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Abstract

The inequality containing Csiszar divergence on time scales is generalized for 2n-convex
functions by using Lidstone interpolating polnomial. As an application, new entropic
bounds on time scales are also computed. Several inequalities in quantum calculus
and h-discrete calculus are also established. The relationship between Shannon entropy,
Kullback-Leibler divergence and Jeffreys distance with Zipf-Mandelbrot entropy are also
established.
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1. Introduction

The concept of time scales has attracted many mathematicians for the past quarter-
century. Theory of time scales plays an important part in mathematical analysis. Some of
the most well-known examples of calculus on time scales are quantum calculus, difference
calculus and differential calculus. The books of Bohner and Peterson [19,20] cover many
of the essential aspects of time scales. In recent years, various researchers did a lot of work
on time scale calculus and got fantastic results (see [2,4,14-16,22,61,62] and the references
cited therein). In addition to mathematics, Dynamic inequalities and equations have a
wide range of applications. For example; finance problems, quantum mechanics, physical
problems, optical problems, wave equations, population dynamics and heat transfer [18,
40,67].

Quantum calculus is the contemporary name for a kind of calculus that works without the
notion of limits. It was initially based on the notion of finite difference re-scaling and is also
known as g-calculus. In the 1740s, Euler proposed the theory of partitions, usually called
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analytic number theory, which gave rise to the concept of g-calculus. In 1910, Jackson [38]
established the notion of ¢-definite integrals and generalized the theory of g-calculus. The
g-calculus has developed a bridge between mathematics and physics due to substantial
role of mathematics related to modeling of quantum computing. Kac and Cheung’s book
[40] explains various important concept of quantum calculus. There has already been
significant advancement in g-calculus over the last few decades, see [21,37,48,51,71-74,77]
and references therein.

Tariboon et al. [68,69] established the notion of g-derivatives over the finite intervals and
studied a number of quantum counterparts of classical mathematical inequalities. Sudsu-
tad et al. [63] established several Hermite-Hadamard type quantum integral inequalities
for convex functions. Chen and Yang in [30] and Liu and Yang in [44] utilized quan-
tum integrals and established numerous Chebyshev and Griiss type inequalities on finite
intervals, respectively. In [33], Erden et al. established a number of quantum integral in-
equalities for convex functions. A generalized g-integral identity containing ¢-differentiable
function is established by Awan et al. [13]. Various quantum bounds by considering the
class of preinvex functions are also determined. The Green function approach was used
by Khan et al. [42] to establish quantum Hermite-Hadamard inequality. In [43], Kunt et
al. determined new version of the celebrated Montgomery identity via quantum integral
operators. The obtained result is used to established some quantum integral inequalities
of Ostrowski type. In [17], Ali et al. proved some new Ostrowski-type integral inequalities
for g-differentiable bounded functions. In [46], Li et al. obtained various new estimates
of Hermite-Hadamard type quantum integral inequalities. In [29], Ben et al. established
g-fractional integral inequalities of Henry-Gronwall type.

Despite its resemblance to g-calculus, h-calculus is quite different. It is, in fact the calculus
of finite differences, but a more precise similarity with classical calculus makes it clear.
For example, Newton’s interpolation formula is similar to h-Taylor formula, and Abel
transform is similar to h-integration by parts. The definite h-integral is same as Riemann
sum, consequently, the fundamental theorem of h-calculus permits one to estimate finite
sums.

The theory of convexity plays a significant role in the development of inequalities. In
spite of that the importance of inequalities containing convex functions is magnificent as
it tackles numerous problems in various fields of mathematics at a substantial rate. Conse-
quently, the study of these inequalities has gained a tons of attention (see [8,9,36,54] and
the references cited therein). Over the recent years, the inequalities for n-convex functions
are generalized by numerous researchers. Lidstone polynomials are helpful in literature
to generalize numerous well-known inequalities. Jensen’s inequality and its converses gen-
eralized by Gazi¢ et al. [3] for 2n-convex functions by utilizing Lidstone’s interpolating
polynomials. In [55], Pecari¢ et al. introduced a new class of n-convex functions. They
proposed an interesting theory to evaluate linear operator inequalities utilizing n-convex
functions. This approach guides to various impressive and insightful results with a number
of developments in statistics and operator theory. In [5], Adil et al. used Abel-Gontscharoff
formula along with Green function and established generalized majorization theorem for
higher order convex functions. Further in [23], Butt et al. utilized Abel-Gontscharoff
interpolation and generalized Popoviciu inequality for n-convex functions. In [56], Pecarié
et al. obtained generalizations of Steffensen’s inequality using Abel-Gontscharoff formula.

