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Abstract. We show that the quartic Diophantine equations ax4 + by4 = cz2

has only trivial solution in the Gaussian integers for some particular choices

of a, b and c. Our strategy is by elliptic curves method. In fact, we exhibit

two null-rank corresponding families of elliptic curves over Gaussian field. We

also determine the torsion groups of both families.
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1. Introduction

The integer solutions of the Diophantine equation

ax4 + by4 = cz2 (1)

can be mostly found in classical book on Diophantine equations. Our interest is

the solutions in the Gaussian integers Z[i]. By a trivial solution of (1) we mean

x = y = z = 0 or, a = b = c and, in addition, one of the x, y is zero and the square

of the other equals z.

The Diophantine equation x4 + y4 = z2 was studied by Fermat who proved by

infinite-descent method that there exist no nontrivial solution in Z. Hilbert [3]

extended this result by showing that the equation x4 + y4 = z2 has only trivial

solution in Z[i]. From his proof, it follows that the equation x4 − y4 = z2 has also

trivial solution in Z[i].

Other authors also examined similar problems. Najman [5] found all nontrivial

solutions of the equations x4±y4 = iz2 in Z[i]. He also gave a new proof of Hilbert’s

results. Szabó [9] solved the eight equations x4 +my4 = z2 in Z[i], where m = ±2n,

and 0 ≤ n ≤ 3. He also considered the equations of the form (1) with only trivial

solution in Z[i] and proved that the equations x4 − py4 = z2 and x4 − p3y4 = z2

have only trivial solutions in Z[i], where p is a prime p ≡ 3 mod 8. However, the
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equations x4 + py4 = z2 and x4 + p3y4 = z2 have integer solutions (1, 1, 2) and

(2, 1, 5), respectively, when, say, p = 3.

Izadi et al. [4] studied two family of Diophantine equations of type (1) over

the Gaussian integers. More precisely, they considered the families of equations

y4 ± p3x4 = z2 with p ≡ 3 mod 8 or mod 16 and y4 ± px4 = z2 with p ≡ 7 or 11

mod 16 over the Gaussian integers and showed by elliptic curves method that in

either cases there are only trivial solutions.

By a prime we shall mean a prime in Z; we shall refer to primes in Z[i] as

Gaussian primes. Let p, q be primes p ≡ 3 mod 8, q ≡ 1 mod 8, and the Legendre

symbol
(
p
q

)
6= 1. In this article, we find out another equation of type (1) with only

trivial solution in Z[i], where a = 1, b = ±qp2 with p, q as above, and c is a power

of i, 1 + i, or 2. The approach is also by elliptic curves method.

Theorem 1.1. Let p, q be primes p ≡ 3 mod 8, q ≡ 1 mod 8, and
(
p
q

)
6= 1. The

Diophantine equations x4 ± qp2y4 = ±z2 and x4 ± qp2y4 = ±iz2 have only trivial

solutions in Z[i].

The element ω = 1 + i is a Gaussian prime satisfying ω4 = −4. Each of the

Diophantine equations

x4 + 4qp2y4 = z2, x4 − 4qp2y4 = z2, −4x4 + 4qp2y4 = z2 (2)

may be transformed to one of the equations

x4 − qp2y4 = z2, x4 + qp2y4 = z2.

It suffices to substitute y by ωy in the first two, and an extra substitution ωx for

x in the third. Therefore, the equations (2) also have only trivial solutions in Z[i].

The following corollary gives even more equations of type (1) with trivial solutions.

Corollary 1.2. Let p, q be primes with p ≡ 3 mod 8, q ≡ 1 mod 8, and
(
p
q

)
6= 1.

The Diophantine equations x4±qp2y4 = ±2nz2 and x4±qp2y4 = ±i2nz2 have only

trivial solutions in Z[i] for any n ∈ Z+.

As seen, the coefficient of z2 in each of the equations in Theorem 1.1 or Corollary

1.2 is a power of i, 1 + i, or 2.

Remark 1.3. Since any solution in Q(i) gives a solution in Z[i], through this work

we shall consider all solutions in Z[i].

Elliptic curves are used to sketch the proof of Theorem 1.1. Elliptic curves over

the Gaussian field Q(i) are not so known. We are interested the elliptic curves of
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type Y 2 = X3+dX over Q(i). For the same family over Q we cite the comprehensive

reference [7].

