c ∈ Cq , then

f(x, x′) = c∗K(x, x′)c, x, x′ ∈ X,

defines a function in PD1(X). If c 6= 0 and K belongs to SPDq(X), then f actually belongs to
SPD1(X).

The purpose of this paper is to introduce methods to construct abstract matrix-valued map-
pings with the additional requirement of positive definiteness and strict positive definiteness.
In many cases, the methods yield easy to handle and flexible models, once it encompasses com-
mon models found in geophysical sciences, including probabilistic weather forecasting, data
assimilation, statistical analysis of climate model output, etc. when one makes the right choice
for X and set a metric structure in it.

The method itself will be based on bounded completely monotone functions and special
matrix valued functions attached to the notion of conditional negative definiteness. Recall that
the complete monotonicity of a function f : (0,∞) → R is characterized by two properties: f is
C∞(0,∞) and (−1)nf (n)(t) ≥ 0 for n = 0, 1, . . . and t ∈ (0,∞). Throughout the paper, we will
not distinguish between a bounded completely monotone function and its unique continuous
extension to [0,∞).

A kernel K = [Km,n]qm,n=1 : X ×X → Mq(C) is conditionally negative definite if it is Hermit-
ian and the block matrices [[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1 are of negative type, that is, the quadratic
forms (1.1) are ≤ 0 whenever the vectors cµ satisfy

∑N
µ=1 cµ = 0. The conditionally negative

definite kernelK is strictly conditionally negative definite if the matrices [[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1

are of strict negative type for N ≥ 2, that is, the quadratic forms are negative whenever N ≥ 2
and at least one cµ is nonzero. These two classes of kernels will be denoted by CNDq(X) and
SCNDq(X), respectively. Examples of kernels in CND1(X) and SCND1(X) can be found in
[4] while connections between the classes PD1(X) and CND1(X) are described in [3, 4, 10].
As for examples in the classes CNDq(X) and SCNDq(X), one may employ these connections
and imitate the procedures adopted for producing kernels in PDq(X) and SPDq(X) previ-
ously mentioned.

All the major results we intend to prove here will be based on a generalization of Aitken’s
integral formula for computing Gaussians: ifA is a positive definite matrix inMq(R) (the subset
of Mq(C) formed by matrices with real entries only) and b is a vector in Rq , then∫

Rq
e−u

ᵀAu+ i bᵀudu =
πq/2√
det A

e−b
ᵀ(4A)−1b.

Aitken’s integral itself corresponds to the formula above in the case b = 0. A proof for the
generalized Aitken’s integral formula can be reached by mimicking the proof of Aitken’s inte-
gral in [24, p. 340] but an independent proof is available in [15]. This reference also contains
univariate results that may be considered as versions of some of the results to be described
here.

Before we proceed to the outline of the paper, it is worth mentioning that if X is actually a
cartesian product of sets, the method to be presented here lead to nonseparable kernels, i.e.,
kernels on two variables which are not mixed up, a desirable property in applications. Mean-
while, in some specific cases, the method will upgrade to a generalization of the well estab-
lished Gneiting’s contribution in [7] on the construction of kernels in PD1(Rq×Rd). Gneiting’s
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classical result is as follows: for a bounded completely monotone function φ : (0,∞)→ R and
a positive valued function f with a completely monotone derivative, it asserts that the formula

(1.2) Gr((x, y), (x′, y′)) =
1

f(‖y − y′‖2)r
φ

(
‖x− x′‖2

f(‖y − y′‖2)

)
, x, x′ ∈ Rq; y, y′ ∈ Rd,

defines a kernel Gr in PD1(Rq × Rd), whenever r ≥ d/2 and ‖ · ‖ denotes the usual norms in
both Rq and Rd. The boundedness of φ is required in order to make φ(0+) <∞. The references
[12, 13, 16, 20] include some extensions and generalizations of this important result along with
additional references on the topic.

The paper proceeds as follows. Section 2 begins with the description of two additional no-
tions to be employed in the paper, one for families of vector functions and another for families
of matrix functions, along with examples. The first major result of the paper is Theorem 2.4: it
describes a method to construct kernels in PDp(Y ) from bounded completely monotone func-
tions, special families of vector functions on Y and special families of matrix functions on Y .
Further, it provides a sufficient condition in order that the resulting kernel be in SPDp(Y ). At
the end of the section, we discuss some examples and detach a relevant consequence of The-
orem 2.4. The main result in Section 3 expands Theorem 2.4 via integration with respect to a
convenient measure, a usual procedure adopted in approximation theory and statistics in or-
der to produce new positive definite functions from a family of parameterized positive definite
functions. We separate a special simpler version of the theorem in Corollary 3.3. Section 4 de-
scribes extensions of Theorems 2.4 and 3.1 that lead to kernels in PDp(X × Y ). Applications
and a multivariate abstract extension of the classical Gneiting’s result are described.

