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Abstract
In this article, Darboux frame variations for timelike surfaces in semi-Riemannian mani-
folds are discussed. In addition, the Killing equations are examined by using the Darboux
frame curvature variations. Then, magnetic trajectories are generated by means of the
variational vector fields. Furthermore, parametric representations of all magnetic trajec-
tories on the de Sitter space S2

1 are presented. Moreover, various examples of magnetic
trajectories are given in order to illustrate the theoretical results.
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1. Introduction
The magnetic field is described mathematically as a divergence free vector field in three

dimensional spaces. In three dimensional space, a Killing vector field is a vector field that
preserves the metric. Namely, B is a Killing vector field if the Lie derivative with respect
to B of the metric g vanishes, LBg = 0. Thus, Killing vector fields are divergence free
vector fields in three dimensional space and they defines a magnetic field called as Killing
magnetic vector field, [1].

When a charged particle enters a magnetic field, the Frenet vector fields of the particle
are affected by the magnetic field Ω and release a force called the Lorentz force defined as
follows

(z(ζ).η) = Ω(ζ, η), (1.1)
where the Lorentz force z associated with the magnetic vector field B is given by

z(ζ) = B × ζ. (1.2)
Under the influence of the Lorentz force, the particle begins to follow a new trajectory
called the magnetic curves satisfy the following equation

z(d1) = B × d1 = ∇d1d1 (1.3)
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where d1 is a unit tangent vector field of the magnetic curve and ∇ is the Levi-Civita
connection.

Magnetic trajectories in Riemannian spaces are studied by Barros and Sunada, [3, 16].
Magnetic curves related to the Killing magnetic field using the variational method were
determined by Barros, [2]. Then, the magnetic curves related to the Killing magnetic
curves are expanded in Euclidean and Minkowski spaces, [5, 8, 9]. In Minkowski 3-space,
Killing equations is computed by Gürbüz, [10]. Then, Bozkurt et al.[4] and Özdemir et
al.[14] introduced the Killing B-magnetic and N-magnetic curves in 3D Riemannian and
semi-Riemannian manifolds. Then, the null and pseudo null curve variations are computed
and applied to magneticcurves by Özdemir, [13, 15].

In section 1, the theory has been introduced and some studies related to the theory
have been given. In section 2, basic definitions and concepts related to the theory are in-
troduced. In section 3, Killing equations related to Darboux elements on timelike surfaces
are given. In section 4, magnetic curves on timelike surfaces are determined by means of
the Killing equations. In this section, as an applications, the parametric expressions of all
magnetic trajectories on the de Sitter space S2

1 are also determined and various examples
are visualized by using the MAPLE program.

2. Fundamental backgrounds
Let (M, g) be a semi-Riemannian manifold, then for all ζ = (ζ1, ζ2, ζ3), η = (η1, η2, η3) ∈

χ(M) the inner product is given by

(ζ.η) = −ζ1η1 + ζ2η2 + ζ3η3, (2.1)

and the cross product is defined as

ζ × η = (−ζ2η3 + ζ3η2, ζ3η1 − ζ1η3, -ζ2η1 + ζ1η2). (2.2)

For all ζ, η, ν ∈ χ(M), the mixed product is given by

(ζ × η.ν) = dv(ζ, η, ν) (2.3)

where dv denotes a volume on M . A non-zero vector ζ ∈ χ(M) is called space-like on the
condition that (ζ.ζ) > 0, time-like when (ζ.ζ) < 0 and lightlike(null) when (ζ.ζ) = 0. Any
two vectors ζ, η ∈ χ(M) are called orthogonal provided that(ζ.η) = 0. Let ζ, η be two
null vectors then they are linearly dependent on thecondition that (ζ.η) = 0. A curve in
Minkowski 3-space is called spacelike (resp. timelike, lightlike) curve, if its tangent vector
is a spacelike (resp. timelike, lightlike) vector, [11]. The semi-Riemannian curvature tensor
is defined by

ℜ(ζ, η)ν = −∇ζ∇ην + ∇η∇ζν + ∇[ζ,η]ν. (2.4)
Then, the sectional curvature of a non degenerated plane generated by {ζ, η} is presented
by

K(ζ, η) = (ℜ(ζ, η)ζ.η)
(ζ.ζ)(η.η) − (ζ.η)2 . (2.5)

If the semi-Riemannian manifold M has constant sectional curvature C then it is called
semi-Riemannian space form and the related curvature tensor is given by

ℜ(ζ, η)ν = C{(ν.ζ)η − (ν.η)ζ}. (2.6)

Definition 2.1. The surface S in the Minkowski 3-space E3
1 is a timelike surface when

the induced metric on the surface is a Lorentz metric. In other words, the normal vector
on the timelike surface is a spacelike vector [12].

