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Abstract 

 

We assume that an undirected rectangular grid graph models a message transportation between computers 

in a computer network. We consider a routing scenario in this network and label each vertex with a binary 

string by using  a particular approach. According to routing scenario we consider , the messages are sent 

with a header of a message between two distinct computers in the graph.  We present a way to encode the 

paths that represent the routes in the network. We aim that these codes prevent errors which distruct the 

message transportation in the network and may cause network traffic. 
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1. Introduction 

 

In this paper, we assume undirected graphs model  

computer networks. Chosing a mathematical graph as 

network model has been studied in literature [9,10]. The 

rectangular grid graph has been chosen for the network 

model (see Figure 1). A rectangular grid is defined with 

sets of vertices and edges, where the adjacent vertices 

(𝑖, 𝑗) and (𝑝, 𝑞) are linked by an edge if 𝑖 =  𝑝 and 𝑗 =
 𝑞 ±  1 or 𝑖 =  𝑝 ±  1 and 𝑗 =  𝑞. 
 

In this research, we inspired an encoding method 

invented by B.Bloom from [1] that is called as Bloom 

filter. A Bloom filter is a way to compress the data. This 

case of the Bloom filter offers the users to save space. 

The one can control if an element is in the set or not by 

using Bloom filters easily. This way of a query of an 

element in the set saves time. Accordingly, it is space 

and time efficiency method to represent a set. It has 

been widely used to find some solutions for data 

mining, reducing network traffic or some routing 

problems in networks [2-5].  
 

 
 

Figure 1. A rectangular grid graph as a model of a 

network with computers on each vertex. 

 

For more extensive reading on network applications of 

Bloom filters, we recommend the study [6]. Because of 

the usage of the random methods to build the Bloom 

filter, it may produce some errors and such errors are 

called false positives. Therefore, the implementations of 

the Bloom filter widely aim to decrease the probability 

of false positives [11,12]. 

 

A message forwarding scenario in a rectangular grid 

graph representing a computer network is considered in 

this paper. We suppose that there is a computer in each 

vertex in the graph and the messages are sent through 

the paths. One of routing model is that a message can be 

sent via the shortest paths between nodes in a network 

[7]. This is a way to time saving during distribution. In 

practical applications, the demand for the shortest paths 

might cause the network traffic increments. In this case, 

the users may be forced to use any path between two 

distinct nodes rather than shortest paths. The model 

taking a rectangular grid as a network and encoding 

shortest paths in that graph without false positives has 

been studied by [8,13]. In this research, we consider to 

encode any path with Bloom filter which do not 

generate false positives. The Bloom filter in this model 

of routing has a role of packet header that is sent with 

the message between computers. A sender can send 

messages throght the shortest paths between distinct 

nodes. We assume that the path is choosen in advance, 

encoded with a Bloom filter, and the Bloom filter and 

the message are directed together to the receiver 

computer. We introduce a certain encoding method for 

the paths in this paper for this model to function. 
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We organize the paper as follows. In section 2 we 

introduce standard Bloom filter with probability of false 

positive in detail. In section 3 we give definition of 

some encoding methods and define our new encoding 

method for the paths in rectangular grids. In following 

sections we prove how the encoding method we built 

does not generate false positives, and emphasise the 

influence of our encoding method, then we conclude the 

paper with section 6. 

 

2. Standard Bloom Filter 

 

A Bloom filter is method to store the elements in a set 

with a compressed form [1]. Consider a subset 𝑆 with 𝑛 

elements of a universe 𝑈. ∀𝑥 ∈ 𝑈, each 𝑥 is described 

by a binary string. The Bloom filter introduced in [1] 

represents the subset S with a binary string of length m. 

Each binary string of the elements in 𝑈 is kept. Hence, 

one can easily check if any bits in binary strings of the 

set and the elements match in any bit positions. By this 

comparision  we can conclude whether 𝑥 ∈ 𝑆 or 𝑥 ∉ 𝑆. 

We may denote the model binary strings of an element 

by 𝛽(𝑥) and the Bloom filter of the set 𝑆 by 𝛽(𝑆). If 

𝛽(𝑥) ≰ 𝛽(𝑆), then it can be concluded that 𝑥 is 

definitely not in the set 𝑆. However, if 𝛽(𝑥)  ≤  𝛽(𝑆), 

then we cannot be certain about the existence of the 

element 𝑥 in the set 𝑆. Since, the bits 1s take place in 

the array of each element in the random bit positions 

and 𝛽(𝑆) is obtained by adding these binary arrays 

together. Specifically, the 𝛽(𝑆) can be produced by 

applying the bitwise OR operation to 𝛽(𝑥) for all 

elements in 𝑆. The binary OR operation generates a bit 

1 if at least one of the inputs is 1, in other case generates 

a bit 0. 

