
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

A COMPARSION AMONG HOMOTOPY PERTURBATION METHOD AND THE DECOMPOSITION 
METHOD WITH THE VARIATIONAL ITERATION METHOD FOR HELMHOLTZ EQUATION 

 
  ABSTRACT 

In this article, we implement a relatively new numerical 
technique and we present a comparative study among Homotopy 
perturbation method and Adomian decomposition method, the variational 
iterational method. These methods in applied mathematics can be an 
effective procedure to obtain for approximate solutions. The study 
outlines the significant features of the three methods. The analysis 
will be illustrated by investigating the homogeneous Helmholtz 
equation model problem. This paper is particularly concerned a 
numerical comparison with the Adomian decomposition and Homotopy 
perturbation method, the variational iterational method the numerical 
results demonstrate that the new methods are quite accurate and 
readily implemented. 
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HELMHOLTZ DENKLEMİ İÇİN HOMOTOPY PERTÜRBATİON, DECOMPOSİTİON 
METHOD VE VARİATİONAL İTERASYON YÖNTEMLERİ ARASINDA BİR 

KARŞILAŞTIRMA 
 

ÖZET 
Bu makalede, nispeten yeni bir nümerik teknik uyguladık ve 

Homotopy Perturbation Methodu, Adomian Decomposition Method, ve 
variational iteration metodu arasında mukayeseli bir çalışma sunduk. 
Uygulamalı matematikteki bu metodlar yaklaşık çözümler elde etmek için 
etkili bir yöntem olabilir. Çalışma üç metodun önemli özelliklerini 
ana hatları ile göstermektedir. Analizler, Helmholtz denkleminin model 
problemi incelenerek örneklendirilecektir. Bu makale özellikle 
Homotopy Perturbation Methodu, Adomian Decomposition Method, ve 
variational iteration metodunun nümerik bir karşılaştırması ile 
ilgilidir. Nümerik sonuçlar yeni metodularin oldukça doğru ve hızlı 
uygulanabilir olduğunu göstermektedir. 
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1. INTRODUCTION (GİRİŞ) 
 Partial differential equations which arise in real-world 
physical problems are often too complicated to be solved exactly. And 
even if an exact solution is obtainable, the required calculations may 
be too complicated to be practical, or it might be diffucult to 
interpret the outcome. Very recently, some promising approximate 
analytical solutions are proposed, such as Exp-function method [1 ve 
2], Adomian decomposition method [3, 4, 5, 6 and 7], variational 
iteration method [8, 9 and 10] and homotopy-perturbation method [11, 
12, 13, 14, 15 and 16]. Other methods are reviewed in Refs. [17 and 
18]. 
 HPM is the most effective and convenient on efor both linear and 
nonlinear equations. This method does not depend on a small parameter. 
Using homotopy technique in topology, a homotopy is constructed with 
an embedding parameter [0,1]p ∈ , which is considered as a “small 
parameter”. HPM has been shown to effectively, easily and accurately 
solve a large class of linear and nonlinear problems with components 
converging rapidly to accurate solutions. HPM was first proposed by He 
[11] and was successfully applied to various engineering problems [19, 
20 and 21]. 
 Recently, VIM is applied for exact solutions of Helmholtz 
Equation [22, 23, 24, 25, 26 and 27]. The aim of this work is this 
work is to employ HPM and ADM to obtain the exact solutions for 
Helmholtz Equations and to compare the results with those of VIM. 
Different from ADM, where specific algorithms are usually used to 
determine the Adomian polynomials, HPM handles linear and nonlinear 
problems in a simple manner by deforming a difficult problem into a 
simple one.  
 Two–dimensional Helmholtz equation has the following form: 
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where )(),(),(),( 4321 yxyy φφφφ  are given functions. These equations appear 

in such diverse phenomena as: elastic waves in solid including 
vibrating string, bars membranes, sound or acoustics, electromagnetic 
waves and nuclear reactors  
 

2. RESEARCH SIGNIFICANCE (ÇALIŞMANIN ÖNEMİ) 
 In this article, we study two dimensional Helmoltz equation. We 
solved it with 3 processes and we have given results. We hope that 
this result will contribute in phsichs, mecanic and Nuclear studies. 
 

3. NUMERICAL METHODS (SAYISAL METOTLAR) 
3.1. Fundamentals of the Homotopy-Perturbation Method  
     (Homotopy-Perturbation Metodunun Esasları) 
To illustrate the basic ideas of this method, we consider the 

following equation [11]: 

( ) ( ) ,,0 Ω∈=− rrfuA                                   (3) 
with boundary condition 
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where A is a general differential operator, B a boundary operator, f 
(r) a known analytical function and Γ is the boundary of the domain Ω. 