A sphere of center p0 and radius r is defined by

S2
1(r; p0) = {p ∈ E3

1 : (p − p0.p − p0) = r2}.
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The tangent plane at p is TpM = Span{p − p0}⊥ and N(p) = 1
r (p − p0). This vector is a

spacelike vector and, therefore, the surface is accepted as a timelike surface. When p0 is
the origin and r = 1, the surface is also called de Sitter space and denoted by

S2
1 = {(ζ1, ζ2, ζ3) ∈ E3

1 : −ζ2
1 + ζ2

2 + ζ2
3 = 1},

[11]. De Sitter space S2
1 is a surface analog embedded in Minkowski space R3

1 being one of
the Euclidean spheres in mathematics and physics. It could be noted that this manifold
analog is symmetric at a maximum level and includes positive constant curvature. The
de Sitter space is named after Willem de Sitter (1872–1934) at Leiden University [6, 7].
When φ : U ⊂ E2 → E3

1, φ(U) = S is a timelike embedding surface and α : I ⊂ R → U is
a regular curve on S. A curve γ on the surface S defined by γ(s) = φ(α(s)) is found and
since φ is a timelike embedding, we could conclude a unit spacelike normal vector field
d3 along the surface S. Then, we have found a orthonormal frame {d1, d2, d3} which is
called the Darboux frame along the non-null curve γ where d2(s) = d3(s) ∧ d1(s) is a unit
spacelike vector. Then, the Darboux frame equations of γ is given by

d′
1 = kgd2 − εknd3, (2.7)

d′
2 = kgd1 + ετrd3,

d′
3 = knd1 + τrd2,

where kg = −ε(d′
1.d2), kn = −ε(d′

1.d3) and τg = ε(d′
3.d2), ε = ±1 are geodesic curvature,

the asymptotic curvature, and the principal curvature of γ on the surface S in E3
1, respec-

tively. Moreover, s is the arc-length parameter of γ. In particular, the following equations
are presented:

(d1.d1) = −(d2.d2) = ε, (d3.d3) = 1, (d1.d2) = (d2.d3) = (d1.d3) = 0,

[17]. Moreover, it is found as the following

d2 ∧ d1 = εd3, d3 ∧ d2 = d1, d3 ∧ d1 = d2, (2.8)

where ε = ±1.

3. Killing equations of Darboux frame for timelike surfaces in 3D semi-
Rimannian spaces

Lemma 3.1. Let φ : U ⊂ E2 → E3
1, φ(U) = S be a timelike embedding surface and

γ : I ⊂ R → U be a regular curve on S in 3D semi Riemannan space form (M(C), g).
The variation of γ defined by Γ : I × (−ε, ε) → M(C) with γ(s, 0) the initial curve satisfy
Γ(s, 0) = γ(s). The related variational vector field is given by B(s) = ∂Γ(s,t)

∂t |t=0 and the
speed function is defined as W (s, t) = ∂Γ(s,t)

∂t = v(s, t)T (s, t). Then, we find the following
functions of the non-null curve γt(s) :
1. Speed function v(s, t) =

∥∥∥∂Γ(s,t)
∂t

∥∥∥ ,

2. Geodesic curvature functions kg(s, t),
3. Normal curvature functions kn(s, t),
4. Torsion curvature functions τg(s, t),
The variations of these functions, at t = 0, are calculated as follows:

B(v) = (∂v

∂t
(s, t))

∣∣∣∣
t=0

= −vρ (3.1)
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B(kg) = (∂kg

∂t
(s, t))

∣∣∣∣
t=0

= ε(ℜ(B, d1)d1.d2) − ε(∇2
d1B.d2) + kn

kg
((−ℜ(B, d1)d1.d3) (3.2)

+ (∇2
d1B.d3)) + 2ρkg + 2ρ

k2
n

kg

B(kn) = (∂kn

∂t
(s, t))

∣∣∣∣
t=0

= ε(ℜ(B, d1)d1.d3) − ε(∇2
d1B.d3) + kg

kn
((−ℜ(B, d1)d1.d2) (3.3)

+ (∇2
d1B.d2)) − 2ερ

k2
g

kn
+ 2ρkn,

B(τg) = (∂τg

∂t
(s, t))

∣∣∣∣
t=0

= −εkn(∇d1B.d2) − ε
kn

kg
((−ℜ(B, d1)d1.d1) + (∇2

d1B.d1)) (3.4)

+ k2
n

kg
(∇d1B.d3) − ε

ρ′

kg
.

where ρ = (∇d1B.d1) and ℜ stands for the curvature tensor of M.