 

Some elements may seem like an element of the set S, 

but they may not be in the set S. These elements are 

denoted by false positives. Simple calculation yields the 

probability of false positives as 

 

               (1 − (1 −
1

𝑚
)𝑘𝑛)𝑘 ≈ (1 − 𝑒

−𝑘𝑛

𝑚 )
𝑘

               (2.1) 

 

where 𝑚 is the number of the bits in the Bloom filter, 

𝑛 = |𝑆| and 𝑘 is the number of bit 1 in the Bloom filter 

of an element [1].  

 

3. Edge Encoding Methods in Rectangular Grid 

Graphs 

3.1. Bit-per-edge Encoding 

 

Suppose 𝐺 =  (𝑉, 𝐸) is a rectangular grid graph with  

sets of vertices 𝑉 and edges 𝐸 and 𝑈 is a universal set of 

Bloom filters. The edge 𝑒 is described by one bit in 

𝛽(𝑈).  

 

 

 

The edges have  particular bit positions in 𝛽(𝑈). This 

labelling way is called bit-per-edge labelling. Obviously 

𝑈 =  𝐸. The number of edges in a ractangular grid of 

size 𝑀 ×  𝑁, that is, 𝑀 is the number of horizontal 

edges in each row and 𝑁 is the number of vertical edges 

in each column, is 2𝑀𝑁 +  𝑀 +  𝑁. Hence, if the 

edges in the graph are encoded by bit-per-edge encoding 

method, then 2𝑀𝑁 + 𝑀 + 𝑁 is obtained as the length 

of a Bloom filter.   
 
Theorem 3.1. If the edges in the graph are labelled by 

bit-per-edge encoding method, then no false positives is 

produced.  

 

Proof.  Suppose the edges in the graph are labelled with 

bit-per-edge encoding method. Consider a path 

𝑃 between the vertices 𝑣0 and 𝑣𝑘  consisting of sequence 

of 𝑘 edges that are 𝑒0, 𝑒1, . . . , 𝑒(𝑘−1). The edges in the 

path 𝑃 are presented by the bit 1 in 𝛽(𝑆). Obviously, 𝑘 

number of bits in 𝛽(𝑆) are set to 1 and 𝑛 −  𝑘 number 

of bits are 0 where 𝑛 = |𝐸|. These 𝑘 bits are situated in 

distinct bit places in  𝛽(𝑃). Suppose the representative 

bit 1 of an edge 𝑓 from the graph is placed an ith bit 

position in 𝛽(𝑓) among 𝑛 bits. If 𝛽(𝑓)  ≤  𝛽(𝑃), then 

we can conlude that 𝑓 ∈  {𝑒0, 𝑒1, . . . , 𝑒(𝑘−1)} . 

Otherwise, there must be 𝑘 +  1 number of bit 1 in 

𝛽(𝑃). This is a contradiction  with the number of edges 

on the path 𝑃. Therefore, the edge 𝑓 is not a false 

positive to the Bloom filter of the path.  

 

3.2. A New Approach for Encoding in Rectangular 

Grid Graphs 

 

In order to encode the paths in the rectangular grid, we 

assume that there are imaginary diagonal rows 

intersecting vertices. The compass direction of the rows 

is north-west (or eqaually south-east) and they are 

numbered starting from the bottom corner to top corner 

of the grid (see Figure 2). The first row intersects one 

vertex and the second row intersects two vertices and 

similarly the following rows intersect the vertices 

regarding their numbers. The total number of rows is 

𝑀 + 𝑁 +  1 where the size of the rectangular grid is 

𝑀 × 𝑁. We may denote the rows as 𝑟1, 𝑟2, . . . , 𝑟(𝑀+𝑁+1).  

 
Each vertex is represented by binary strings which we 

call block and the lenght of these representative blocks 

depends on the number of vertices lying on the same 

row. Also each block contains one bit 1. For instance: if 

a row intersects two vertices then the representative 

blocks of these vertices are 01 and 10, similarly if a row 

intersects three vertices, then the blocks 100, 010 

and 001 represent any vertex on the row. The number of 

the row determines the places for blocks of the vertices 

in 𝛽(𝑣) where 𝑣 ∈ 𝑉. 
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Figure 2. The numbers of the rows intersecting the 

vertices and the representative blocks of the vertices on 

the rows in a 4 ×  4 sized rectangular grid.    