The so-called Selmer-Mordell conjecture says that the rank of elliptic curves

Y 2 = X3 + pX, with p prime, over Q is exactly 1. Working over Q(i), Bremner

and Cassels [1] showed that this conjecture is true for the primes p ≡ 5 mod 8 less

than 1000. Other authors enlarged the upper bound but worked entirely over Q.

Consider the two families of elliptic curves

E : Y 2 = X3 ± qp2X, (3)

where p, q are as in Theorem 1.1. We show that the Mordell-Weil rank of both

families (3) over the Gaussian field Q(i) is zero.

Theorem 1.4. For the primes p ≡ 3 mod 8 and q ≡ 1 mod 8 with
(
p
q

)
6= 1, the

ranks of the two families of elliptic curves

Y 2 = X3 ± qp2X

over Q(i) are zero.

We also determine the torsion groups of the families (3).

Theorem 1.5. For the primes p ≡ 3 mod 8 and q ≡ 1 mod 8 with
(
p
q

)
6= 1, the

torsion groups of the two families of elliptic curves

Y 2 = X3 ± qp2X

over Q(i) are isomorphic to Z/2Z.

2. Preliminaries

Let E be an elliptic curve over the field K of characteristic not equals 2 or 3,

and let E(K) denote the K-rational points of E over K. The so-called Mordell-Weil

theorem asserts that E(K) is a finitely generated abelian group and hence can be

represented as

E(K) = E(K)tors ⊕ Zr, r ≥ 0,

where E(K)tors denotes the torsion group of E(K) and r is called the (algebraic)

rank of E over K. If K is quadratic field, there are 26 possible torsion groups,

while in the case of the Gaussian quadratic field K = Q(i), there are exactly 16

possible torsion groups, namely, the 15 groups from Mazur’s theorem and the group

Z/4Z × Z/4Z (see also [6]). To determine the torsion subgroup of E(K) of our

families (3) over K = Q(i), we need the extended Lutz-Nagell theorem [7].
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Theorem 2.1 (Extended Lutz-Nagell theorem). Consider the elliptic curve Y 2 =

X3 + aX + b with a, b ∈ Z[i] and let (X,Y ) ∈ E(Q(i)) be a torsion point. Then,

(1) X,Y ∈ Z[i];

(2) either Y = 0 or Y 2 | 4a3 + 27b2.

The plan of proving Theorems 1.4 and 1.5 is hanging on the 2-decent method

for determining the rank of E(Q). We describe briefly this method. For more

details see [2,8]. Suppose that E : Y 2 = X3 + AX2 + BX is an elliptic curve

over Q and Ê : Y 2 = X3 − 2AX2 + (A2 − 4B)X is the curve isogenous to E. Let

Q∗ be the multiplicative group of nonzero rational numbers, and Q∗2 denote the

subgroup of squares of elements of Q∗. Then, Q∗/Q∗2 is the multiplicative group

of rational numbers modulo squares. The process of determining the rank of E

requires that we look at both curves E and Ê. Define the 2-descent homomorphism

α : E(Q) −→ Q∗/Q∗2 by

α(P ) =


1 mod Q∗2, if P = O, the point at infinity,

B mod Q∗2, if P = (0, 0),

X mod Q∗2, if P = (X,Y ) with X 6= 0.

The 2-descent homomorphism α̂ : Ê(Q) −→ Q∗/Q∗2 is similarly defined.

α̂(P̂ ) =


1 mod Q∗2, if P̂ = O, the point at infinity,

B̂ mod Q∗2, if P̂ = (0, 0),

X mod Q∗2, if P̂ = (X,Y ) with X 6= 0,

where B̂ = A2 − 4B.

Proposition 2.2. With the above notations, let r denote the rank of E(Q). Then,

|α(E(Q))| |α̂(Ê(Q))| = 2r+2.

A practical method to compute |α(E(Q))| is followed by looking at the factor-

ization of B. We make this more precisely in the following theorem [2].

Theorem 2.3. The group α(E(Q)) is equal to the classes modulo squares of 1, B,

and the positive and negative divisors B1 of B such that the quartic equation

V 2 = B1U
4 +AU2W 2 + (B/B1)W 4 (4)

has a solution (U, V,W ) with U , V and W pairwise coprime such that UW 6= 0 and

gcd(B/B1, U) = gcd(B1,W ) = 1,

and the point P = (B1U
2

W 2 , B1UV
W 3 ) is in E(Q) such that α(P ) = B1.
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In general, Theorem 2.3 gives us a method for determining the rank of E(Q),

provided that we are able to determine whether or not each of the curves generated

by the divisors of B and B̂ in the definitions of α and α̂ have solutions. It is also

important to note that calculating the rank of an elliptic curve using the 2-descent

method can be rather time consuming, depending on how many square-free divisors

of B and B̂ there are.