Proof. Let φ : U ⊂ E2 → E3
1, φ(U) = S be a timelike embedding surface and γ : I ⊂

R → U be a regular curve on S in 3D semi-Riemannian space form M(C) and B be a
vector field along the curve γ. If we compute the covariant derivative ∇B of v(s, t), then
we calculate

B(v) = (∂v

∂t
(s, t))

∣∣∣∣
t=0

= (∂2Γ(s, t)
∂t∂s

.vd1) (3.5)

= v(∇d1B.d1)
= −vρ.

Using the Darboux frame equations, we obtain,

kg = −ε(∇d1d1.d2). (3.6)

The covariant derivative ∇B of the geodesic curvature kg(s, t) is calculated as

B(kg) = (∂kg

∂t
(s, t))

∣∣∣∣
t=0

= −ε(∇B∇d1d1.d2) − ε(∇d1d1.∇Bd2). (3.7)

On the other hand, we compute

∇B∇d1d1 = −ℜ(B, d1)d1 + ∇d1∇Bd1 + ∇[V,d1]d1 (3.8)

and

[B, W ] = ∇BW − ∇W B (3.9)

= ∂2Γ(s, t)
∂t∂s

− ∂2Γ(s, t)
∂s∂t

= 0.

Thus, if we take the equation W = vT into account, we reach

[B, vd1] = B(v)d1 − v∇d1B + v[B, d1] = 0. (3.10)

This gives

[B, d1] = −1
v

B(v)d1, ρ = −1
v

B(v) (3.11)

= ρd1.

Using the eq.(3.10) and eq.(3.11) with the equation ∇Bd1 = [B, d1] + ∇d1B, we find

∇d1∇Bd1 = ρ′d1 + ρ∇d1d1 + ∇2
d1B. (3.12)
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From the Darboux frame formulae, we obtain

d2 = 1
kg

(∇d1d1 + εknd3) (3.13)

If we take the covariant derivative ∇B of eq.(3.13), we get

∇Bd2 =
−k′

g

k2
g

∂kg

∂t
(∇d1d1 + εknd3) + 1

kg
(∇B∇d1d1 + εkn∇Bd3);

Since, ∂kg

∂t = 0, we calculate

∇Bd2 = 1
kg

(∇B∇d1d1 + εkn∇Bd3). (3.14)

Using the eqs.(3.7)-(3.12) the expression for B(kg) becomes

B(kg) = (∂kg

∂t
(s, t))

∣∣∣∣
t=0

= ε(ℜ(B, d1)d1.d2) − ε(∇2
d1B.d2) + kn

kg
((−ℜ(B, d1)d1.d3)

+(∇2
d1B.d3)) + 2ρkg + 2ρ

k2
n

kg

Similar calculations above we compute the following equations

B(kn) = (∂kn

∂t
(s, t))

∣∣∣∣
t=0

= ε(ℜ(B, d1)d1.d3) − ε(∇2
d1B.d3) + kg

kn
((−ℜ(B, d1)d1.d2)

+(∇2
d1B.d2)) − 2ερ

k2
g

kn
+ 2ρkn,

B(τg) = (∂τg

∂t
(s, t))

∣∣∣∣
t=0

= −εkn(∇d1B.d2) − ε
kn

kg
((−ℜ(B, d1)d1.d1) + (∇2

d1B.d1))

+k2
n

kg
(∇d1B.d3) − ε

ρ′

kg
.