A can be divided into two parts which are L and N, where L is 
linear and N is nonlinear. Eq. (3) can therefore be rewritten as 
follows: 

   ( ) ( ) ( ) 0L u N u f r+ − = , ,r ∈Ω                            (5) 

Homotopy perturbation structure is shown as follows: 

( ) ( ) ( ) ( ) ( ) ( )0, 1 0,v p p L v L u p A v f rΗ = − − + − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     (6)                 

where  

( ) [ ] ℜ→×Ω 1,0:, prv .           (7)                  

In Eq. (6), p ∈ [0, 1] is an embedding parameter and 0u  is the first 

approximation that satisfies the boundary condition. We can assume 
that the solution of Eq. (6) can be written as a power series in p, as 
following: 

...3
3

2
2

10 ++++= vpvppvvv             (8)                  

and the best approximation for solution is 

0 1 2 31
lim ...

p
u v v v v v

→
= = + + + +          (9)                  

The above convergence is discussed in [11]. 
  

3.2. Adomian Decomposition Method (Adomian Ayrışım Metodu) 
The decomposition series method does not require this 

discretization and resulting massive computation. In this work we 
apply the second method to obtain analytic and approximate solutions 
of the equation from (1), and using the decomposition method, the 
equation (1) is approximated by the operators in the following form 

uLuyxfuL yx −−= ρ),(        (10) 
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invers of the operator Lx-1 exists, and it can conveniently be 

integrated with respect to x from 0 to x, i.e, ∫ ∫=−
x x

x dxdxL
0 0

1 (.) , then 

applying the inverse operator Lx-1 to (10) yields 

uLLuLyxfLuLL yxxxxx
1111 ),( −−−− −−= ρ      (11) 

Therefore, it follows that 

uLLuLyxfLyxuyuyxu yxxxx
111 ),(),0(),0(),( −−− −−++= ρ   (12) 

The zeroth components is obtained, by using the initial condition, as  

)),((),0(),( 1
0 yxfLyxuyxuu xx

−++=      (13) 

Which is defined by all terms that arise from the initial 
conditions. Thus, the unknown function u(x,y) is computed in terms of 
the components defined by the decomposition series given as 

∑
∞

=

=
0
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n
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 The remaining components un(x,y), n≥ 1, can be completely 
determined such that each term is computed by using the previous term. 
Since u0 is know, 

0
1

0
1

1 )( uLLuLu yxx
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As a results, the series solutions is given by 
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where Lx-1 is the previously given integration operator. The solution 
u(x,y) must satisfy the requirements imposed by the initial 
conditions.  

The decomposition method provides a reliable technique that 
requires less work if compared with the traditional techniques. 
Moreover, the proposed method does not need discretization of the 
problem to obtain numerical results. We can evaluate the approximate 

solution ,γφ by using the γ – term approximation. That is, 

∑
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Where the components are produce as 

),(01 yxu=φ  

),(),( 102 yxuyxu +=φ  

),(),(),( 2103 yxuyxuyxu ++=φ  

...Μ 
),(...........),(),(),( 1210 yxuyxuyxuyxu −++++= γγφ  

 
3.3. The Variational Iterational Method  
     (Variyasyonel İterasyon Metodu) 

Consider the differential equation 

)(tgNuuLx =+ .              (18)                 

Where L is a linear operator, N is a non-linear operator and g(t) is a 
known  and Nonline analytical function. Ji Huan He has modified the 

above method into an iteration method [ ]7,2  in the following way: 

ξξξξλ dguNLuuu n

t

nnn ))()(~)((
0

1 −++= ∫+ ,                 (19)                 

where λ  is a general Lagrange’s multipler, which can be identified 

optimally via the variational theory, and nu~  is a restricted variation 

which means 0~ =uδ . 
It is obvious now that the main steps of He’s variational 

iteration method require first the determination of the Lagrangian 
multiplier λ  that will be identified optimally. Having determined the 

Lagrangian multiplier, the successive approximations ,0,1 ≥+ nun of the 
solution  u  will be readily obtained upon using any selective function 

0u .Consequently, the solution  

)(,lim ∞→= nforuu n .                                 (20) 

In other words, correction functional (19) will give several 
approximations, and therefore the exact solution is obtained at the 
limit of the resulting successive approximations. 
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To give a clear overview of the methodology, we consider several 
examples in the following section. 

