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Abstract − Unusual Points (UPs) occur for different reasons, such as an observational error or the 

presence of a phenomenon with unknown cause. Influential Points (IPs), one of the UPs, have a 

negative effect on parameter estimation in the Logistic Regression model. Many researchers in fisheries 

sciences face this problem and have recourse to some manipulations to overcome this problem. The 

limitations of these manipulations have prompted researchers to use more suitable and innovative 

estimation techniques to deal with the problem.  In this study, we examine the classification accuracies 

and parameter estimation performances of the Maximum Likelihood (ML) estimator and robust 

estimators through modified real datasets and simulation experiments. Besides, we discuss the potential 

applicability of the assessed robust estimators to the estimation models when the IPs are kept in the 

dataset. The obtained results show that the Weighted Maximum Likelihood (WML) and Weighted 

Bianco-Yohai (WBY) estimators of robust estimators outperform the others.  

Keywords – Influential point, robust estimators, unusual point, logistic regression 

Mathematics Subject Classification (2020) – 62G32, 65C60 

1. Introduction 

The most frequently adopted statistical method to obtain parameter estimates of the explanatory variables 

relationship with the binary outcome (0 and 1) is Logistic Regression. Binary Logistic Regression (BLR) 

models the functional relationship between the binary response variable and one/more explanatory variable [1-

4]. Maximum Likelihood Estimator (MLE), which has the optimal properties under proper circumstances, is 

utilized to estimate the parameters in BLR; however, it is considerably affected by the presence of an unusual 

data point(s) in the dataset and may cause misleading inferences and misinterpretations in parameter estimates 

[5-11].  

The unusual data point(s) (UP(s)) is generally defined as point(s) that are relatively far from the central 

tendency compared to all values [12-13]. These types of point(s) may derive from errors existing during the 

recording of observations, sampling errors, and experimental errors or may originate from an unknown 

phenomenon in a study area (e.g., economy, applied science, health, engineering).  

The UP(s) are differently named as an outlier(s), influential point(s), or leverage point(s) according to 

their locations in the two-dimensional space. Among these definitions, influential point(s) (IPs) can be 

described as the product of dangerous outliers and bad leverage points and significantly affect the fit of the 
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model or the estimation of the parameters compared to the others [14-17]. If the variable on the 𝑥-axis is 

continuous and the one on the 𝑦-axis is binary, unusual points can only occur as a transposition 0 → 1 or 1 →

0 in the 𝑦-axis direction [6]. This type of UP(s) is also recognized as a residual outlier or misclassification-

type error [16]. 

These point(s) can be observed in datasets of numerous studies conducted in applied areas, and most 

researchers have been confused about what to do with them and how to manage them. To manage IP(s), 

researchers generally have had to decide among such strategies as keeping them, removing them, or recoding 

them [12]. [18] reported as a result of their research on the frequency of these points in different scientific 

disciplines that there is no overarching explanation and the frequency varies according to the study area and 

sample size; and they have claimed that if these outliers occur in about 1-10% of the dataset, it is normal. 

Although this decision differs according to the scientific field studied, it is recommended to estimate 

parameters using a more robust estimator instead of MLE by [18] if these points are to be kept in the data. 

Robust estimator instead of MLE has become the focus of many research fields in statistics [19]. 

In the BLR model, [20] is the first to indicate the problem of parameter estimation in the presence of IPs. 

After that, several robust alternative parameter estimation methods much less influenced by these points are 

suggested in the literature (i.e., [5,6,18,21-31]). Besides, many researchers have also studied to compare the 

performances of the estimators to examine the robustness of these proposed estimators on simulation 

experiments [11,16,27,32,33]. These studies have shown that MLE can be influenced even by the presence of 

1% IPs in the dataset, and therefore robust estimators were recommended [34]. However, there are very few 

studies examining these points in terms of their effects on parameter estimates as they move away from the 

centre. Our hypothesis in the present study is to display that IP(s) occurs in different levels of percentage 

amounts in the dataset, three standard deviations away from the centre influence parameter estimations and to 

illustrate to researchers the possibility of being anomaly as research questions. The present paper was built on 

two purposes within the framework of our hypothesis: (a) to examine the performance of MLE and some robust 

estimators in parameter estimation in extreme situations, such as different sample size data have different 

percentages of influential points (i.e., contamination rate) in simulation experiments, and to contribute to the 

literature by providing information on what kind of results researchers may obtain if they encounter such data 

points. 

2. Material 

In this study, we carried out comprehensive simulation experiments to examine commonly cited or recently 

proposed robust estimators for BLR. 