In [24], Butt et al. obtained useful identities via Taylor polynomial and general-
ized Popoviciu inequality for n-convex functions. Sherman’s inequality is generalized by
Agarwal et al. [6] for 2n-convex functions by using Lidstone’s interpolating polynomial.
Jensen’s and Jensen-Steffensen’s inequalities and their converses generalized by Vukelic
[70] et al. in both the integral and the discrete case by using Lidstone’s interpolating
polynomials and majorization theorems. The generalizations of majorization inequalities
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is obtained by Adil et al. [7] by using conditions on Green’s functions and Lidstone in-
terpolation. In [25], Bibi et al. used Lidstone’s interpolating polynomial and generalized
Jensen’s inequality for diamond integrals on time scales for 2n-convex functions. Popovi-
ciu’s inequality is generalized by Butt et al. [26] for n-convex functions by employing
Fink’s identity in combination with new Green’s function. In [34], Fahad et al. proved
a new generalization of Steffense’s inequality by using Green’s function, Lidstone inter-
polation and Montogomery’s identity. Using Taylor’s polynomial along with new Green
functions, Latif et al. in [45] obtained generalized results concerning majorization in-
equality. In [52], Nosheen et al. used Taylor’s formula with Green function and obtained
some improvements of Jensen-Steffensen inequality for diamond integrals. In [41], Khan
et al. generalized new inequalities of Rényi Shannon entropies and refinement of Jensen’s
inequality for n-convex functions by utilizing Montgomery identity.

In [57], Pecari¢ and Praljak obtained Popoviciu type inequalities for higher order con-
vex functions using Lidstone’s interpolating polynomial. In [53], Niaz et al. estimated
various entropies by utilizing the Jensen’s type functionals. In addition, the authors gen-
eralized new inequalities for higher order convex functions employing Taylor’s formula.
Fahad and Pecari¢ [35] gave Abel-Gontscharoff interpolation of composition functions and
proved generalized Steffensen-type inequalities. Further in [27], the authors used Taylor’s
formula and obtained various extensions of Jensen type inequalities for k-convex functions.
Levinson’s inequality has been generalized for 3-convex function utilizing Green functions
by Adeel et al. [10]. In addition, the obtained results are used in information theory via
Shannon entropy, f-divergence and Rényi divergence. Further in [12], the authors used
Taylor’s polynomial and generalized Levinson type inequalities for the class of m-convex
functions. The obtained results are applied in information theory. In [28], Butt et al.
used Abel-Gontscharoff formula and new Green functions and extended the continuous
and discrete cyclic refinements of Jensen’s inequality for higher order convex function. As
an application, they developed a link among novel entropic bounds for Relative, Mandel-
brot and Shannon entropies.

Cyclic refinements of Jensen’s inequality is generalized by Mehmood et al. [50] by utiliz-

ing Lidstone’s polynomial and Green functions. Further obtained new entropic bounds and
established the link among Relative and Shannon entropy with Zipf-Mandelbrot entropy.
Levinson type inequalities is generalized by Adeel et al. [11] for (2p + 1)-convex functions
by using Lidstone interpolating polynomial and Green functions. They also established
some inequalities for Shannon entropies. In [58], Pecari¢ et al. obtained new general-
izations of Steffensen’s inequality for 2n-convex and (2n + 1)-convex functions utilizing
Lidstone’s polynomial. In [64], Siddique et al. used Fink’s identity and Green functions
and obtained generalized results related to majorization-type inequalities. They also gave
a generalized majorization theorem for higher order convex functions. The obtained re-
sults are applied with regard to Kullback-Leibler divergence and Shannon entropy. In
[59], Ramzan et al. utilized extended Montgomery identity and Jensen’s inequality for
diamond integrals and generalized it for n-convex functions.
Motivated by above discussion, we generalize an inequality containing Csiszar divergence
on time scales for 2n-convex functions by utilizing Lidstone’s interpolating polynomial, as
unification of both discrete and integral cases. In addition, we estimate bounds of differ-
ent divergence measures, in particular, Kullback-Leibler divergence, differential entropy,
Shannon entropy, Jeffreys distance and triangular discrimination on time scales, ¢g-calculus
and h-discrete calculus. Some estimates for Zipf-Mandelbrot entropy are also given.