2. POSITIVE DEFINITENESS ON A SINGLE SET

This section contains the first main contribution in the paper to be made explicit in Theorem
2.4. It provides a method to construct functions in PDq(Y ) using completely monotonic func-
tions via Aitken’s formula. A sufficient condition for strict positive definiteness is included.
The contribution itself demands two notions for families of functions with domain Y which
we now discuss.

For a matrix function G in CNDq(Y ) and a vector u from Cq , the kernel

(y, y′) ∈ Y × Y 7→ u∗G(y, y′)u

belongs to CND1(Y ). Further, the kernel belongs to the class SCND1(Y ) whenever G belongs
to SCNDq(Y ) and u is nonzero. Theorem 2.4 will demand a family {Gm,n : m,n = 1, . . . , p}
for which all the matrix kernels

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]
p

m,n=1 , u ∈ Rq,

belong to CNDp(Y ). Since this is not easily achievable, the following examples are apposite.

Example 2.1. Define

Gm,n(y, y′) = gm(y) + gn(y′), y, y′ ∈ X,
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where gm, gn : Y → Mq(C) are functions subject to our choice. If y1, . . . , yN are distinct points
in Y , c1, . . . , cN are vectors in Cp such that

∑N
µ=1 cµ = 0 and u ∈ Cq , then

N∑
µ,ν=1

c∗µ [uᵀGm,n(yµ, yν)u]
p
m,n=1 cν =

p∑
n=1

N∑
ν=1

cnν

N∑
µ=1

p∑
m=1

cmµ u
ᵀgm(yµ)u

+

p∑
m=1

N∑
µ=1

cmµ

N∑
ν=1

p∑
n=1

cnνu
ᵀgn(yν)u = 0,

that is, the matrix function

(y, y′) ∈ X ×X 7→ [uᵀGm,n(y, y′)u]
p

m,n=1

belongs to CNDp(Y ).

Example 2.2. Set Gm,n = 0 when m 6= n and pick each Gm,m in the class CNDq(Y ). Keeping
the cµ and the yµ as in Example 2.1, it is easily seen that

N∑
µ,ν=1

c∗µ [uᵀGm,n(yµ, yν)u]
p
m,n=1 cν =

p∑
m=1

N∑
µ,ν=1

cmµ c
m
ν u

ᵀGm,m(yµ, yν)u ≤ 0.

Thus, the matrix function

(y, y′) ∈ X ×X 7→ [uᵀGm,n(y, y′)u]
p

m,n=1

belongs to CNDp(Y ).

Theorem 2.4 will also need special families {Hm,n : m,n = 1, . . . , p} of vector functions
Hm,n : Y × Y → Cq . Precisely, it will require families for which all the matrix functions

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)∗u

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ). Again, this is not easy to achieve, reason why a simple example is handy.

Example 2.3. Let us set

Hm,n(y, y′) = hm(y)− hn(y′), y, y′ ∈ Y,
where hm : Y → Rq , m = 1, . . . , p. If y1, . . . , yN are distinct points in Y and c1, . . . , cN are
vectors in Cp, then

N∑
µ,ν=1

c∗µ

[
eiHm,n(yµ, yν)ᵀu

]p
m,n=1

cν =

∣∣∣∣∣
N∑
µ=1

p∑
m=1

cmµ e
i hm(yµ)ᵀu

∣∣∣∣∣
2

≥ 0, u ∈ Rq,

that is, the kernels

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)∗u

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ).

We observe that if the matrix functions

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)∗u

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ), then each Hm,n must be anti-symmetric in the sense that

ReHm,n(y, y′) = −ReHm,n(y′, y), y, y′ ∈ Y.
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In particular,
ReHm,n(y, y) = 0, m, n = 1, . . . , p; y ∈ Y.

Finally, some specific properties of Hadamard exponentials will be needed. We recall that if
A is a matrix in Mq(C), then its Hadamard exponential is the matrix

e◦A := [eAµν ]qµ,ν=1.

If A ∈ Mq(R) is symmetric and of negative type, then the Hadamard exponential of −A is
positive semi-definite. It is positive definite if and only if

Aµµ +Aνν < 2Aµν , µ 6= ν.