In the simulation study, to examine the performance of the estimators in different situations, we generated 

specific datasets created in combinations that vary according to different percentages of IPs occurring farther 

from the centre of the dataset in three different sample sizes (100, 250, and 500). We generated datasets with 

IPs, which we called a contaminated dataset, by adding IPs that fall 1.5, 3, and 5 whiskers away from the centre 

of the dataset that constituted 1%, 5%, 10%, and 15% of the dataset in each sample size and IP-free datasets 

(0% contaminated), which we called a clean dataset in each sample size for control purposes. The simulated 

datasets contain a response and two explanatory variables. We first generated a design matrix of explanatory 

variables of size 𝑛 × 𝑝 by drawing each observation from a bivariate normal distribution (𝑥𝑖~𝑁(𝜇, Σ)). Where 

𝜇 is a mean vector of length 𝑝 =  2 and Σ is a 2 × 2 non-singular covariance matrix. The considered true 

values of the BLR model parameters are set to be 𝛽 = (𝛽0, 𝛽1, 𝛽2)′ = (0, 2, 2)′. Then, we produced the binary 

response variable according to the BLR model as follows: 

𝑦𝑖 = {
0   if    𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀𝑖 < 0
1   if    𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀𝑖 ≥ 0

 (1) 
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where the error terms were generated according to a logistic distribution, 𝜀𝑖~𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1). We added the 

contaminants (IPs) to the dataset by inflating the covariance matrix and deriving it in the % amounts denoted 

in the simulation scenario. In the simulation study, we obtained the design matrix of the contaminated and 

uncontaminated explanatory variables with the configuration denoted below by [35].  

(1 − 𝛾)𝑁𝑠𝑠(𝜇, Σ) + 𝛾𝑁𝑠𝑠  (𝜇, 𝑘 × Σ) 

where 𝑁𝑠𝑠 is the sample size (100, 250 and 500), 𝛾 represents the percentage of contaminants (𝛾  = 1%, 5%, 

10%, and 15% contamination rate) in a dataset, and 𝑘 represents a scalar which determines the separation of 

the contaminants from the rest of the data (𝑘 = 1.5, 3, and 5 whiskers), for any amount of contamination. 

The aforesaid processes were applied to all the estimators used in this study. Each simulation study was 

replicated 1000 times by using the Monte Carlo simulation. 

3. Method 

The logistic regression model is a special case of GLMs, especially for a binary response variable 𝑦𝑖, with the 

assigned values 1 (success) and 0 (failure). The explanatory variables (𝑥𝑖 ∈ 𝑅, 𝑖 = 1, 2, … , 𝑛) and the 

probability of response variable 𝑝(𝑌𝑖 = 1|𝑋𝑖 = 𝑥𝑖) are linked to explanatory variables by the mean of a link 

function 𝑔(𝜋) = 𝑋𝛽, such that 𝑔−1(𝑋𝛽) is the logit link function, which transforms the covariate values in 

the internal (0,1). The BLR model can be defined by: 

𝑝(𝑌𝑖 = 1|𝑋𝑖 = 𝑥𝑖) = 𝐹(𝑥𝑖
′𝛽) =

exp(𝑥𝑖
′𝛽)

1 + exp(𝑥𝑖
′𝛽)

 ,     𝑖 = 1, 2, … , 𝑛 (2) 

where 𝑋 = (1, 𝑥1, … , 𝑥𝑝) is an 𝑛 × 𝑘 matrix of explanatory variables with 𝑘 =  𝑝 + 1 and 𝛽′ = (𝛽0, 𝛽1, … , 𝛽𝑝) 

is the vector of the unknown regression coefficient. The BLR model can be defined by: 

𝜂𝑖 = 𝑥𝑖
′𝛽 (3) 

where 𝜂𝑖 is a linear predictor known as transformation function and 𝜂𝑖 = logit(𝜋𝑖) = log (
𝜋𝑖

1−𝜋𝑖
). Suppose that 

the response variable 𝑦𝑖 has Bernoulli distribution and the joint probability density function for the 𝑖𝑡ℎ 

observation is, 

𝑓(𝑦𝑖) = 𝜋(𝑥𝑖)𝑦𝑖[1 − 𝜋(𝑥𝑖)]1−𝑦𝑖 ,   𝑖 = 1, 2, … , 𝑛 (4) 

and each 𝑦𝑖 observation takes the value 1 or 0. The likelihood function is given by: 

𝑙(𝛽; 𝑦𝑖) = ∏ 𝑓𝑖(𝑦𝑖)

𝑛

𝑖=1

= ∏ 𝜋(𝑥𝑖)𝑦𝑖[1 − 𝜋(𝑥𝑖)]1−𝑦𝑖

𝑛

𝑖=1

 (5) 