�

Proposition 3.2. Assume that B(s) be the restriction to γ(s) of a Killing vector field
B of S, then the variations of the Darboux curvature functions and speed function of γ
satisfy:

B(v) = B(kg) = B(kn) = B(τg) = 0. (3.15)

Proof. Any local flow {zt} generated by the Killing vector field B is composed of local
isometries of S. Since the variations B(v), B(kg), B(kn) and B(τg) do not depend on the
variation Γ but only on B(s), we can variate γ(s) in the direction of B(s) as follows:

γt(s) = Γ(s, t) =: zt(γ(s)). (3.16)

The isometric function zt gives that the functions, v(s, t), kg(s, t), kn(s, t) and τg(s, t), do
not depend on t and thus we have B(v) = B(kg) = B(kn) = B(τg) = 0. �

Corollary 3.3. If γ is a curve in de Sitter space S2
1 and B is a Killing vector field along

the curve γ then we have the following equations
i. (∇d1B.d1) = 0,
ii. −εkg((−ℜ(B, d1)d1.d2) + (∇2

d1
B.d2)) − (ℜ(B, d1)d1.d3) + (∇2

d1
B.d3) = 0,

iii. −ε(∇d1B.d2) + 1
kg

(∇d1B.d3) − ε
kg

((−ℜ(B, d1)d1.d1) + (∇2
d1

B.d1)) = 0.

Proof. It clearly stated in Proposition 3.2. �
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4. Killing magnetic curves on the timelike surfaces
Proposition 4.1. Provided that φ : U ⊂ E2 → E3

1, φ(U) = S is a timelike embedding
surface and γ : I ⊂ R → U is a regular curve on S. Therefore, the Lorentz force equations
through the Darboux frame {d1, d2, d3} are computed as follows z(d1)

z(d2)
z(d3)

 =

 0 kg −εkn

kg 0 ϖ
kn εϖ 0

  d1
d2
d3

 (4.1)

where kg, kn and τg are geodesic curvature, asymptotic curvature, principal curvature of γ
and ϖ(s) is a function on the surface S in E3

1, respectively.

Proof. Suppose that φ : U ⊂ E2 → E3
1, φ(U) = S be a spacelike embedding surface and

γ : I ⊂ R → U be a regular curve on S. Then the definition of the magnetic curves gives
z(d1) = ∇d1d1 = kgd2 − εknd3. (4.2)

Then we can write
z(d2) = λd1 + µd2 + ξd3 (4.3)

The following equation could be found:
λ = ε(z(d2).d1) = −ε(z(d1).d2) = kg, (4.4)
µ = ε(z(d2).d2) = 0,

ξ = (z(d2).d3) = ϖ.

These equations imply
z(d2) = kgd1 + ϖd3. (4.5)

Using the similar computations, we obtain
z(d3) = knd1 + εϖd2. (4.6)

�
Proposition 4.2. Provided that φ : U ⊂ E2 → E3

1, φ(U) = S is a timelike embedded
surface, γ : I ⊂ R → U is a regular curve on S and B is a Killing vector field along the
curve γ. Thenγ is a magnetic curve of a magnetic field B if and only if B can be written
along γ as follows

B(s) = −εϖd1 − knd2 + kgd3 (4.7)
where ε = ±1, {kg, kn} Darboux curvatures and ϖ(s) is a smooth function associated with
each magnetic curve of B.

Proof. We express the equation of
B(s) = µd1 + ςd2 + δd3 (4.8)

where η, ς and δ are certain functions along a trajectory of B. If the eqs.(1.2)-(4.1) are
used, we calculate that µ = −εϖ, ς = −kn and δ = kg. Conversely, if γ satisfies the
eq.(4.8), then it satisfies B × d1 = z(d1) = ∇d1d1. Therefore, we can say that γ is a
magnetic curve of B. �
Theorem 4.3. If φ : U ⊂ E2 → E3

1, φ(U) = S is a timelike embedding surface, γ : I ⊂
R → U is a regular curve on S and B is a Killing vector field along the curve γ. If γ is
a magnetic curve of B, then the Darboux curvatures of γ satisfy the following differential
equations

knk′′
g + ϖknk′

n − 2εknk′
nτr − εk2

nτ ′
r − τrϖknkg + εknτ2

r kg + εkgk′′
n + kgk′

gϖ − 2εkgk′
gτr

−εk2
gτ ′

r − εknkgτrϖ + kgτ2
r kn = 0,

where ϖ is constant along γ.
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Proof. If γ is a magnetic curve of B, then B satisfies the eq.(4.7). Then the derivative
of the eq.(4.7) gives

∇d1B = −εϖ′d1 + (−k′
n − εϖkg + kgτr)d2 + (k′

g + ϖkn − εknτr)d3. (4.9)

Firstly, if we use the equation B(v) = 0, in Lemma 3.3, we calculate ϖ is a constant.
Using the derivative of eq.(4.7), we compute

∇2
d1B = (kg(−k′

n − εϖkg + kgτr) + kn(k′
g + ϖkn − εknτr))d1 (4.10)

+((−k′
n − εϖkg + kgτr)′ + τr(k′

g + ϖkn − εknτr))d2

+((k′
g + ϖkn − εknτr)′ + ετr(−k′

n − εϖkg + kgτr))d3 = 0.