These facts are proved in Lemma 2.5 in [21] albeit [14] analyzed similar properties earlier. As an
obvious consequence, we have that if A ∈Mq(R) is of strict negative type, then the Hadamard
exponential of −A is positive definite. The recasting of this property for block matrices is as
follows: if a real symmetric block matrix A = [[Amn(µν)]Nµ,ν=1]qm,n=1 is of negative type, then
the Hadamard exponential of −A is positive definite if and only if

(2.3) Amm(µµ) +Ann(νν) < 2Amn(µν), |m− n|+ |µ− ν| > 0.

Below, we will use the symbol “•” to denote the Schur product of two matrices of same size.

Theorem 2.4. Let φ be a bounded and completely monotone function. For each m,n in {1, . . . , p}, let
Gm,n : Y × Y → Mq(R) be a matrix function with range containing positive definite matrices only
and Hm,n : Y × Y → Rq a vector function. Assume the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

belong to CNDp(Y ) and that

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ). The following assertions hold for the kernel K : Y × Y → Mp(R) given by the
formula

K(y, y′) =

[
φ
(
Hm,n(y, y′)ᵀGm,n(y, y′)−1Hm,n(y, y′)

)√
detGm,n(y, y′)

]p
m,n=1

, y, y′ ∈ Y.

(i) K belongs to PDp(Y ).
(ii) If φ is not identically 0 and there exists an open subset U of Rq \ {0} so that

uᵀ[Gm,m(y, y) +Gn,n(y′, y′)− 2Gm,n(y, y′)]u < 0, (m, y) 6= (n, y′); u ∈ U,

then K belongs to SPDp(Y ).

Proof. We begin by proving Assertion (i) in the case where φ is a constant function, that is, the
case in which

K(y, y′) =

[
φ(0)√

detGm,n(y, y′)

]p
m,n=1

, y, y′ ∈ Y.

Since each matrix Gm,n(y, y′) is positive definite, we may apply Aitken’s integral formula to
obtain

(2.4) K(y, y′) =
φ(0)

πq/2

[∫
Rq
e−u

ᵀGm,n(y, y′)udu

]p
m,n=1

, y, y′ ∈ Y.
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If y1, . . . , yN are distinct points in Y and c1, . . . , cN are vectors in Rp, then

N∑
µ,ν=1

cᵀµK(yµ, yν)cν =
φ(0)

πq/2

N∑
µ,ν=1

p∑
m,n=1

cmµ c
n
ν

∫
Rq
e−u

ᵀGm,n(yµ, yν)udu

=
φ(0)

πq/2

∫
Rq

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν e
−uᵀGm,n(yµ, yν)udu.

One of the assumptions on the Gm,n now yields that

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν e
−uᵀGm,n(yµ, yν)u ≥ 0, u ∈ Rq,

and Assertion (i) follows in this case. In the general case, the Bernstein-Widder Theorem ([23,
p. 3]) implies that

K(y, y′) =

[
1√

detGm,n(y, y′)

∫
[0,∞)

e−Hm,n(y, y′)ᵀGm,n(y, y′)−1Hm,n(y, y′) sdσ(s)

]p
m,n=1

for some finite and positive measure σ on [0,∞). On the other hand, the generalized Aitken’s
integral formula provides the alternative representation

K(y, y′) =

[
1

πq/2

∫
[0,∞)

(∫
Rq
e−u

ᵀGm,n(y, y′)ue2i
√
sHm,n(y, y′)ᵀudu

)
dσ(s)

]p
m,n=1

.

If the yµ are as before and the cµ are now complex vectors, the quadratic form

Q :=

N∑
µ,ν=1

c∗µK(yµ, yν)cν

becomes

Q =
1

πq/2

N∑
µ,ν=1

p∑
m,n=1

cmµ c
n
ν

∫
[0,∞)

∫
Rq
e−u

ᵀGm,n(yµ, yν)uei 2
√
sHm,n(yµ, yν)ᵀududσ(s)

=
1

πq/2

∫
[0,∞)

∫
Rq

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν c
∗
µe
−uᵀGm,n(yµ, yν)uei 2

√
sHm,n(yµ, yν)ᵀu dudσ(s).