2. Preliminaries

Let us take a quick look at time scales, as well as the essential definitions and notations.
The details can be followed from [19]:
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For ¢ € T, the forward jump operator ¢ : T — T is defined as

o(¢) ==inf{lveT:v >}
Assume that §f : T — R is a function. Then § is rd-continuous, if it is continuous at
right-dense points of T and its left-sided limit is finite at left-dense points of T. The set
of rd-continuous functions §: T — R will be denoted in this paper by C,.4.
The derived set T* is defined as follows: Given T has a left-scattered maximum m, then
TF =T — {m}; else, T* = T.
Let f: T — R and ¢ € T*. Then f2() is defined to be the number (if it exists) with the
property that for any € > 0 there exists a neighborhood 4 of ¢ such that

(<)) = F(v) = §2()(a(s) = v)| S €lo(s) —v], Vv el

Then f is known as delta differentiable at <.
If T = R, then f* reduces to usual derivative ', and f* becomes forward difference operator
Af(S) = f(s+1) —§(s) for T = Z. If T = g0 = {¢" : n € Ny}, g-difference operator (¢ > 1)

is given by
A flgs) = (<) A _f(v) —§(0)
= = lim ———~.
P == e FO=lm=—=
Theorem A. Every f € C,4 has an antiderivative. For ¢y € T, § is given as

3(6) = / " f(2) Aa for ceT,

is an antiderivative of §.
b—1

If T =R, then f: f(s)Ag = f;’ f(s)ds, and f; f(¢)Ag = Zf(g) for T = N, where a,b € T
s=a

with a <b.

Assume the following set of all probability densities on time scale T to be

Q.= {pp:']I‘—> [O,oo),/bp(g)Ag— 1}.

a
The following inequality is proved by Ansari et al. in [15]:
Theorem B. Suppose that ¥ : [0,00) — R is a convex and continuous function on the

interval [y1,72] C [0,00) and v1 < 1 < 9. If p1,p2 € Q with 71 < 11;;8 <y forall¢ €T,
then ) ©
p1(s Yo —1 1—m
p2<‘I’( >A§§ U(vy1) + U (7y3). 2.1
/a (©) p2(<) Y2 — M ) Yo —m (22) 21

Assume the hypothesis of Theorem B, we define the following Csiszar-type linear func-
tional:

_ _ b
J(V) == ,;Y;_ ;\If(m) + 712 _’;11\1/(72) —/a pz(c)\If(i;Ez;)Ag. (2.2)

Remark 2.1. Under the conditions of Theorem B, (2.2) will be non negative.

In [75], Widder established the following result:
Lemma A. If ¥ € C*[0, 1],

m—1 1
TUESY [wv)(omu “H+ \11(2”)(0)<I>U(t)} + [ Gt w0,
v=0 0
where @, is a polynomial of degree 2v + 1 defined by the relations
By(t) =t, @, (t) = Pp_1(t), Ppn(0) = B,,(1) =0, m>1

and
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is homogeneous Green’s function of the differential operator % on [0,1], and with the
successive iterates of G(t, z)

1
Gnlt2) = | Grlt.y)Gror(y.2)dy > 2. 24)
0
The Lidstone polynomial may be represent in connection with Gy, (¢, z) as
1
- / Gt 2)2dz. (2.5)
0
Lidstone series representation of ¥ € C*™[(y, (5] given in [1] as follows:
m—1
V) = 3 (G- P e, (220 + Z (€= QP W(G) x
= G—G
z— Cl) 2m—1/<2 (x—Cl t—C1> (2m)
@, - Gm W (t)dt.
G2 —Q Tle-4) G -G GG ()

(2.6)

3. Generalization of the Csiszar type linear functional

Let us begin with the following result in which we construct the generalized identity
involving Csiszar divergence on time scales using Lidstone interpolating polynomial:

Theorem 3.1. Assume the conditions of Theorem B with ¥ € C?™[(y, (2] and Gy, be the
same as given in (2.4). Then