 
4. EXPERIMENTAL EVALUATIONS (DENEYSEL DEĞERLENDİRMELER) 

 In this section, we apply the above described methods (Homotopy 
perturbation method and Adomian’s decomposition method, variational 
iteration method) on some examples so that the comparisons are made 
numerically. We wish to emphasize that the purpose of the comparison 
is only to give the reader insight into the relative efficiencies of 
the three methods and not definitive comparisons. Also we re-emphasize 
that the basic intends of new method is user convenience and easy as 
opposed to speed of computation. In order to verify numerically 
whether the proposed methodology lead to higher accuracy chose two 
example which were selected to show the computational accuracy  
 Example 1: For comparison purposes, we consider a Helmholtz 
equation model problem in order to illustrate the technique discussed 
above. This problem is as follows;         

( ) ( ) ( )
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,           (21)                

with in initial conditions 

( ) ( ) ( )0 , 1u x y x y xCosh y= + +                              (22)                 

In order to solve Eq.(1), using HPM, we can construct a homotopy for 
this equation 
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form: 

...3
3

2
2

10 ++++= YpYppYYY ( )
0

,n
n

n
p Y x t

∞

=

= ∑ .       (24)                 

Then, substituting Eq. (24) into Eq. (23), and rearranging based on 
powers of p -terms, we obtain: 

.. ..
0

0 0: 0,p Y u− =           (25)                 
.. ..

1
1 0 0 0: 0,p Y u Y Y′′+ + − =           (26)                 
..

2
2 1 1: 0,p Y Y Y′′+ − =          (27)                 

..
3

3 2 2: 0,p Y Y Y′′+ − =          (28)                 
..

4
4 3 3: 0,p Y Y Y′′+ − =           (29)                 

M               
with solving Eqs. (25)-(29) 

( ) ( )0 1Y x y xCosh y= + + ,         (30)                 
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4 5
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6 7

3 720 5040
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,        (33)                 

8 9

4 40320 362880
x xY y

⎛ ⎞
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⎝ ⎠
,        (34)                 

M 
the above terms of the series (23) could calculated. When we consider 
the series (23) with the terms (30)-(34) and suppose 1=p , we obtain 
approximation solution of Eq. (22) as following: 
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As a result, the components 0 1 2, , ,...Y Y Y  are identified and the series 

solution thus entirely determined. 
In order to solve this equation by using the decomposition 

method, we simply take the equation in an operator form.  
Following the same manner as given by equation (13) to find the zeroth 
component of u0 as 
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and remaining components u1, u2, u3, etc. We are computed by a 
recursive scheme directly by hand using (15). Some of the symbolically 
computed components are as follows  
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In this manner, four component of the decomposition series were 
obtained of which u(x,y) was evaluated to have the following 
expansion. 

 Κ+++++= 43210),( uuuuuyxu   
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 Continuing the expansion to the last term, it may be proved that 
the section of the decomposition series (14) as  

)cosh()exp(),( yxxyyxu +=   
 In order to solve (21) equation by using the variational 
iteration method, we simply take the equation in an operator form.  
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where )2,1( =iiλ  are general Lagrange multipliers [ ]1  ,and can be 

identified optimally via the variational theory [ ]158,1 − , 0u  is an 

initial approximation or trial- function with possible unknowns, nu~  

are considered as  restricted variations [ ]107,2 −  ,ie. 0~ =uδ . 
Making the correction functional (39) stationary, noticing that 

0~ =uδ , 

,),(~),(~),(),(),(
0

2

2

2

2

21 ξξξ
ξ
ξλδδδ dyu

y
yuyuyxuyxu

x

n
nn

nn ∫ ⎟
⎟
⎠

⎞
−

∂
∂

+⎜⎜
⎝

⎛

∂
∂

+=+    (40)     

,),(),(),(
0

2

2

21 ξ
ξ
ξλδδδ dyuyxuyxu

x
n

nn ∫ ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+=+      (41)                 

) ,0)("),()(),())(1)(,(),(
0

2222
'

1 =−⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
∂

∂
+−= ∫+ ξξλξδξλ

ξ
ξδλδδ dyuyutyxuyxu

x

n
n

nn

yields the following stationary conditions  
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ξ
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0)(: 2
" =ξλδ nu  

The Lagrange multiplier, therefore, can be readily identified, 

x−= ξξλ )(2   

and by  the same  manipulation ,we have y−= ττλ )(1 . 
As a result, we obtain the following iteration formulae in y -

and x- directions: 



                          e-Journal of New World Sciences Academy  
              Natural and Applied Sciences, 3, (1), A0054, 93-106. 
                                                        Bulut, H.  