The assumption on each (y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

settles the positive semi-

definiteness of

(2.5)

[[
ei 2
√
sHm,n(yµ, yν)ᵀu

]N
µ,ν=1

]p
m,n=1

while the Schur Product Theorem ratifies the positive semi-definiteness of each Schur product

(2.6)
[[
e−u

ᵀGm,n(yµ, yν)u
]N
µ,ν=1

]p
m,n=1

•

[[
ei 2
√
sHm,n(yµ, yν)ᵀu

]N
µ,ν=1

]p
m,n=1

.
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These arguments validate the inequality Q ≥ 0.
Let us keep the notation used above to prove Assertion (ii). Assume further that the cµ are not
all zero vectors. If there exists an open subset U of Rq \ {0} so that

uᵀ[Gm,m(y, y) +Gn,n(y′, y′)− 2Gm,n(y, y′)]u < 0, (m, y) 6= (n, y′); u ∈ U,

we can infer via (2.3) that the block matrix[[
e−u

ᵀGm,n(yµ, yν)u
]N
µ,ν=1

]p
m,n=1

is positive definite whenever u ∈ U . Thus, if φ is constant and not identically 0, then Q > 0
by Formula (2.4). If φ is nonconstant, first we invoke our assumption on the Hm,n in order
to see that the diagonal entries in each block matrix (2.5) are all equal to 1. An application of
Oppenheim’s inequality ([9, p. 509]) shows that the Schur product (2.6) is positive definite for
u ∈ U and s ≥ 0. In particular,∫

Rq

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν c
∗
µe
−uᵀGm,n(yµ, yν)uei 2

√
sHm,n(yµ, yν)ᵀu du > 0, s ≥ 0.

Since σ is not the zero measure we may go one step further and infer that Q > 0. �

Remark 2.5. Theorem 17 in [22] is a very special case of Theorem 2.4-(i).

Next, we present some examples that illustrate our findings.

Example 2.6. For m = 1, . . . , p, let gm : Y → Mq(R) be a function with range containing
positive definite matrices only and hm : Y → Rq an arbitrary function. Setting Gm,n(y, y′) =
gm(y) + gn(y′), y, y′ ∈ Y and Hm,n(y, y′) = hm(y) − hn(y′), y, y′ ∈ Y , the assumptions in
Theorem 2.4 are satisfied. Thus, the formula[

φ
(
(hm(y)− hn(y′))ᵀ(gm(y) + gn(y′))−1(hm(y)− hn(y′))

)√
det[(gm(y) + gn(y′)]

]p
m,n=1

, y, y′ ∈ Y,

defines a kernel in PDp(Y ) whenever φ is bounded completely monotone function. The in-
equalities in Theorem 2.4-(ii) cannot be matched in this abstract example.

Example 2.7. For m,n = 1, . . . , p, let us set

Gm,n(y, y′) = gm,n(y, y′)Iq, y, y′ ∈ Y,

where each gm,n is a positive valued kernel on Y and (y, y′) ∈ Y × Y 7→ [gm,n(y, y′)]pm,n=1

belongs to CNDp(Y ). Observe that for each m and n,

uᵀGm,n(y, y′)u = ‖u‖2gm,n(y, y′), u ∈ Rq; y, y′ ∈ Y.

On the other hand, if c1, . . . , cN are column vectors satisfying
∑N
µ=1 cµ = 0 and y1, . . . , yN

belong to Y , then

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
νu

ᵀGm,n(yµ, yν)u = ‖u‖2
p∑

m,n=1

N∑
µ,ν=1

cmµ c
n
ν gm,n(yµ, yν) ≤ 0,

that is, each kernel
(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1,
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belongs to CNDp(Y ). If the Hm,n satisfies the assumptions of Theorem 2.4, then it is promptly
seen that the formula

K(y, y′) =

[
1

gm,n(y, y′)q/2
φ

(
‖Hm,n(y, y′)‖2

gm,n(y, y′)

)]p
m,n=1

, y, y′ ∈ Y,

defines a matrix kernel in PDp(Y ) whenever φ is a bounded completely monotone function.

Example 2.8. If we take Hm,n as in Example 2.6, then the kernel K in Example 2.7 takes the
form

K(y, y′) =

[
1

gm,n(y, y′)q/2
φ

(
‖hm(y)− hn(y′)‖2

gm,n(y, y′)

)]p
m,n=1

, y, y′ ∈ Y.

This example has a structure that resembles that of Gneiting’s model in [7] for the construction
of space-time covariances. We can get even closer by setting gm,n := g for all m and n, where
g : Y → (0,∞) belongs to CND1(Y ), a choice that leads to

K(y, y′) =
1

g(y, y′)q/2

[
φ

(
‖hm(y)− hn(y′)‖2

g(y, y′)

)]p
m,n=1

, y, y′ ∈ Y.

The setting adopted in both Examples 2.7 and 2.8 is a particular case of that detached in The-
orem 2.9 below. Needless to say that the theorem can be interpreted as a multivariate version
of the Gneiting’s criterion in [7].