Also, the Riemannian curvature tensor satisfy

ℜ(B, d1)d1 = C((d1.B)d1 − (d1.d1)B). (4.11)

Then, we obtain

ℜ(B, d1)d1 = εC(knd2 − kgd3). (4.12)

If we use the eq.(4.10) and eq.(4.12), in the second equation in Lemma 3.3 and using the
Proposition 3.2, we compute

(k′
g + ϖkn − εknτr)′ + ετr(−k′

n − εϖkg + kgτr) − ε
kg

kn
(−k′

n − εϖkg + kgτr)′

−ε
kgτr

kn
(k′

g + ϖkn − εknτr) = 0,
(4.13)

Finally, the last equation in Lemma 3.3 is found automatically. �

Next we give the parametric representations of the magnetic curves in de Sitter space
S2

1 by using the MAPLE Program.

Theorem 4.4. Let γ be a spacelike curve in de Sitter space S2
1 ⊂ M then the magnetic γ

has one of the following parametric representations:
i.

γ(s) = k1 cos s + k2 sin s, kg = 0, (4.14)

where k1, k2 ∈ E3
1.

ii.

γ(s) = h1 + h2s + h3s2, kg = c = 1 (4.15)

where h1, h2, h3 ∈ E3
1.

iii.

γ(s) = g1 + g2
1√

c2 − 1
e

√
c2−1s + g3

1√
c2 − 1

e−
√

c2−1s, kg = c ̸= 1, (4.16)
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where g1, g2, g3 ∈ E3
1.

iv. kg =
√

2c1
ϖ tanh(

√
2c1ϖ(c2+s)

2 ),

γ(s) =



d1hypergeom([1
2 , ϖ+1

ϖ , ϖ−1
ϖ ], [2c1ϖ+

√
2c1ϖ+

√
2c1−ϖ

2c1ϖ ,
−2c1ϖ+

√
2c1ϖ+

√
2c1−ϖ

2c1ϖ ], 1
cosh(

√
2c1ϖ(c2+s)

2 )2
) tanh(

√
2c1ϖ(c2+s)

2 ),

+d2 cosh(
√

2c1ϖ(c2+s)
2 )

√
2c1ϖ−2−√

c1ϖ)
√

c1ϖ sinh(
√

2c1ϖ(c2+s)
2 )

hypergeom([−−c1ϖ+
√

2c1ϖ+
√

2c1−ϖ
2c1ϖ , −−2c1ϖ+

√
2c1ϖ+

√
2c1−ϖ−2c1

2c1ϖ ,

−−2c1ϖ
√

2+
√

2c1ϖ
√

c1ϖ−+2c1
2c1ϖ ], [−−c1ϖ+

√
2c1ϖ+

√
2c1−ϖ

c1ϖ ,

−−2c1ϖ+
√

2c1ϖ+
√

2c1−ϖ
2c1ϖ ], 1

cosh(
√

2c1ϖ(c2+s)
2 )2

)

+d3 cosh(
√

2c1ϖ(c2+s)
2 )−

√
2c1ϖ−2−√

c1ϖ)
√

c1ϖ sinh(
√

2c1ϖ(c2+s)
2 )

hypergeom([−c1ϖ+
√

2c1ϖ+
√

2c1−ϖ
2c1ϖ , −2c1ϖ+

√
2c1ϖ+

√
2c1−ϖ+2c1

2c1ϖ

, 2c1ϖ
√

2+
√

2c1ϖ
√

c1ϖ−−2c1
2c1ϖ ], [ c1ϖ+

√
2c1ϖ+

√
2c1−ϖ

c1ϖ

, 2c1ϖ+
√

2c1ϖ+
√

2c1−ϖ
2c1ϖ ], 1

cosh(
√

2c1ϖ(c2+s)
2 )2

)



. (4.17)

Proof. Since γ is a curve on the de Sitter space S2
1 the curve has the following curvatures

kg, kn = 1, τg = 0.