 100

,),(),(),()(),(),(
0

2

2

2

2

1 ττ
τ

τττ dxuxu
x
xuyyxuyxu

y

n
nn

nn ∫ ⎟
⎟
⎠

⎞
−

∂
∂

+⎜⎜
⎝

⎛

∂
∂

−+=+  

,),(),(),()(),(),(
0

2

2

2

2

1 ξξξ
ξ
ξτ dyu

y
yuyuyyxuyxu

y

n
nn

nn ∫ ⎟
⎟
⎠

⎞
−

∂
∂

+⎜⎜
⎝

⎛

∂
∂

−+=+    (42) 

Now we begin with an arbitary initial approximation  : ,0 BxAu +=  where 

A and B are constants in x to be determined by using the initial 
conditions (22),thus we have  

))((cos)1(u   0 yhxxy ++= . 

By the above   variational iteration formula in x-direction (42), we 
can obtain following result: 
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Continuing in this manner, we obtain the first few components of 
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        Μ 
and so on ,in the same manner the rest of components of the iteration 
formula (42) were obtained using the Mathematica Package. 
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The Solution ),( yxu  in a closed form is  

    )(cos)exp(y)u(x,   yhxxy += . 
The approximation can also be obtained by y-direction or by 
alternating use of x-and y-directions iterations formulae. 
 
Example 2:  
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In the same way as Example 1 ,using (13) to find the zeroth component 

of 0u  as 

)2sinh(30 yxu =                (46) 

and remaining components u1, u2, u3, etc. We are computed by a 
recursive scheme directly by hand using (15). Some of the symbolically 
computed components are as follows  
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Μ 
In this manner, four component of the decomposition series were 

obtained of which u(x,y) was evaluated to have the following 
expansion. 
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 Continuing the expansion to the last term, it may be proved that 
the section of the decomposition series (14) as  

)2sinh()3sin(),( yxyxu =  
which is exactly the same as those by homotopy perturpation method. 

In order to solve (44) equation by using the variational 
iteration method, its correction variational functionals in y-and x-
directions can be expressed, respectively, as follows: 
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Following the same procedure as the previous example. The 
Lagrange multipliers, therefore, can be readily identified, 

y−= ττλ )(1 , x−= ξξλ )(2   
As a result, we obtain the following iteration formulae in y -and x- 
directions: 
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Now we begin with an arbitary initial approximation : ,0 BxAu +=  where 

A and B are constants in x to be determined by using the initial 
conditions (45),thus we have  

)2sinh(30 yxu = . 
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By the above variational iteration formula in x-direction (49), 
we can obtain following result: 

,
!3
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⎠
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xxyu  

  ,
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)3(3)2sinh(

53

2 ⎟⎟
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⎞
⎜⎜
⎝

⎛
+−=

xxxyu            

     Μ 
and so on ,in the same manner the rest of components of the iteration 
formula (42) were obtained using the Mathematica  Package. 

...)2sinh(
!7
)3()2sinh(

!5
)3()2sinh(

!3
)3()2sinh(3),(

753
+−+−= yxyxyxyxyxu  

The Solution ),( yxu  in a closed form is  

)2sinh()3sin(),( yxyxu = . 
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(a):Exact solution (Tam çözüm) (b):Approximation solution (Yaklaşık çözüm) 

Figure 1a. The numerical results for 4Y in comparison with the analytic 

solution ),( yxu  when y=0.05 with initial condition of Eq.(21) by means 
of HPM 

(Şekil 1a. HPM yoluyladenklem 21’in başlangıç şartı alındığında y=0.05  
U(x,Y)nın analitik çözümüyle Y4 için elde edilen sayısal sonuçların 

karşılaştırılması) 
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          (a): exact solution      (b): approximation solution 

Figure 1b. The plots of the numerical results for 4Y in comparison with 

the analytic solution ),( yxu  when y=0.05 with initial condition of 
Eq.(21) by means of HPM 

Şekil 1b. HPM yoluyla denklem 21’in başlangıç şartı alındığında y=0.05  
),( yxu için analitik çözümüyle Y4 için elde edilen sayısal sonuçların 

çizilmesi 
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Table 1. Absolute Error For the Example 1 using the HPM method 
(Tablo 1. HPM metodu kullanarak örnek 1 için hatalar) 

x 
 

y     0.2        0.4         0.6          0.8                     
 
      0.1     2.94209E-15   2.99827 E-12   1.76194E-10   3.18942E-09   
      0.2     5.82867E-15   5.99654 E-12   3.52387E-10   6.37885E-09   
      0.3     8.65974E-15   8.99469 E-12   5.28581E-10   9.56827E-09   
      0.4     1.16573E-15   1.19931 E-12   7.04775E-10   1.27577E-09   
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(a):Exact solution (Tam çözüm) (b):Approximation solution (Yaklaşık çözüm) 

Figure 2a. The numerical results for 4u in comparison with the analytic 

solution ),( yxu  when y=0.05 with initial condition of Eq.(44) by means 
of ADM. 