Iy(p1,p2) = /abpz(g)qj(ilg)Ag

. Y2 —1 1—m _m_l _ 20 5 (2v) Co—t
e ’Y1\Ij(%) " Y2 — ’71\11(72) Uz:;)(@ Qe (Cl)J<q)v<C2 - Cl))
m—1
_ _ 2u.,(2v) t— G . . o2m—1
X G- are <<2>J(<I>U(<2 —@)) (G2 — )™ x
G2 t—CG z—Q (2m)
fa(en(G=5 o =0) e (3.1)
where
t—G o1 -G 1—m -G\
J(@v(<2_<1>) B 72—71(I)U(C2—Cl> * 72—71(I)U<C2—C1>
b p1(s) — C1p2(s)
/a <I>1,< G—=G >Ag (3:2)
and
t—C z—C\)_ -1 Mm—Ga z2—G 1—m
J<Gm(C2—Cl’C2—C1>) B 72—71Gm(C2—C17C2—C1) * Y2— N .
-G 2=GY\ [ 28—51 Z—G
Gm<C2 — G G- Cl) /a pg(g)Gm< G—CG G- Cl)Ag' (3:3)
Proof. Use (2.6) in (2.2) and the linearity of J(-) to obtain (3.1). O

The following result is related to the generalization of Csiszar type linear functional for
2m-convex function.
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Theorem 3.2. Consider ¥ € C*™[(y,(s] be such that ¥ is 2m-convex function together
with the conditions of Theorem 3.1. If

(2 7)o
then
oo = [ o () s
- Flomarian(a () - ien(a(25)
(3.5)

Proof. Since ¥ € C*™[(,(s] and ¥ is 2m-convex function, therefore ™) () > 0 (see
[54, p. 16]). Apply Theorem 3.1 and utilizing the assumption (3.4) to get (3.5). O

Theorem 3.3. Assume the conditions of Theorem 3.1. Consider ¥ is 2m-convex function
and p € C([a,b]T,R) be positive such that f:p(g)Ag =1.

(i) The inequality (3.5) is valid for odd m.
(ii) Let the inequality (3.5) be satisfied and

Fe orion(e( &) ssien(a(5)] 0 oo

then

1 1— b <
2= L)+ 2 wts) — [(0w (2 )ac 20 ®7)

Y2 — M Y2 =M a p2(s)
Proof. As G is convex and Gm< Qtz:%’ é%) > 0 for odd m, therefore (3.4) holds.
Moreover, W is 2m-convex function, thus by utilizing Remark 2.1 and Theorem 3.2 to get
(3.7). O

Remark 3.4. If T =R and m =1, i.e. ¥ is convex, then (3.7) becomes [31, (2.1)].

Remark 3.5. It is also possible to compute Griiss, Cebysev and Ostrowski-type bounds
corresponding to the identity (3.1) related to the generalization of an inequality containing
Csiszar divergence on time scales.

4. Bounds of divergence measures

Shannon entropy is the fundamental term in information theory and is often dealt with
measure of uncertainty. The random variable, entropy, is characterized regarding its prob-
ability distribution and it can appear as a better measure of uncertainty or predictability.
Shannon entropy allows the estimation of the normal least number of bits essential to
encode a string of symbols based on alphabet size and frequency of symbols.

Let X be a continuous random variable and p is positive density function on time scale T
to X such that f p(s)Ag = 1, if the integral exists.
On time scales, Ansan et al. [14] introduced the differential entropy which is given as

he(X) = / p(c) log p(lg)Ag, (4.1)

where b > 1 is base of log.
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Theorem 4.1. Let X be a continuous random variable and assume the conditions of
Theorem 3.1 with ¥ is 2m-convex function. If m is odd, then

I toaton) [ i) ox()) s

—1 1
hy(X) < 22— log(m1) +
Y2
.

: Y2 — 7 2 1 o
PNCTICRON [WJ(@J (@—@))
ram((62))] (12)

where J((I)”(é't2:<<11>) and hy(X) are given in (3.2) and (4.1) respectively.

Proof. Use ¥ = —logg in Theorem 3.2 to get (4.2). O

Kullback-Leibler divergence is one of the best known among information divergences.
The well-known divergence measure is used in information theory, mathematical statistics
and signal processing (see [76]). Ansari et al. [15] defined the Kullback-Leibler divergence
on time scales by

D(p1,p2) = /abm(C) In [28} Aq. (4.3)

Theorem 4.2. Let X be a continuous random variable and assume the conditions of
Theorem 3.1 with ¥ is 2m-convex function. If m is odd, then

D(p1,p2) < o __% 7 in(n) + 712__7711 Y21n(v2) — jz:::(% (& — ()% x
= ((G0) e ((670) (o

where J(@v<é__%>) and D(p1,p2) are given in (3.2) and (4.3) respectively.