The equations (4.13) reduce
k′′

g + ϖkgkg
′ = 0. (4.18)

If we solve the differential equation, we reach

kg = c or kg =
√

2c1
ϖ

tanh(
√

2c1ϖ(c2 + s)
2

)

where ϖ = const. By using the Darboux frame equation, we obtain the following differ-
ential equation

kgγ′′′ − k′
gγ′′ + (−k3

g + kg)γ′ + k′
gγ = 0.

If we solve the differential equation, we obtain following four cases:
i.

γ(s) = k1 cos s + k2 sin s, kg = 0, (4.19)
where k1, k2 ∈ E3

1.
ii.

γ(s) = h1 + h2s + h3s2, kg = c = 1 (4.20)
where h1, h2, h3 ∈ E3

1.
iii.

γ(s) = g1 + g2
1√

c2 − 1
e

√
c2−1s + g3

1√
c2 − 1

e−
√

c2−1s, kg = c ̸= 1, (4.21)

where g1, g2, g3 ∈ E3
1.

iv. kg =
√

2c1
ϖ tanh(

√
2c1ϖ(c2+s)

2 ), The solution of the differential equation give us the
magnetic curve parameterized as eq.(4.17). �
Theorem 4.5. If γ is a timelike curve in de Sitter space S2

1 ⊂ M then the curve γ has
one of the following representations:
i.

γ(s) = a1es + a2e−s, kg = 0. (4.22)
where a1, a2 ∈ E3

1.
ii.

γ(s) = b1 + b2
1√

c2 + 1
e

√
c2+1s + b3

1√
c2 + 1

e−
√

c2+1s, kg = c, (4.23)
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where b1, b2, b3 ∈ E3
1 and c ̸= 0 ∈ R.

iii. kg =
√

2c1
ϖ tanh(

√
2c1ϖ(c2+s)

2 )

γ(s) =



d1hypergeom([1
2 , ϖ+1

ϖ , ϖ−1
ϖ ], [2c1ϖ+

√
2c1ϖ+

√
2c1+ϖ

2c1ϖ ,
−2c1ϖ+

√
2c1ϖ+

√
2c1+ϖ

2c1ϖ ], 1
cosh(

√
2c1ϖ(c2+s)

2 )2
) tanh(

√
2c1ϖ(c2+s)

2 ),

+d2 cosh(
√

2c1ϖ(c2+s)
2 )

√
2c1ϖ+2−√

c1ϖ)
√

c1ϖ sinh(
√

2c1ϖ(c2+s)
2 )

hypergeom([−−c1ϖ+
√

2c1ϖ+
√

2c1+ϖ
2c1ϖ , −−2c1ϖ+

√
2c1ϖ+

√
2c1+ϖ−2c1

2c1ϖ ,

−−2c1ϖ
√

2+
√

2c1ϖ
√

c1ϖ++2c1
2c1ϖ ], [−−c1ϖ+

√
2c1ϖ+

√
2c1+ϖ

c1ϖ ,

−−2c1ϖ+
√

2c1ϖ+
√

2c1+ϖ
2c1ϖ ], 1

cosh(
√

2c1ϖ(c2+s)
2 )2

)

+d3 cosh(
√

2c1ϖ(c2+s)
2 )−

√
2c1ϖ+2−√

c1ϖ)
√

c1ϖ sinh(
√

2c1ϖ(c2+s)
2 )

hypergeom([−c1ϖ+
√

2c1ϖ+
√

2c1+ϖ
2c1ϖ , −2c1ϖ+

√
2c1ϖ+

√
2c1+ϖ+2c1

2c1ϖ

, 2c1ϖ
√

2+
√

2c1ϖ
√

c1ϖ+−2c1
2c1ϖ ], [ c1ϖ+

√
2c1ϖ+

√
2c1+ϖ

c1ϖ

, 2c1ϖ+
√

2c1ϖ+
√

2c1+ϖ
2c1ϖ ], 1

cosh(
√

2c1ϖ(c2+s)
2 )2

)



. (4.24)

Proof. Since γ is a curve on the de Sitter space S2
1 the curve has the following curvatures

kg, kn = 1, τg = 0.