The group of elliptic curves E(K) over the quadratic fields K = Q(
√
m), with

square-free integer m has interesting properties. The next result [7] shows that the

rank of E over K is the sum of the ranks of E and it’s m-twist Em over Q.

Theorem 2.4. Let K = Q(
√
m) be a quadratic field, where m is a square-free

integer. Let E : y2 = x3 + ax2 + bx be an elliptic curve over Q and Em : y2 =

x3 +max2 +m2bx be the m-twist of E. Then

rank(E(K)) = rank(E(Q)) + rank(Em(Q)).

3. Proofs

Proof of Theorem 1.4. We prove the result for the family E : Y 2 = X3 + qp2X.

The proof for the other family uses similar techniques. Appealing to Proposition

2.2 we need to prove

|α(E(Q))| |α̂(Ê(Q))| = 4.

In other words, by the definitions of the 2-descent homomorphisms α and α̂, we

should prove

|α(E(Q))| = 2 = |α̂(Ê(Q))|.

We do this in two steps. Note that all calculations and equations are modulo

squares.

Step 1. We show |α(E(Q))| = 2. In this part, the quartic equation (4) in Theorem

2.3 is

V 2 = B1U
4 +

qp2

B1
W 4, (5)

Therefore, modulo squares,

B1 ∈ {±1,±p,±q,±qp}.

By the definition of α, 1 and q are in the image of α. We show that none of the

B1, except to 1 and q, is in Im(α). If B1 = −1, the equation (5) turns to V 2 =

−U4 − qp2W 4, which is impossible. The case B1 = −p has the same discussion.

For B1 = p, we get (V/U2)2 ≡ p mod q. By the property of the Legendre

symbol we get
(
p
q

)
= 1, contradicts the hypothesis.
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Now, let B1 = −q. If −q ∈ Im(α) then, q · (−q) = −1 ∈ Im(α), which is failed in

the case B1 = −1. The cases B1 = ±qp have similar reason with different failures.

Step 2. We prove |α̂(Ê(Q))| = 2. Here, the quartic equation (4) in Theorem 2.3 is

V̂ 2 = B̂1Û
4 − 4qp2

B̂1

Ŵ 4,

Therefore, modulo squares,

B̂1 ∈ {±1,±2,±p,±2p,±q,±2q,±qp,±2qp}.

By the definition of α̂, two elements 1 and −q are in the image of α. We show that

the other elements of B̂1 are not in Im(α̂). We distinguish some cases and try to

get contradiction in each case.

3.0.1. B̂1 = −1; V̂ 2 = −Û4 + 4qp2Ŵ 4. Then, (V̂ /Û2)2 ≡ −1 mod p. By the

property of the Legendre symbol, we get
(−1
p

)
= 1, which implies p ≡ 1 mod 4,

contradicts the hypothesis.

3.0.2. B̂1 = 2; V̂ 2 = 2Û4 − 2qp2Ŵ 4. Hence, (V̂ /Û2)2 ≡ 2 mod p. It follows that(
2
p

)
= 1, showing that p ≡ 1 or 7 mod 8, contradicts again the hypothesis.

3.0.3. B̂1 = p; V̂ 2 = pÛ4 − 4qpŴ 4. Here, we have (V̂ /Û2)2 ≡ p mod q, which

gives
(
p
q

)
= 1, a contradiction.

3.0.4. B̂1 = −p; V̂ 2 = −pÛ4 + 4qpŴ 4. Now, (V̂ /Û2)2 ≡ −p mod q from which,(−p
q

)
= 1. This implies

(−1
q

)
= −1 from which we get q ≡ 3 mod 4, which is

impossible.

3.0.5. B̂1 = 2p; V̂ 2 = 2pÛ4 − 2qpŴ 4. We obtain (V̂ /Û2)2 ≡ 2p mod q and hence(
2p
q

)
= 1. Thus,

(
2
q

)
= −1 which shows q ≡ 3 or 5 mod 8, again impossible. The

cases B̂1 = 2q, 2qp have similar reason.

3.0.6. B̂1 = q. If q ∈ Im(α̂) then, q · (−q) = −q2 = −1 ∈ Im(α̂) which is failed

in the case B̂1 = −1. The cases B̂1 = −2,−2q,−2p,±qp,−2qp are similarly failed

with different failures.