Theorem 2.9. Let φ be a bounded and completely monotone function. Let g be a positive valued kernel
in CND1(Y ) and for each m,n in {1, . . . , p}, define

Gm,n(y, y′) = g(y, y′)Iq, y, y′ ∈ Y.
If Hm,n : Y × Y → Rq is a vector function such that the matrix functions

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ), then the following assertions hold for the kernel K : Y × Y →Mp(R) given by the
formula

K(y, y′) =
1

g(y, y′)q/2

[
φ

(
‖Hm,n(y, y′)‖2

g(y, y′)

)]p
m,n=1

, y, y′ ∈ Y.

(i) K belongs to PDp(Y ).
(ii) If φ is not identically 0 and g(y, y) + g(y′, y′) − 2g(y, y′) < 0 for y 6= y′, then K belongs to

SPDp(Y ).

3. AN EXTENSION OF THE MAIN RESULT VIA INTEGRATION

Here, we extend the results proved in Section 2 by introducing a scale mixture in the formula
that defines the positive definite kernels.

Our first contribution here is as follows.

Theorem 3.1. Let ρ be a nonzero positive measure on (0,∞) and φ a bounded and completely monotone
function. For each m,n in {1, . . . , p}, let Gm,n : Y × Y → Mq(R) be a matrix function with range
containing positive definite matrices only, Hm,n : Y × Y → Rq a vector function and {P sm,n}s>0 a
family of kernels on Y such that each function s ∈ (0,∞) 7→ P sm,n(y, y′) is ρ-integrable. If the matrix
functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,
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and
(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1, s > 0,

belong to CNDp(Y ), PDp(Y ) and PDp(Y ), respectively, then the kernel K : Y × Y →Mp(R) given
by the formula

K(y, y′) =

[
1√

detGm,n(y, y′)

×
∫
(0,∞)

φ
(
Hm,n(y, y′)ᵀGm,n(y, y′)−1Hm,n(y, y′) s

)
P sm,n(y, y′)dρ(s)

]p
m,n=1

belongs to PDp(Y ).

Proof. Let y1, . . . , yN be distinct points in Y , c1, . . . , cN vectors in Cp and set

Q :=

N∑
µ,ν=1

c∗µK(yµ, yν)cν .

Direct calculation shows that

Q =

∫
(0,∞)

p∑
m,n=1

N∑
µ,ν=1

φ
(√
sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1

√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

Pm,n(yµ, yν)dρ(s).

As in the proof of Theorem 2.4, the matrix functions

(y, y′) ∈ Y × Y 7→
[
ei
√
sHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq; s > 0,

belong to PDp(Y ). However, since the assumptions on the Gm,n are the same as those in The-
orem 2.4, we can apply Theorem 2.4-(i) in order to see that each matrix

(3.7)

[φ (√sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1
√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

]N
µ,ν=1

p
m,n=1

is positive semi-definite. As for the matrices

(3.8)
[[
P sm,n(yµ, yν)

]N
µ,ν=1

]p
m,n=1

,

they are positive semi-definite as well by our assumption on the family {P sm,n}s>0. Thus, the
Schur Product Theorem implies that

p∑
m,n=1

N∑
µ,ν=1

φ
(√
sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1

√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

Pm,n(yµ, yν) ≥ 0, s > 0.

Therefore, Q ≥ 0. �

As for strict positive definiteness, the following consequence of Theorem 3.1 holds.

Theorem 3.2. Under the setting of Theorem 3.1, if φ is not identically zero, then the following additional
assertions hold for the kernel K:
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(i) If there exists an open subset U of Rq \ {0} so that

uᵀ[Gm,m(y, y) +Gn,n(y′, y′)− 2Gm,n(y, y′)]u < 0, (m, y) 6= (n, y′); u ∈ U,

and a ρ-measurable subset A of (0,∞) so that ρ(A) > 0 and

P sm,m(y, y) > 0, m ∈ {1, . . . , p}; y ∈ Y ; s ∈ A,

then K belongs to SPDp(Y ).
(ii) If there exists a ρ-measurable subset A of (0,∞) so that ρ(A) > 0 and

(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1 ∈ SPDp(Y ), s ∈ A,

then K belongs to SPDp(Y ).

Proof. Let the xµ and the cµ be as in the proof of Theorem 3.1. Further, assume at least one cµ
is nonzero. If the assumptions in (i) hold, then Theorem 2.4-(ii) implies that each matrix (3.7)
is positive definite while the diagonal entries in the matrices in (3.8) are all positive for s ∈ A.
Therefore, by Oppenheim’s inequality, we can assert that

p∑
m,n=1

N∑
µ,ν=1

φ
(√
sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1

√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

Pm,n(yµ, yν) > 0, s ∈ A.