 

There are (𝑀 +  1)(𝑁 +  1)  =  𝑀𝑁 +  𝑀 +  𝑁 +  1 

vertices in total in a rectangular grid of size of 𝑀 × 𝑁. 

Obviously, the lenth of the Bloom filter in the grid is 

𝑀𝑁 +  𝑀 +  𝑁 +  1. 

 

In the routing scenario, the message and the header of 

the message, that is 𝛽(𝑃),  are sent through the shortest 

paths in the graph together. A path can be defined as a 

sequence of the consecutive distinct edges and an edge 

can be denoted by 𝑒 =  {𝑣𝑖  , 𝑣𝑗} where 𝑣𝑖 and 𝑣𝑗 are the 

end vertices of the edge 𝑒. The path 𝑃 =
 {𝑣0, 𝑣1, . . . , 𝑣𝑛} where 𝑣𝑖 is a vertex and 𝑖 ∈
{0, 1, 2, . . . , 𝑛} is represented by 𝛽(𝑃) that is obtained by 

using bitwise OR operation to all bits of 𝛽(𝑣_𝑖),   where 

∀𝑣_𝑖 ∈ 𝑃.  

 

Note that the vertices, edges and paths in the grid have 

same length Bloom filters. Yet, the number of the bit 1 

in 𝛽(𝑣), an edge and a path are one, two and 𝑛, which is 

the number of veritices in the path, respectively. 
 

4. No-False Positives 

 

According to routing scenario, the header describes the 

route for the message and it is sent with the message to 

the last node in the particular shortest path. When a 

computer 𝑣 from the path gets the message, it examines 

each vertex connected to 𝑣 and compares 𝛽(𝑃) and 

𝛽(𝑣_𝑖) incidental to 𝑣 in all bits. Therefore, the adjacent 

vertices stand for the false positives of these networks.   
 

Lemma 4.1. The shortest paths in rectangular grids do 

not have cycles. 

 

Proof. Suppose a path 𝑷 is one of the shortest path 

between the vertices 𝒑 and 𝒒 which are not adjacent. 

The shortest distance between these vertices is a straigth 

line. Through this imaginary line the edges on the path 

𝑷 have two different directions, and hence the shortest 

path includes only such edges. Suppose the path 𝑷 

contains a cycle on a vertex 𝒖 (see the Figure 3.). A 

cycle contains the edges with four different directions in 

a rectangular grid. Therefore this means that if a path  

 

 

 

 
 

Figure 3. The red path is the shortest path between the 

nodes 𝒑 and 𝒒 and contains a cycle on the vertex 𝒖. 
 

contains a cycle then the path includes at least two more 

edges whose directions do not belong to the shortest 

distance between the vertices 𝒑 and 𝒒.  

 

Theorem 4.1. 𝜷(𝑷), where the path 𝑷 is the shortest 

path, is obtaied by using the new approach (see Section 

𝟑. 𝟐) in a rectangular grid graph does not generate any 

false positives.   

 

Proof. Consider a rectangular grid graph 𝑮 =  (𝑽, 𝑬) 

and a shortest path 𝑷 with the sequence of vertices 

𝒗𝟎, 𝒗𝟏, . . . , 𝒗𝒏. Suppose that there is a false positive 

𝒗𝒊 ∈ 𝐕  and this vertex 𝒗𝒊 is intersected by the encoding 

row 𝒓𝒊. In this case, 𝒓𝒊  may intersect more than one 

vertices from the path or only the vertex 𝒗𝒊.  

 

If the row 𝒓𝒊 intersects vertices  𝒗𝒋, 𝒗𝒌, …  from the path 

and the vertex 𝒗𝒊 and a fragment 𝑭 of the path 𝑷 
contains these vertices, then 𝜷(𝒗𝒊)  ≤  𝜷(𝑭 =
 {𝒗𝒊 , 𝒗𝒋, 𝒗𝒌, . . . }). If 𝒗𝒊  ∈  {𝒗𝟎, 𝒗𝟏, . . . , 𝒗𝒏}, then 𝒗𝒊 is not 

a false positive.  