We showed rank(E(Q)) = 0. An apply of Theorem 2.4 completes the proof of

Theorem 1.4 since m = −1 and the m-twist of E is itself. �

Proof of Theorem 1.5. Let (X,Y ) be a torsion point. Then, by Theorem 2.1,

X,Y ∈ Z[i] and, in addition, either Y = 0 or Y 2 | 4q3p6. The relation Y = 0 gives
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the 2-torsion point (0, 0). We claim that there is no other torsion point, that is, Y 2

never divides 4q3p6. Let by the contrary that Y 2 | 4q3p6. Then, Y 2 = `qspt, where

` ∈ {±1,±2i,±4}, s ∈ {0, 2}, t ∈ {0, 2, 4, 6}. (6)

Regardless the sign of `, we try to get contradiction in all 24 cases. The opposite

sign of ` has similar discussion. We take ω = (1 + i).

The case Y 2 = 1 = (−i)2 = X3 + qp2X is clearly impossible. Let Y 2 = 2i =

ω2 = X3 + qp2X. The only Gaussian prime factor of X is ω. Then, we have

ω2 = ω3k + qp2ωk with k ≥ 1, showing that cos(kπ2 ) = 1
2 −

qp2

2k+1 , which is false. The

case Y 2 = 4 = ω4 has similar discussion.

Now, let Y 2 = q2 = X3 + qp2X. Then, q | X. Let k be the largest power of q in

X. Then, q2 = q3kX3
0 + qk+1p2X0, k ≥ 1, where q - X0. By canceling q2 we get an

impossible equation.

For Y 2 = 2q2i = ω2q2 = X3 + qp2X we have again q | X. Assume that

ω2q2 = q3kX3
0 + qk+1p2X0, k ≥ 1, where q - X0. Here again k is taken the largest

power of q in X. Then, by canceling the q2, we get ω2 = q3k−2X3
0 + qk−1p2X0.

The only Gaussian prime factor of X0 is ω. Now, we get an equation in which the

powers of ω in both sides do not match. The case Y 2 = 4q2 = ω4q2 has similar

discussion.

Finally, let Y 2 = `qspt = X3+qp2X where, as in (6), ` ∈ {±1,±2i,±4}, s = 0, 2,

and t = 2, 4, 6. Then, p | X. Assume `qspt = p3kX3
0 + qpk+2X0, with k ≥ 1 the

largest power of q in X, where p - X0. By canceling the pk
′

with k′ = min{k+2, t},
we obtain an impossible equation for any ` and any s. �

We are now ready to prove the main Theorem 1.1.

Proof of Theorem 1.1. We prove the result for the equations

x4 ± qp2y4 = z2, (7)

x4 ± qp2y4 = iz2, (8)

with positive signs in the right hand sides. The negative cases have similar proofs.

Assume that (x, y, z) is a nontrivial solution of the equation (7). Dividing both

sides by y4 and putting x/y = u and z/y2 = v we get u4 ± qp2 = v2. Taking

X = u2, we have two equations

X = u2, X2 ± qp2 = v2.
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Now, multiplying these two equations and putting Y = uv we obtain a torsion point

6= (0, 0) on the elliptic curves Y 2 = X3 ± qp2X which is impossible by Theorem

1.5.

Now, we work on the equation (8). Here again divide both sides by y4 and put

x/y = u and z/y2 = v to get u4±qp2 = iv2. This time taking −iX = u2, we obtain

two equations

−iX = u2, −X2 ± qp2 = iv2.

By the similar manner as in the previous case, the existence of a torsion point

6= (0, 0) on the elliptic curves Y 2 = X3 ± qp2X leads to a contradiction and this

completes the proof. �

Proof of Corollary 1.2. In the equation x4 ± qp2y4 = ±2nz2 taking n = 2k and

n = 2k + 1 we get, respectively, the equations

x4 − qp2y4 = ±(2kz)2, x4 − qp2y4 = ±i(iω2kz)2,

which is in the form of equations of Theorem 1.1.

In a similar way, in the equation x4 ± qp2y4 = ±i2nz2 taking n = 2k and

n = 2k + 1 we get, respectively, the equations

x4 − qp2y4 = ±i(2kz)2, x4 − qp2y4 = ±(ω2kz)2,

which is again in the form of equations of Theorem 1.1. �
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