Şekil 2a. ADM yoluyla denklem 44’ün başlangıç şartı ile y=0.05 
alındığında ),( yxu için analitik çözümüyle U4 için elde edilen sayısal 

sonuçların karşılaştırılması 
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   (a):Exact solution (Tam çözüm) (b):Approximation solution (Yaklaşık çözüm) 

Figure 2b. The plots of the numerical results for 4u in comparison with 

the analytic solution ),( yxu  when y=0.05 with initial condition of 
Eq.(44) by means of ADM 

Şekil 2b. ADM yoluyla denklem 44’ün başlangıç şartı y=0.05 alındığında 
),( yxu için analitik çözüm ve U4 için elde edilen sayısal sonuçların 

çizilmesi 
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Table 2. Absolute error for the Example 2 using the ADM method 
(Tablo 2. ADM metodu kullanarak örnek 1 için hatalar) 

x 
 

y         0.2        0.4            0.6          0.8                      
 
      0.1     0.01449E-15   0.11625 E-12   0.39629E-10   0.96448E-09   
      0.2     0.02957E-15   0.23717 E-12   0.80848E-10   1.96767E-09   
      0.3     0.04584E-15   0.36761 E-12   1.25313E-10   3.04982E-09   
      0.4     0.06395E-15   0.51281 E-12   1.74807E-10   4.25438E-09   
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(a):Exact solution (Tam çözüm) (b):Approximation solution (Yaklaşık çözüm) 

Figure 3a. The numerical results for 4u in comparison with the analytic 

solution ),( yxu  when y=0.05 with initial condition of Eq.(44) by means 
of VIM. 

Şekil 3a. VIM yoluyla denklem 44’ün başlangıç şartı ile y=0.05 
alındığında ),( yxu için analitik çözümüyle U4 için elde edilen sayısal 

sonuçların karşılaştırılması 
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(a):Exact solution (Tam çözüm) (b):Approximation solution (Yaklaşık çözüm) 

Figure 3b. The plots of the numerical results for 4u in comparison with 

the analytic solution ),( yxu  when y=0.05 with initial condition of 
Eq.(44) by means of VIM 

Şekil 3b. VIM yoluyla denklem 44’ün başlangıç şartı y=0.05 alındığında 
),( yxu için analitik çözüm ve U4 için elde edilen sayısal sonuçların 

çizilmesi 
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Table 3. Absolute error for the example 2 using the VIM method 
(Tablo 3. ADM metodu kullanarak örnek 2 için hatalar) 

x 
 

y       0.2           0.4             0.6            0.8                      
 
     0.1     0.07356E-15   0.30242 E-12   0.53881E-10   -4.93566E-09   
     0.2     0.15008E-15   0.61698 E-12   1.09926E-10   -10.0694E-09   
     0.3     0.23226E-15   0.95630 E-12   1.70381E-10   -15.6073E-09   
     0.4     0.32449E-15   1.33401 E-12   2.37675E-10   -21.7715E-09   
 

      
5. COMPARISON AMONG HPM, VIM AND ADM  
   (HPM, VIM VE ADM METODLARININ KARŞILAŞTIRILMASI) 
It can be seen from the examples studied, that: 

• Comparison among HPM, VIM and ADM shows that although the 
results of these methods when applied to the Helmholtz equation 
are the same, HPM does not require specific algorithms and 
complex calculations, such as ADM or construction of correction 
functionals using general Lagrange multipliers, such as VIM and 
is much easier and more convenient than ADM and VIM. 

• HPM handles linear and nonlinear problems in a simple manner by 
deforming a difficult problem into a simple one. But in 
nonlinear problems, we encounter difficulties to calculate the 
so-called Adomian polynomials, when using ADM. Also, optimal 
identification of Lagrange multipliers via the variational 
theory can be difficult in VIM. 

 
6. CONCLUSION (SONUÇ) 
In this Letter, we have successfully developed HPM and ADM to 

obtain the exact solutions of Helmholtz equation. The results are then 
compared with those of VIM. It is apparently seen that these methods 
are very powerful and efficient techniques for solving different kinds 
of problems arising in various fields of science and engineering and 
present a rapid convergence for the solutions. The solutions obtained 
show that the results of these methods are in agreement but HPM is an 
easy and convenient one. 
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