Then, we take a logarithm of the likelihood function (log-likelihood), which can be written as: 

𝑙(𝛽; 𝑦𝑖) = 𝑙𝑛 ∏ 𝑓𝑖(𝑦𝑖)

𝑛

𝑖=1

= ∑ 𝑙

𝑛

𝑖=1

(𝑦𝑖 , 𝛽) 

= ∑ [𝑦𝑖𝑙𝑛 (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
)] + ∑ 𝑙𝑛

𝑛

𝑖=1

𝑛

𝑖=1

(1 − 𝜋(𝑥𝑖)) 

(6) 

To estimate the parameters in BLR, Maximum Likelihood Estimator (MLE) is used. The likelihood function 

is produced by maximizing the logarithm of and is defined as:  
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�̂�𝑀𝐿𝐸 = argmax
𝛽

∑ 𝑙

𝑛

𝑖=1

(𝑦𝑖 , 𝛽) (7) 

As an alternative, MLE deviation statistics are minimized according to 𝛽 [16], and it is defined as: 

𝑑𝑖 =  [−𝑦𝑖ln (
�̂�𝑖

𝑦𝑖
) − (1 − 𝑦𝑖)ln (

1 − �̂�𝑖

1 − 𝑦𝑖
)] 

�̂�𝑀𝐿𝐸 = argmin
𝛽

∑ 𝑑𝑖

𝑛

𝑖=1

 

(8) 

It is known that MLE is the most efficient estimator, but it may behave very inadequately in the presence of 

outlying observations in terms of their location and impact. Many robust estimators have been proposed in the 

literature to replace MLE in order to solve this problem, but in this study, we aspired to evaluate the 

performances of the most cited and most recommended estimators. These robust estimators are briefly 

discussed in the subsequent sections. 

3.1.  The Mallows Type Leverage Dependent Weights Estimator (MALLOWS) 

MALLOWS type estimator, introduced by [22] and intensively examined by [26], was obtained by minimizing 

log-likelihood function using weights dependent on explanatory variables. A robust estimate of β can be 

obtained by the solution of the following function [23]: 

∑ 𝑤𝑖{𝑦𝑖ln[𝜋(𝑥𝑖)] + (1 − 𝑦𝑖)ln[1 − 𝜋(𝑥𝑖)]}

𝑛

𝑖=1

 (9) 

where 𝑤𝑖 = 𝑊(ℎ𝑛(𝑥𝑖)) are the weights function. 𝑊 is bounded by depending on 𝑊(𝑢) and a non-increasing 

function. 𝑊(𝑢) is dependent on a parameter 𝑐 > 0, and 𝑊(𝑢) = (1 −
𝑢2

𝑐2)
3

𝐼(|𝑢| ≤ 𝑐). If 𝑤𝑖 ≡ 1 and 

𝑐(𝑥𝑖, 𝛽) ≡ 0, then Eq. (8) supplies the usual BLR model parameter estimate. If 𝑤𝑖 = 𝑤(𝑥𝑖, 𝑥𝑖
′𝛽), 𝑐(𝑥𝑖, 𝑥𝑖

′𝛽) ≡

0, and the weights depend only on the design, this estimate is called Weighted Maximum Likelihood 

(MALLOWS type estimator). 

3.2.  Weighted Maximum Likelihood Estimator (WMLE) 

This estimator is obtained in a similar way to the strategy used in constructing the MALLOWS type estimator. 

That is, it detects unusual values and makes the parameter estimation by equalizing the weights of these values 

to zero. WMLEs for BLR can be obtained with a solution in (Eq. 8). However, in this study, parameters were 

estimated by equalizing the weights obtained by the weighting function introduced by [36] and proposed by 

[33]. First, the square of the Mahalanobis distances of the explanatory variables is calculated according to the 

computed �̂�(0) and Σ̂(0) values. The square of the Mahalanobis distances (𝑚2) is calculated by: 

𝑚2 = (𝑥𝑖 − �̂�(0))
′
(Σ̂(0))

−1
(𝑥𝑖 − �̂�(0)) 

The weight function proposed by [33] is defined as: 

𝑤𝑖 = (0.8 ∗ 𝑚2 + 0.2) 

Then, WMLEs for BLR can be obtained by the solution of the following: 

∑ 𝑤𝑖{𝑦𝑖ln[𝜋(𝑥𝑖)] + (1 − 𝑦𝑖)ln[1 − 𝜋(𝑥𝑖)]}

𝑛

𝑖=1

 (10) 
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3.3.  The Conditionally Unbiased Bounded Influence Function (CUBIF) Estimator 