Since the measure ρ is nonzero, Q > 0. If the assumptions in (ii) hold, we may reach the very
same conclusion once the diagonal elements in the matrices in (3.7) are given by

φ(0)√
detGm,m(yµ, yµ)

> 0, m = 1, . . . , p;µ = 1, . . . , q.

Indeed, Oppenheim’s inequality once again would imply that Q > 0. �

A specially chosen family {Gm,n : m,n = 1, . . . , p} in Theorem 3.1 leads to the following
improved abstract multivariate version of Gneiting’s criterion in [7].

Corollary 3.3. Let φ : (0,∞) → R be a bounded and completely monotone function. For m,n =
1, 2, . . . , p, set Gm,n(y, y′) = gm,n(y, y′)Iq , y, y′ ∈ Y , where each gm,n is a positive valued kernel in
CND1(Y ), let Hm,n : Y × Y → Rq be a vector function and {P sm,n}s>0 a family of kernels on Y such
that each function s ∈ (0,∞) 7→ P sm,n(y, y′) is ρ-integrable. If the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,

and

(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1, s > 0,

belong to CNDp(Y ), PDp(Y ) and PDp(Y ), respectively, then the kernel K : Y × Y →Mp(R) given
by the formula

K(y, y′) =

[
1

gm,m(y, y′)q/2

∫ ∞
0

φ

(
‖Hm,n(y, y′)‖2s
gm,n(y, y′)

)
P sm,n(y, y′)dρ(s)

]p
m,n=1

belongs to PDp(Y ). Further, if φ is not identically 0, the following two additional assertions hold:
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(i) If gm,m(y, y) + gn,n(y′, y′) − 2gm,n(y, y′) < 0 when (m, y) 6= (n, y′) and there exists a ρ-
measurable subset A of (0,∞) so that ρ(A) > 0 and

P sm,m(y, y) > 0, m ∈ {1, . . . , p}; y ∈ Y ; s ∈ A,

then K belongs to SPDp(Y ).
(ii) If there exists a ρ-measurable subset A of (0,∞) so that ρ(A) > 0 and

(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1

belongs to SPDp(Y ) for s ∈ A, then K belongs to SPDp(Y ).

4. THE MAIN RESULTS IN THE CASE OF A PRODUCT OF SETS

An easy way to construct kernels in PDp(X × Y ) is given by the product of a kernel in
PDp(X) with another one in PDp(Y ), a fact that can be ratified via the Schur Product Theo-
rem. The separable kernels produced by this method may be not suitable if one needs strong
interactions between X and Y . The main result in this section will provide a version of Theo-
rem 2.4 that leads to kernels in PDp(X × Y ) and except for very particular cases, the kernels
produced by this version will be nonseparable. In particular, the aforementioned interactions
are possible. The result explains, from a mathematical point of view, some important practi-
cal models adopted in the statistical literature. The proofs will be omitted once they are very
similar to those of the theorems proved in Sections 2 and 3.

Theorem 4.1. Let φ : (0,∞) → R be a bounded and completely monotone function. For each m,n in
{1, . . . , p}, let Gm,n : Y × Y → Mq(R) be a matrix function with range containing positive definite
matrices only and Hm,n : X ×X → Rq a vector function. If the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

belong to CNDp(Y ) and

(x, x′) ∈ X ×X 7→
[
eiHm,n(x, x′)ᵀu

]p
m,n=1

, u ∈ Rq,

belong to PDp(X), then the kernel K : (X × Y )2 →Mp(R) given by

K((x, y), (x′, y′)) =

[
φ
(
Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′)

)√
detGm,n(y, y′)

]p
m,n=1

belongs to PDp(X × Y ).

In Example 4.2 below, we illustrate Theorem 4.1 in the case X = R and Y = Sd, the unit
sphere in Rd+1.

Example 4.2. Define Hm,n(x, x′) = hm(x) − hn(x′), x, x′ ∈ R, where each hm : R → Rq is an
arbitrary function. If δ denotes the geodesic distance in Sd, set

Gm,n(y, y′) = [m+ n+ δ(y, y′)]Iq, y, y′ ∈ Sd.