Proof. Use ¥ =¢lng in Theorem 3.2 to get (4.4). O

Jeffreys distance have many applications in statistics and pattern recognition (see [39,
65]). Ansari et al. [15] defined the Jeffreys distance on time scales by

D;(p1,p2) := /ab(P1(§) —p2(¢))In E;EEHAC (4.5)

Theorem 4.3. Let X be a continuous random variable and assume the conditions of
Theorem 8.1 with ¥ is 2m-convex function. If m is odd, then

72— 1 -mn —
D;j(p1,p2) < v1—1)In(y) + v2 — 1) In(vy2) — (G —G)?
() < - Dintn) + o 2 oY

(2500 2o (S0)) (2520
((2CZ)2” )1 )J (év (52_—%1))] (4.6)

where J(@v(é__%)) and D j(p1,p2) are given in (3.2) and (4.5) respectively.

Proof. Use ¥ = (¢ — 1)In¢ in Theorem 3.2 to get (4.6). O
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Triangular discrimination have many applications in statistics and information theory
(see [39,66]). Ansari et al. [15] defined the triangular discrimination on time scale by

b [pa() = pi(s)]?
CETACER

Theorem 4.4. Let X be a continuous random variable and assume the conditions of
Theorem 3.1 with ¥ is 2m-convex function. If m is odd, then

Da(p1,p2) = /a (4.7)

m—

r-1m-1° 1-m (-1
Da(p1,p2) < + E
( ) Y2e—7 7+l Y2e—7 Y2+1 —

@ | g () + MJ(‘D”(Q_%))]

where J<<I>v<é%>) and Da(p1,p2) are given in (3.2) and (4.7) respectively.

(4.8)

—1)?
Proof. Use ¥ = (s n 1) in Theorem 3.2 to get (4.8). O
S
4.1. Inequalities in classical calculus (continuous case)

In this section, new bounds of Csiszar divergence, differential entropy, Kullback-Leibler
divergence, Jeffrey distance and triangular discrimination are given, respectively:
If T = R in Theorem 3.2, the inequality (3.5) have the following form and gives new bound
for Csiszar divergence:

/bm(d‘l’(m@))dg <2 U(y) + - (y2) —

p2(s) Yo —m Yo — M

Sem o [ran(a(g=g)) remien(n ()]

() = Zla (28 i (2l)
om0

If T =R in Theorem 4.1 - Theorem 4.4, inequalities (4.2), (4.4), (4.6) and (4.8) take the
following new form, respectively:

where

Yo — log Y2) /bp1 )log(p2(s))ds —
2—N

b <1>2w<¢v<§:@>> ()]
__Yyll Y21n(v2) — 7:2%1(20 —2)!'x

1
ga! 72 =
o (0 (E50)) + (5. (£25)

b 1 Yo — 1-—
s)lo d¢ < lo +
/amm 55 (1) +
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p1(s) v —1 1—m
/ 1(5) = paf)]n P22 < By = 1) Ine) + = (5~ 1))

_UE:; K@(i:l) o 2v_2 )( (42—<1>)+

(e + e (0 (Z;ii)ﬂ
m—1

b — —1 —-1)2  1- —1)?
/MW S ol Y Sk G Bl O S TR
a pi(s) +p2(s) - mnt+tl  ve-m e+l

@-0" [t (2 (570)) * @ ((6=e))

where J (@U (5;_%)) is given in (4.9).

4.2. Inequalities in h-discrete calculus

The following inequalities give new bound of Csiszar divergence, Shannon entropy,
Kullback-Leibler divergence, Jeffrey distance and triangular discrimination in h-discrete
calculus respectively. In this section, discrete case of these divergence measures are also
given.