In CUBIF estimator, introduced by [22], the weights depend on the response variables besides the explanatory 

variables. This method minimises a measure of efficiency based on the asymptotic (co)variance matrix to 

bound the measures of infinitesimal sensitivity. The M-estimators are the solution of the form of 

∑ 𝜓(𝑦𝑖 , 𝑥𝑖 , 𝛽) = 0, where 𝜓 is a known function. Its optimal function is written by: 

𝜓(𝑦, 𝑥, 𝛽, 𝐵) = 𝑊(𝛽, 𝑦, 𝑥, 𝑏, 𝐵) [𝑦 − 𝑔(𝛽′𝑥) − 𝑐 (𝛽′𝑥,
𝑏

ℎ(𝑥, 𝐵)
) 𝑥] (11) 

where 𝐵 is a (co)variance matrix, 𝑏 is bounded infinitesimal sensitively and ℎ(𝑥, 𝐵) = (𝑥′𝐵−1𝑥)1/2 is a 

leverage measure. 𝑐 (𝛽′𝑥,
𝑏

ℎ(𝑥,𝐵)
) is a bias correction with corrected residual  

(𝑟(𝑦, 𝑥, 𝛽, 𝑏, 𝐵) = 𝑦𝑖 − 𝑔(𝛽′𝑥) − 𝑐 (𝛽′𝑥,
𝑏

ℎ(𝑥, 𝐵)
)) 

The weight function 𝑊(𝛽, 𝑦, 𝑥, 𝑏, 𝐵) = 𝑊𝑏𝑟((𝑦, 𝑥, 𝛽)ℎ(𝑥, 𝐵)) downweighs observations with high leverage 

points and largely corrected residuals making M-estimator have bonded influence.  

3.4.  Consistent Misclassification Estimator (CME) 

It is a known fact that unusual points in the dataset cause misclassification, and this issue has been studied by 

many researchers under different assumptions [37]. Misclassification is a stand-alone issue, and there are 

estimators developed for parameter estimation in case of misclassification. In this study, we used the Consistent 

Misclassification estimator (CME), proposed by [6], since we consider the parameter estimation in 

contaminated datasets. If 𝑃(𝑌 = 1|𝑥𝑖) = 𝐹(𝑥𝑖
′|𝛽𝐿) considered robust estimation in the BLR model, a 

misclassification model in which each response is misclassified with probability 𝛾, so that [23]: 

𝑃(𝑌 = 1|𝑥𝑖) = 𝐹(𝑥𝑖
′𝛽𝑀𝑐) + 𝛾{1 − 2𝐹(𝑥𝑖

′𝛽𝑀𝑐)} = 𝐺(𝑥𝑖
′𝛽𝑀𝑐 , 𝛾) (12) 

where 𝛽𝐿 is the true regression parameter for the conventional BLR model and 𝛽𝑀𝑐 is the true regression 

parameter under the misclassification model. [6] has investigated small values of 𝛾 and the use of (Eq. 11) in 

generating robust estimators and diagnostics and suggested a bias-corrected version that is suitable for small 

𝛾. 

3.5.  Robust Quasi-Likelihood Estimator (RQL) 

The quasi-likelihood estimator, proposed by [38], is defined as solutions of the following equation: 

∑
𝑦𝑖 − 𝜇(𝛽′𝑥𝑖)

𝑉(𝛽′𝑥𝑖)
𝜇′(𝛽′𝑥𝑖)𝑥𝑖

𝑛

𝑖=1

= 0 

Then, the quasi-likelihood approach to parameter estimation was robustified by [26] by bounding and centring 

the quasi-likelihood score function [39]. 

𝜓(𝑦, 𝛽) =
𝑦𝑖 − 𝜇(𝛽′𝑥)

𝑉(𝛽′𝑥)
𝜇′(𝛽′𝑥)𝑥, 

To deal with high leverage points, they suggest putting weight on each point [39]. 
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3.6.  Bianco Yohai Estimator (BYE) and Weighted Bianco Yohai Estimator (WBYE) 

[25] have found that Pregibon's estimator based on deviation statistics (Eq. 7) does not reduce the weight of 

high leverage points and is inconsistent. They have improved the consistent and more robust Bianco and Yohai 

Estimator (BYE) by shrinking Pregibon's estimator as follows: 

�̂� = argmin
𝛽

∑[𝜌([𝑑(𝑥𝑖
′𝛽; 𝑦𝑖) + 𝐺(𝐹(𝑥𝑖

′𝛽)) + 𝐺(1 − 𝐹(𝑥𝑖
′𝛽))])]

𝑛

𝑖=1

 (13) 

where 𝜌(𝑥) = (𝑥 − 𝑥2/(2𝑐))𝐼(−∞,𝑐)(𝑥) + (𝑐/2)𝐼(𝑐,∞)(𝑥) is Huber’s loss function and  𝑐 is a tuning 

parameter, 

𝐺(𝑥) = ∫ 𝜌′(−𝑙𝑛(𝑢))𝑑𝑢

𝑥

0

 

and 𝐼𝐴 stands for the usual indicator function. 𝐺(𝐹(𝑥𝑖
′𝛽)) + 𝐺(1 − 𝐹(𝑥𝑖

′𝛽)) is a bias correction term [40].  