It is well known that (y, y′) ∈ Sd × Sd 7→ δ(y, y′) belongs to CND1(Sd) (see Section 4 in [1]).
Hence, each Gm,n has range containing positive definite matrices only. On the other hand,
according to Examples 2.7 and 2.8, each kernel

(y, y′) ∈ Y × Sd 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,



Matrix valued positive definite kernels related to the generalized Aitken’s integral for Gaussians 395

belongs to CNDp(S
d). It follows that

K((x, y), (x′, y′)) =

[
1

[m+ n+ δ(y, y′)]q/2
φ

(
‖hm(x)− hn(x′)‖2

m+ n+ δ(y, y′)

)]p
m,n=1

belongs to PDp(R× Sd). The choice

hm(x) = (x, 0, . . . , 0)ᵀ, x ∈ R; m = 1, . . . , p,

leads to the simpler example

K((x, y), (x′, y′)) =

[
1

[m+ n+ δ(y, y′)]q/2
φ

(
(x− x′)2

m+ n+ δ(y, y′)

)]p
m,n=1

belonging to PDp(R× Sd).

A version of Theorem 3.1 for kernels acting on the product X × Y is as follows.

Theorem 4.3. Let ρ be a nonzero positive measure on (0,∞) and φ a bounded and completely monotone
function. For each m,n in {1, . . . , p}, let Gm,n : Y × Y → Mq(R) be a matrix function with range
containing positive definite matrices only, Hm,n : X × X → Rq vector functions and {P sm,n}s>0 a
family of kernels on X × Y such that each function s ∈ (0,∞) 7→ P sm,n((x, y), (x′, y′)) is ρ-integrable.
If the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

(x, x′) ∈ X ×X 7→
[
eiHm,n(x, x′)ᵀu

]p
m,n=1

, u ∈ Rq,

and

((x, y), (x′, y′)) ∈ Y × Y 7→ [P sm,n((x, y), (x′, y′))]pm,n=1, s > 0,

belong to CNDp(Y ), PDp(Y ) and PDp(X×Y ), respectively, then K = [Km,n]pm,n=1 : (X×Y )2 →
Mp(R) given by the formula

Km,n((x, y), (x′, y′))

=
1√

detGm,n(y, y′)

∫
(0,∞)

φ
(
Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′) s

)
P sm,n((x, y), (x′, y′))dρ(s)

belongs to PDp(X × Y ).

We now move to some specific applications of Theorem 4.3.

Example 4.4. Here, we will employ the formula deduced in Theorem 1.1 in [6]:

Mν(r
√
u) =

r2ν

22νΓ(ν)

∫ ∞
0

e−s ue−r
2/4ss−ν−1ds, r, u > 0,

that defines the so-called Matérn function. This function is studied in details in [6]. We may
apply Theorem 3.1 with φ(u) = exp(−u), u > 0 and dρ(s) = e−r

2/4ss−1ds. If for x, x′ ∈ X and
y, y′ ∈ Y we set

2vm,n((x, y), (x′, y′)) := vm(x, y) + vn(x′, y′),

where vm : X × Y → (0,∞), for all m, and

P sm,n((x, y), (x′, y′)) :=
r2vm,n((x, y), (x′, y′))s−vm,n((x, y), (x′, y′))

22vm,n((x, y), (x′, y′))
,
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for x, x′ ∈ X and y, y′ ∈ Y , it is easily seen that the kernels

((x, y), (x′, y′)) ∈ (X × Y )2 7→
[
P sm,n((x, x′), (y, y′))

]p
m,n=1

, s > 0,

belong to PDp(X × Y ). If each s ∈ (0,∞) 7→ s−vm,n((x,y),(x
′,y′))/2 is ρ-integrable, Theorem 4.3

implies that the formula

Km,n((x, y), (x′, y′)) =
Γ(vm,n((x, y), (x′, y′)))√

detGm,n(y, y′)

×Mvm,n((x,y),(x′,y′))(r(Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′))1/2)

defines a kernelK((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 that belongs to PDp(X×Y ), as
long as the Gm,n and the Hm,n satisfy the assumptions of the theorem. We could also modify
the P sm,n by introducing a matrix [rm,n]pm,n=1 with positive entries, by setting

P sm,n((x, y), (x′, y′)) :=
r
2vm,n((x, y), (x′, y′))
m,n s−vm,n((x, y), (x′, y′))

22vm,n((x, y), (x′, y′))

for x, x′ ∈ X and y, y′ ∈ Y , as long as the kernels

((x, y), (x′, y′)) ∈ (X × Y )2 7→
[
P sm,n((x, y), (x′, y′))

]p
m,n=1

, s > 0,

stay in PDp(X × Y ). In this case, the outcome of Theorem 3.1 would be that the formula