 

Suppose that 𝒗𝒊 ∉  {𝒗𝟎, 𝒗𝟏, . . . , 𝒗𝒏}. By encoding 

method we build, the number of the bit 1 in the 𝜷(𝑷) in 

the rectangular grid graph is the number of vertices, 

since each Bloom filter of a vertex contain one bit 𝟏 and 

a path consists of a sequence of vertices. By Lemma 

𝟒. 𝟏 a shortest path does not have cycles, therefore the 

rows intersecting the vertices in this particular shortest 

path come consecutively. In this case, each row 

intersects one vertex from the shortest path. By 

assumption, the model blocks of  the vertices crossed by 

the same row contain the bit 𝟏 in different bit positions 

from each other. Therefore, the number of 𝟏 in 𝜷(𝑷) is 

obtained as 𝒏 +  𝟐. Yet this contradicts the number of 

vertices in the path 𝑷 which is 𝒏 +  𝟏. Therefore, the 

vertex 𝒗𝒊 is not a false positive of 𝜷(𝑷). 

 

If the row 𝒓𝒊 intersects only the vertex 𝒗𝒊 and the other 

vertices in the path 𝑷 are intersected by other rows in 

the graph, then the model block of the vertex 𝒗𝒊 is 

placed in the block position numbered by the row 𝒓𝒊 in 

𝜷(𝑷). The row 𝒓𝒊 does not intersect other vertices from 

the path 𝑷, hence no other represenatative blocks of the 
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vertices in the path 𝑷 coincides with the representative 

block of the vertex 𝒗𝒊 in the same block position of 

𝜷(𝑷). Accordingly, the number of the bits 𝟏 in the 

𝜷(𝑷) is obtained as 𝒏 +  𝟐, yet this contaradicts the 

number of 𝟏 in 𝜷(𝑷) that is 𝒏 +  𝟏. This conludes that 

the vertex 𝒗𝒊 does not represent a false positive. 

 

5. Results for Vertex Encoding Method 

 

The Bloom filter provides the users to access the data 

very fast and to save space when storing the data. Yet it 

may generate false positives and this may cause some 

trouble for some implementations. In this research we 

build Bloom filter for routing scenarios in a regular 

network model. The vertex-coding method which puts 

the bits 1 in the Bloom filters in certain bit-positions. 

Therefore, one does not find any false positives for 

shortest paths in a rectangular grid. 

 

Besides, bit-per-edge labelling method (introduced in 

Section 3.1) does not generate false positives. Yet, the 

number of edges in a rectangular grid is 2𝑀𝑁 +  𝑀 +
 𝑁 in a 𝑀 ×  𝑁 sized rectangular grid and hence the 

length of the Bloom filter in bit-per-edge labelling 

method is 2𝑀𝑁 +  𝑀 +  𝑁.  However, the length of the 

Bloom filter we built is 𝑀𝑁 +  𝑀 +  𝑁 +  1. 

Obviously, 𝑀𝑁 +  𝑀 +  𝑁 +  1 <  2𝑀𝑁 +  𝑀 +  𝑁. 
Accordingly, the method introduced in this paper results  

Bloom filters with less number of  bits than the Bloom 

filter produced by applying bit-per-edge encoding 

method. This can be advantage for some applications 

which has limited spaces during message routing. 

 

If the bits 1 in  𝛽(𝑣) are placed randomly , then the 

model may generate false positives. We compute the 

probability of false positives with the parameters that 

we found for the bit-per-vertex encoding method. These 

parameters are the number of vertices on the path 𝑛, the 

length of the Bloom filter 𝑚 and the number of the bit 1 

denoted by 𝑘 in 𝛽(𝑣). In our method of encoding, the 

number of the bit 1 is one in 𝛽(𝑣). As seen in the    

Table 1 the probability of false positives are computed 

for 𝑚 =  256 and variety values of 𝑛. Note that 𝑛 <
 𝑚, since a shortest path contains less number of 

vertices than the graph. Obviously, if the more vertices 

in a path occurs, the more probability of false positives 

is obtained when 𝑘 and the length of the Bloom filter 

are fixed.  

 
Table 1. Probability of false positives where              

𝑘 = 1, 𝑚 = 256 and 𝑛 with different values 

m n p 

256 256 0,632120 

256 240 0,608394 

256 200 0,542166 

256 100 0,323366 

256 50 0,177422 

 

As seen from the Table 1, if we encode the vertices by 

using random labelling methods, then we have false 

positives with high probability. The probability of false 

positives 𝑝 is computed by using the formula 

 (1 − 𝑒
−𝑘𝑛

𝑚 )𝑘 (see Section 2). 

 

6. Conlusion 

 

The paths in a graph can be represented by using 

random methods, but this approach can produce errors 

denoted by false positives. Our coding method is to find 

particular Bloom filters for the paths. In our appraoch of 

encoding method, the algebraic properties of the graph 

such as the length of the edges do not affect either 

encoding method or routing scenario. Also, this method 

can be used by the network users who need spaces for 

data storage and error-free zone for message transport in 

a particular network. 
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