[25] have also stressed that other choices of the bounded function 𝜌 are possible. To reduce the effect of 

unusual points in the covariate space, [27] have proposed to include an extra weight to downweigh the high 

leverage points in (Eq. 10). Weighted Bianco and Yohai (WBY) estimator can be defined as follows [27-40]: 

�̂� = argmin
𝛽

∑ 𝑤(𝑥𝑖)[𝜌([𝑑(𝑥𝑖
′𝛽; 𝑦𝑖) + 𝐺(𝐹(𝑥𝑖

′𝛽)) + 𝐺(1 − 𝐹(𝑥𝑖
′𝛽))])]

𝑛

𝑖=1

 (14) 

where  

𝑤(𝑥𝑖) = {
1        𝑖𝑓 (𝑅𝑀𝐷𝑖)2 ≤ 𝜒𝑚,0.975

2

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
 

are the weights for a decreasing function of Robust Mahalanobis Distances, and distances are computed by 

using the Minimum Covariance Determinant (MCD) estimator [41]. 

WBYE remains consistent because the weighting is merely applied to the explanatory variables. 

Unfortunately, the above weighting procedure also decreases the weights of the good leverage points, which 

is not required, and can lead to a loss of efficiency [11-16]. 

To test the performance of the estimators, we conducted computational experiments on Monte Carlo 

simulation and modified real datasets. The evaluations focused on the magnitude and severity of the IPs and 

the number of observations by adding outliers to the uncontaminated data. In the study, we used R 3.0.2. [42-

44] to set up the Monte Carlo simulation and to examine the performance of the estimators via BLR analysis 

procedure.  

The performances of the estimators are evaluated in view of each predicted beta parameter based on the 

bias and MSE (mean-squared errors): 

Bias = ‖
1

𝑚
∑ �̂�𝑖 − 𝛽𝑖

𝑚

𝑖=1

‖, 

MSE =
1

𝑚
∑‖�̂�𝑖 − 𝛽𝑖‖

2
𝑚

𝑖=1

 

where ‖. ‖ indicates the Euclidean norm. 
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4. Results 

The values for the bias and the MSE of the MLE, and the seven robust estimators are given in this section in 

Table 1-4 for the simulation study. A “good estimator” is one that has the values of the bias, and MSE is 

relatively small or close to zero. The bias and MSE of the eight estimators are shown in Table 1. In the 

uncontaminated dataset, it can be seen that the biases and MSEs of all the estimators are considerably close to 

each other and also will reduce when the number of observations is increased. 

Table 1. Bias, variance, and MSE values of ML, WMLE, and robust estimators for uncontaminated dataset 

Sample Size Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

𝒏 = 100 

Bias 0.256 0.261 0.255 0.294 0.253 0.280 0.286 0.292 

MSE 0.746 0.772 0.747 0.960 0.744 0.839 0.849 0.882 

𝒏 = 250 

Bias 0.107 0.106 0.106 0.110 0.105 0.130 0.112 0.111 

MSE 0.224 0.230 0.224 0.234 0.224 0.274 0.240 0.246 

𝒏 = 500 

Bias 0.038 0.037 0.038 0.038 0.037 0.046 0.039 0.038 

MSE 0.099 0.102 0.100 0.103 0.099 0.121 0.107 0.110 

MLE: Maximum Likelihood Estimator, WMLE: Weighted Maximum likelihood estimator, CUBIF: The Conditionally Unbiased Bounded Influence 
Function, CME: Consistent Misclassification Estimator, MALLOWS: The Mallows Type Leverage Dependent Weights Estimator, RQL: Robust 
Quasi-Likelihood Estimator, BYE: Bianco Yohai Estimator, WBYE: Weighted Bianco Yohai Estimator, MSE: Mean square error 