Km,n((x, y), (x′, y′)) =
Γ(vm,n((x, y), (x′, y′)))√

detGm,n(y, y′)

×Mvm,n((x,y),(x′,y′))(rm,n(Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′))1/2)

defines a kernel K((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 in PDp(X × Y ), if we keep
the assumptions on the Gm,n and the Hm,n required in the theorem. An specific and simple
example in the space-time setting can be produced in analogy with Theorem 1 in [5]: set Y =
Rd, X = R,

Gm,n(y, y′) = g(‖y − y′‖2)Iq, y, y′ ∈ Rd;m,n = 1, . . . , p,

where g : (0,∞)→ (0,∞) has a completely monotone derivative and

Hm,n(x, x′) = x− x′, x, x′ ∈ R;m,n = 1, . . . , p.

Since (y, y′) ∈ Rd × Rd 7→ g(‖y − y′‖2) belongs to CND1(Rd) by a result of Micchelli ([17]),
it follows that the matrix kernels (y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq , belong to
CNDp(Rd). If we put

vm,n((x, y), (x′, y′)) =
vm + vn

2
, x, x′ ∈ R; y, y′ ∈ Y ;m,n = 1, . . . , p,

in which each vm is a positive constant and properly specify [rm,n]pm,n=1, then for x, x′ ∈ R and
y, y′ ∈ Rd the formula

P sm,n((x, y), (x′, y′)) :=
rvm + vn
m,n s−(vm + vn)/2

2vm + vn
, m, n = 1, . . . , p,

defines kernels

((x, y), (x′, y′)) ∈ (R× Rd)2 7→ [P sm,n((x, y), (x′, y′))]pm,n=1, s > 0,
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in PDp(R× Rd). An application of Theorem 4.3 would lead to

Km,n((x, y), (x′, y′)) =
Γ((vm + vn)/2)

g(‖y − y′‖p/2)
M(vm+vn)/2

(
rmn

‖x− x′‖2

g(‖y − y′‖2)

)
with K((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 in PDp(R × Rd). We observe that the fac-
tor Γ((vm + vn)/2) can be eliminated as long as we can specify [rmn]pm,n=1 in such a way that
[rvm+vn
m,n /Γ((vm + vn)/2)]pm,n=1 is a positive definite matrix. Theorem 1 in [11] is another con-

struction that fits into Theorem 4.3. Details on that will be left to the readers.

Example 4.5. The so-called generalized Cauchy function ([8, p. 337]) is given by

1

(1 + cuγ)ν
=

c−ν

Γ(ν)

∫ ∞
0

e−s u
γ

sνdρ(s), u ≥ 0,

where c > 0, ν > 1, γ ∈ (0, 1] and dρ(s) = s−1 exp(− s/c). In order to apply Theorem 4.3, we
now set φ(u) = e−u

γ

, u > 0 and

P sm,n((x, y), (x′, y′)) =
(s
c

)vm(x,y)+vn(x
′,y′)

, s > 0; y, y′ ∈ Y,

where vm : X × Y → (0,∞) is chosen in such a way that each s ∈ (0,∞) 7→ svm(x,y)/2 is
ρ-integrable. The outcome is that

Km,n((x, y), (x′, y′)) =
Γ(vm(x, y) + vn(x′, y′))√

detGm,n(y, y′)

× 1

(1 + c(Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′)γ))
vm(x,y)+vn(x′,y′)

,

defines a kernel K((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 in PDp(X × Y ), if we keep the
assumptions on the Gm,n and the Hm,n required in the theorem. Arguments similar to those
developed in the second half of Example 4.4 leads to an example aligned with Theorem 2 in
[5].

5. A FURTHER EXTENSION

As a final remark let us point an improvement that one can make in all the theorems proved
in this paper. If for each m and n in {1, . . . , p}, Gm,n : Y ×Y →Mq(R) is a matrix function with
range containing positive definite matrices only, Theorem 2.4 justifies the following fact: if the
matrix kernels

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,
belong to CNDp(Y ), then the kernel K given by

K(y, y′) =

[
1√

detGm,n(y, y′)

]p
m,n=1

, y, y′ ∈ Y,

belongs to PDp(Y ). Under the same setting, it follows from the Schur Product Theorem that

Kl(y, y
′) =

[
1

[detGm,n(y, y′)]l/2

]p
m,n=1

, y, y′ ∈ Y,

belongs to PDp(Y ) whenever l ∈ {1, 2, . . .}. In particular, we can introduce the same power l/2
in the assertions of all the theorems proved in the paper.
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