The equations (4.13) reduce
k′′

g + ϖkgkg
′ = 0.

If we solve the differential equation, we get

kg = c or kg =
√

2c1
ϖ

tanh(
√

2c1ϖ(c2 + s)
2

)

where ϖ = const. From the Darboux frame equation, we get:
kgγ′′′ − k′

gγ′′ + (−k3
g − kg)γ′ − k′

gγ = 0.

If we solve the differential equation, we obtain the following three cases
i.

γ(s) = a1es + a2e−s, kg = 0. (4.25)
where a1, a2 ∈ E3

1.
ii.

γ(s) = b1 + b2
1√

c2 + 1
e

√
c2+1s + b3

1√
c2 + 1

e−
√

c2+1s, kg = c, (4.26)

where b1, b2, b3 ∈ E3
1 and c ̸= 0 ∈ R.

iii. kg =
√

2c1
ϖ tanh(

√
2c1ϖ(c2+s)

2 ), the solution of the differential equation give us the
magnetic curves parameterized as eq.(4.24). �

5. Examples
Example 5.1. In order to illustrate, we have considered a spacelike curve on the de sitter
space S2

1 defined by
γ1(s) = (0, cos s, sin s).

Therefore, the curve γ will have the following Darboux curvatures:
kg(s) = 0, kn(s) = 1, τg = 0.

We could express that γ1 is a magnetic curve. Therefore, the Killing magnetic vector field
is calculated as

B(s) = (1, ϖ sin s, ϖ cos s).
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The magnetic curve is visualized in Figure 1.

Figure 1. A charged particle motion (black ) along a spacelike magnetic trajec-
tory γ1 (blue) in the magnetic field B (red) on the de Sitter space S2

1.

Example 5.2. If we choose a1 = (0, 1
2 , −1

2) and a2 = (0, 1
2 , 1

2) we will have the following
timelike magnetic curve on the de Sitter space S2

1 parameterized by

γ2(s) = (1
2

es − 1
2

e−s,
1
2

es + 1
2

e−s, 0).

Therefore, the Darboux frame equations would be as follows:

kg(s) = 0, kn(s) = 1, τg = 0.

We could express that γ2 is a magnetic curve. Therefore, the Killing magnetic vector field
is calculated as

B(s) = (ϖ1
2

es + ϖ
1
2

e−s, ϖ
1
2

es − ϖ
1
2

e−s, 1).

The magnetic curve is visualized in Figure 2.
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Figure 2. A charged particle motion (black ) along a timelike magnetic trajectory
γ2 (blue) in the magnetic field B (red) on the de Sitter space S2

1.

Example 5.3. If we choose h1 = (0, −1, 0), h2 = (0, 0, 1) and h3 = (1
2 , 1

2 , 0) we will have
the following spacelike magnetic curve on the de Sitter space S2

1 parameterized by

γ3 = (s2

2
,
s2

2
− 1, s)

The curve will have the following Darboux curvatures:

kg(s) = 1, kn(s) = 1, τg = 0.

We calculate that ϖ = 0 and therefore γ is a magnetic curve. Then, the Killing magnetic
vector field calculated as

B(s) = (−ϖs − 1, −ϖs − 1, −ϖs).

The magnetic curve is visualized in Figure 3.
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Figure 3. A charged particle motion (black ) along a spacelike magnetic trajec-
tory γ3 (blue) in the magnetic field B (red) on the de Sitter space S2

1.

Example 5.4. If we choose the following timelike curve on the de Sitter space S2
1 param-

eterized by

γ3 =


− cos s√

0.21 ,
−1.1 cos s sin (

√
0.21/1.1)s√

0.21 + sin s cos (
√

0.21/1.1)s,
1.1 cos s cos (

√
0.21/1.1)s√

0.21 + sin s sin (
√

0.21/1.1)s

 .

The curve will have the following Darboux curvatures:

kg(s) = cot s, kn(s) = 1, τg = 0.

Then from the eq.(4.18), we calculate that ϖ = 2 and therefore γ is a magnetic curve in
the Killing magnetic vector field calculated as

B(s) = 2d1 + cot sd2 − d3.

The magnetic curve is visualized in Figure 3.
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Figure 4. A charged particle motion (black ) along a spacelike magnetic trajec-
tory γ4 (blue) in the magnetic field B (red) on the de Sitter space S2

1.
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