In Table 2-4, the Bias and MSE outputs of the simulation derived from examining the estimator's 

behaviour under different conditions are given. As seen in the tables, the MLE method was quickly affected 

by the 1% degradation rate (percentage of IPs) that occurred, and outputs are the same in other studies. The 

presence of moderate and extreme IPs (5%, 10%, 15%) changes the results dramatically. Whereas the WMLE 

performs best in terms of Bias and MSE as the percentage of IP (degradation rate) increases, MLE appears to 

behave very poorly. The closest values to WMLE in terms of MSE and bias were observed in WBY and 

MALLOWS, respectively. The weighting process in the WML and WBY estimators becomes more 

advantageous in extreme contamination. It can be observed that the CUBIF, CME and RQL estimators do not 

perform well even at 5% contamination. The robustness performance of MLE dramatically decreases as the 

rate of contamination increases as IPs move away from the centre. At a distance of 3 whiskers, WMLE, WBY, 

and MALLOWS show the best performance at medium and high fouling rates, respectively, while 

MALLOWS, WBY, and WMLE estimators at a distance of 5 whiskers have the best performance, respectively, 

in terms of biases and MSEs. Meanwhile, it can be observed that bias and MSE decrease when the sample size 

is increased. WMLE, WBY, and Mallows have the overall best performance among all the compared 

estimators for different sample sizes. CUBIF, CME, and RQL estimators did not perform as well as WMLE, 

WBY and Mallows, even as the sample size was increased. This situation is thought to be due to the location 

of the unusual points. Finally, the WMLE, WBY, and Mallows estimators exhibited reasonable perform in the 

contaminated dataset. 
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Table 2. Bias, Variance, and MSE values of MLE and robust estimators over m = 1000 replication for 100 

sample sizes in all cases 

𝜸 k Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

1% 

1.5 

Bias 1.460 0.229 0.798 0.287 1.024 0.644 0.129 0.259 

MSE 2.258 0.846 0.851 2.016 1.229 1.884 0.957 0.851 

3 

Bias 2.132 0.246 0.814 0.251 0.099 0.334 0.094 0.266 

MSE 4.644 0.745 0.875 0.954 0.565 1.122 0.768 0.862 

5 

Bias 2.569 0.204 0.803 0.543 0.234 0.390 0.184 0.253 

MSE 6.686 0.749 0.855 2.953 0.742 3.340 0.841 0.896 

5% 

1.5 

Bias 2.358 0.250 1.748 2.253 2.024 0.229 1.073 0.253 

MSE 5.650 0.768 3.164 5.528 4.197 1.867 1.681 0.921 

3 

Bias 2.692 0.249 1.745 2.692 0.664 2.616 2.692 0.280 

MSE 7.336 0.755 3.148 7.338 0.937 7.448 7.614 0.923 

5 

Bias 2.753 0.251 1.742 2.753 0.228 2.751 2.807 0.274 

MSE 7.672 0.758 3.136 7.671 0.749 7.669 7.934 0.891 

10% 

1.5 

Bias 2.624 0.239 2.414 2.625 2.455 2.621 2.623 0.039 

MSE 6.983 0.733 5.924 6.988 6.119 7.015 6.983 1.607 

3 

Bias 2.785 0.281 2.411 2.785 1.352 2.780 2.780 0.258 

MSE 7.862 0.802 5.912 7.859 2.333 7.841 7.840 0.876 

5 

Bias 2.802 0.253 2.407 2.799 0.236 2.785 2.788 0.056 

MSE 7.949 0.778 5.887 7.940 0.727 7.863 7.881 1.569 

15% 

1.5 

Bias 2.740 0.284 2.710 2.741 2.623 2.746 2.746 0.262 

MSE 7.607 0.898 7.439 7.612 6.977 7.652 7.647 0.931 

3 

Bias 2.835 0.209 2.725 2.833 1.932 2.814 2.819 0.243 

MSE 8.139 0.719 7.524 8.128 4.136 8.033 8.061 0.813 

5 

Bias 2.830 0.223 2.725 2.826 0.216 2.804 2.806 0.243 

MSE 8.113 0.721 7.525 8.095 0.712 7.978 7.987 0.814 

𝜸: contamination rate, 𝒌: whiskers distance from the centre of the data 
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Table 3. Bias, Variance, and MSE values of MLE and robust estimators over m = 1000 replication for 250 

sample sizes in all cases 

𝜸 k Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

1% 

1.5 

Bias 1.071 0.081 0.549 0.088 0.720 0.101 0.142 0.073 

MSE 1.212 0.221 0.408 0.240 0.609 0.300 0.224 0.237 

3 

Bias 1.643 0.084 0.558 0.068 0.077 0.089 0.022 0.084 

MSE 2.743 0.225 0.419 0.235 0.200 0.276 0.228 0.243 

5 

Bias 2.127 0.082 0.551 0.086 0.078 0.106 0.055 0.054 

MSE 4.560 0.241 0.414 0.249 0.233 0.299 0.260 0.260 

5% 

1.5 

Bias 2.267 0.101 1.604 1.920 1.898 0.096 0.934 0.088 

MSE 5.175 0.240 2.617 4.515 3.640 0.318 1.016 0.241 

3 

Bias 2.658 0.085 1.609 2.658 0.635 2.221 1.435 0.086 

MSE 7.100 0.236 2.632 7.100 0.593 6.163 3.610 0.251 

5 

Bias 2.742 0.087 1.609 2.742 0.086 2.742 2.741 0.076 

MSE 7.556 0.230 2.634 7.556 0.247 7.561 7.555 0.282 

10% 

1.5 

Bias 2.603 0.104 2.335 2.604 2.431 2.602 2.598 0.101 

MSE 6.811 0.244 5.487 6.814 5.946 6.838 6.790 0.250 

3 

Bias 2.777 0.087 2.334 2.777 1.422 2.775 2.773 0.099 

MSE 7.750 0.240 5.482 7.748 2.183 7.738 7.732 0.262 

5 

Bias 2.799 0.093 2.333 2.797 0.078 2.783 2.783 0.107 

MSE 7.872 0.241 5.477 7.863 0.219 7.788 7.786 0.271 

15% 

1.5 

Bias 2.725 0.077 2.700 2.725 2.607 2.731 2.732 0.088 

MSE 7.460 0.227 7.325 7.463 6.829 7.496 7.503 0.253 

3 

Bias 2.826 0.090 2.719 2.825 2.033 2.808 2.813 0.104 

MSE 8.029 0.235 7.430 8.019 4.260 7.930 7.953 0.260 

5 

Bias 2.826 0.067 2.721 2.823 0.069 2.801 2.802 0.083 

MSE 8.022 0.215 7.441 8.006 0.224 7.888 7.895 0.242 

𝜸: contamination rate, 𝒌: whiskers distance from the centre of the data 
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Table 4. Bias, Variance, and MSE values of MLE and robust estimators over m = 1000 replication for 500 

sample sizes in all cases 

𝜸 k Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

1% 

1.5 

Bias 1.08 0.053 0.569 0.038 0.738 0.035 0.154 0.056 

MSE 1.201 0.109 0.378 0.111 0.591 0.129 0.128 0.122 

3 

Bias 1.642 0.051 0.567 0.047 0.091 0.064 0.044 0.054 

MSE 2.717 0.108 0.374 0.111 0.102 0.135 0.113 0.119 

5 

Bias 2.126 0.049 0.567 0.046 0.042 0.058 0.020 0.055 

MSE 4.538 0.111 0.376 0.114 0.111 0.133 0.115 0.120 

5% 

1.5 

Bias 2.268 0.039 1.614 2.131 1.909 0.005 0.955 0.043 

MSE 5.160 0.110 2.627 4.771 3.663 0.131 0.986 0.121 

3 

Bias 2.658 0.038 1.615 2.658 0.67 2.408 0.546 0.039 

MSE 7.08 0.102 2.629 7.08 0.534 6.509 0.655 0.110 

5 

Bias 2.742 0.04 1.613 2.742 0.043 2.743 2.741 0.044 

MSE 7.537 0.112 2.62 7.537 0.100 7.541 7.532 0.122 

10% 

1.5 

Bias 2.596 0.044 2.312 2.597 2.422 2.605 2.585 0.051 

MSE 6.756 0.100 5.363 6.76 5.883 6.804 6.703 0.112 

3 

Bias 2.774 0.046 2.31 2.774 0.413 2.772 2.771 0.048 

MSE 7.715 0.110 5.353 7.713 0.250 7.706 7.701 0.118 

5 

Bias 2.797 0.033 2.307 2.795 0.052 2.782 2.784 0.037 

MSE 7.841 0.111 5.337 7.832 0.109 7.758 7.768 0.119 

15% 

1.5 

Bias 2.724 0.036 2.701 2.724 2.608 2.729 2.732 0.040 

MSE 7.438 0.104 7.315 7.442 6.821 7.469 7.483 0.112 

3 

Bias 2.795 0.792 2.626 2.794 0.632 2.783 2.785 0.791 

MSE 7.831 0.767 6.913 7.825 0.522 7.766 7.778 0.782 

5 

Bias 2.826 0.046 2.722 2.823 0.038 2.802 2.802 0.048 

MSE 8.007 0.107 7.427 7.991 0.103 7.872 7.873 0.119 

𝜸: contamination rate, 𝒌: whiskers distance from the centre of the data 
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Figure 2 shows the changes in the performance of the eight estimators concerning MSE in their respective 

datasets have IP(s) under different conditions. As clear from the plots, the WMLE, WBY, and MALLOWS 

estimators had reasonable perform in the contaminated dataset. 

 

Fig. 2. Plots of change of estimator performance in terms of MSE under different conditions 
MLE: Maximum Likelihood Estimator, WMLE: Weighted Maximum likelihood estimator, CUBIF: The Conditionally Unbiased Bounded Influence 

Function, CME: Consistent Misclassification Estimator, MALLOWS: The Mallows Type Leverage Dependent Weights Estimator, RQL: Robust 
Quasi-Likelihood Estimator, BYE: Bianco Yohai Estimator, WBYE: Weighted Bianco Yohai Estimator 

5. Conclusion 

Since datasets containing Influential Points (IP(s)), one of the Unusual Points (UP(s)), are possible to be 

encountered in every field, it becomes essential to use estimators that give more robust results than the MLE 

estimator to make parameter estimation. Since the size of these kinds of points is as important as their distances 

to the centre, the estimators designed are approaches developed with lessening the weight depending on both 

the location of the points and their sample size. Therefore, the simulation scenario in this study is developed 

considering the modelling principles of robust estimators focused on weighting.  

The first of these approaches is the WML estimator, which was developed for weighting the likelihood 

function, and then [23] expanded the estimators by adding weights to reduce the effect of unusual points and 

developed new estimators. Parameter estimates (CUBIF, CME and MALLOWS) are made by using IP(s) the 

effect of which is reduced by this extended method, according to their position to the centre and their values. 
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Another approach is extended estimators (RQL), with less weight given to IP(s) and minimizing 

deviations from the estimated parameters. [25] developed another robust method, the Bianco and Yohai (BY) 

estimator, adding a function limited, differentiable, and decreasing. However, since this approach was also 

ineffective in reducing the weight of IP(s) with an increasing amount, [27] extended the estimator by adding a 

different weight to the Bianco and Yohai (BY) estimator, they defined Bianco and Yohai (WBY) estimator 

obtaining more consistent results. 

In this study, we evaluated the MLE and seven robust estimators from the contaminated dataset with IP(s) 

whether it is feasible to obtain consistent parameter estimates. We conducted simulation experiments under 

different scenarios to examine the performance of MLE and robust estimators under contaminated and 

uncontaminated datasets. According to the simulation results, turned out that the uncontaminated dataset MLE 

and robust estimators exhibited performances similar to each other, the classical ML estimates lacked 

robustness and could be biased when IPs were present, while robust estimators gave better results. Among the 

robust estimators, the WML WBY and MALLOWS estimators, respectively, produced the smallest BIAS and 

MSE in the contaminated data. With the increase of the contamination at five whiskers, the MALLOWS, 

WBY, and WML estimators, respectively, produced the smallest bias and MSE. The results demonstrated that 

there might be frequent and significant differences in the case of IPs in the dataset and, therefore, should be 

taken into account as an example of how results can differ in different research areas. It can, thus, be concluded 

that the WML, WBY, and MALLOWS estimators outperformed the ML estimator and the rest of the robust 

estimators in the presence of IP(s). 

In addition to examining the performances of robust estimators, we evaluated the problem regarding what 

percentage of UP(s) should be kept in the dataset. The results of our study showed that, like other studies 

comparing predictors, the traditional ML estimator deteriorated even at 1% contamination; for this reason, if 

the datasets contain approximately 1-10% or more unusual points, we recommend that they should be 

examined carefully. A robust method is needed, especially when there is an UP(s) at 1.5 or more whisker 

distance from the centre. These data should be treated from an objective perspective, and they should then be 

examined specifically. After being examined in detail with as different analytical methods as possible, it should 

be kept in the dataset, or one of the other strategies (removed or transformed) should be opted for. If the 

distance and amount of contamination are high, these points, determined by analytical and graphical methods, 

may be the possibility of anomaly, depending on the field of study. Anomaly detection methods are different 

from the detection of IP(s), and in such cases, these points should be considered a separate research subject 

without treating them as IP(s) or outliers. More studies are needed to develop and research more suitable robust 

methods that can be used to detect unusual points and anomalies in BLR and for parameter estimation in these 

types of datasets.  

The first point to be considered on which estimator should be used for performance in further studies is 

the location of the IP(s) and the amount of the IP(s) in the dataset.  

As the distance of IP(s) to the centre increases, it can be said that WML and MALLOWS estimators, in 

which weighting is performed according to the location to lessen the effect of the points, are better. On the 

other hand, the WBY estimator is a better alternative in case the number of IP(s) is high (1-10% and/or more). 
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