Put T = hZ (h > 0) in Theorem 3.2, the inequality (3.5) have the following form

S mon (560 < 2= w0+ 2= T
) el )
where
((6=5) - a5 G0 @50)
Z o, (pl (vh) fé sz(vh)h) (4.11)
- 2= (1

Put T = hZ (h > 0) in Theorem 4.1 - Theorem 4.4, the inequalities (4.2), (4.4), (4.6)
and (4.8) takes the following new forms in h-discrete calculus, respectively:

b b
hz_l(h)hlo 1 <72_110()+1_110() hz_l(h)hx
v — v
v:ﬂm gpg(vh)h = —m gn o —m g2 U:ﬁm
h h

log[p1(vh)h] — Y (20— 1)!(G2 — ¢1)*" {((11)%‘]@)” (5:5)) + (C21)2v

v=0
(o(a=a))] w2
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e[ (E5) + (2]

(4.13)
. (vh) 1 -
E(pl ~p2)(vh)hn jj; o) S e (1 = D) + (e = 1) In(r2)
1 I (20— 2)! Co—t (20 —1)!
K G 1)"(‘1)”(@—@))*( CE

) ( (@_@))} 419

b
hz:h [p2(vh) = p1(vh)]* _ 72 =1 (71—1)2Jr 1—m (92 — 1)
= pmh)+p(vh) “w-m n+l  p-m e+l

L e -ar e (M e=a) * o

v=0
(=) 419
where J(q)v (é%)) is given in (4.11).

Remark 4.5. If h = 1,a = 0,b = m,p1(v) = (p1), and p2(v) = (p2)y, the inequality
(4.10) takes the following new form and gives new bound for discrete Csiszar divergence:

m

Sore((iF) = 2w+ v - 6w
)l

(e (G=g))  v@(e (g
1(0(572) - a=mEa) - (E=)-
Uzlq) (@_Cém)) (4.16)

Remark 4.6. Put h = 1,a = 0,b = m,p1(v) = (p1)y and p2(v) = (p2)y, the inequality
(4.12) takes the following form and gives new bound for discrete Shannon entropy:

where

m

S = Z(pm log (p;v < ]__,yl log(m1) + 72__7;1 log(72) — ;@2)@ log(p1)y —
= 1 Co—t 1 t—G

J— J— 2v [
2 (0= DG —q) [<cl>2v‘]<‘1’”<cg—¢1>) * (g‘z)?v‘](@“(cz—clm’

(4.17)
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where J (CDU (52%1)) is given in (4.16).

Remark 4.7. Consider h = 1l,a = 0,b = m,p1(v) = (p1)y and pa(v) = (p2)y, the
inequality (4.13) takes the following form and gives new bound for discrete Kullback-
Leibler divergence:

n

L(p1,p2) ]gl i;i: < 322__711 71 In(y1) + 712__7711 Y2In(y2) —
m—1 _ _
2 =2 =0 [t (2 =5)) - e (5 =5)))

(4.18)

where J (@v (5;_%)) is given in (4.16).

Remark 4.8. Put h = 1,a = 0,b = m,p1(v) = (p1)y and p2(v) = (p2)y, the inequality
(4.14) takes the following new form and gives new bound for discrete Jeffreys distance:

Jalprop2) = 3 (o1 — p);In 833 <2 DIl + o - D x
v=1 v
ml 2w—1)  (20—2)! —
() = 2 (G = )™ (T (<<1>2v—)1 (e(52))
(2u—=1)!  (2v—2)! t—C
(o + e )= (68))) (4.19)

where J(CDU (52%1)) is given in (4.16).

Remark 4.9. Take h = 1,a = 0,b = m,p1(v) = (p1), and p2(v) = (p2)v, the inequality
(4.15) takes the following new form and gives new bound for discrete triangular discrimi-
nation:

n — 2 1 (m-1% 1- —1)2 =
> [(p2)v — (P1)0] < (m—1) Lo (72 Z 4(20)!
= vt T e-m mt+l re-m w2+l

=6 (6 =a)) WJ(%@@))}

where J (@v (é%)) is given in (4.16).

4.3. Inequalities in g-calculus

The following inequalities give new bound of Csiszar divergence, Shannon entropy,
Kullback-Leibler divergence, Jeffrey distance and triangular discrimination in g¢-calculus
respectively.

Let T = ¢, ¢ > 1,a = ¢* and b = ¢ with k < m, the inequality (3.5) takes the following
form in g-calculus:

Zq (m(@f)) < 72_1\11(71)+ 1—~ mzl G )
v) v=0

P2 Y2 =M Yo —

’}’
{W”><<1>~"<¢v<§i &) @””“@”(%(Z;fél))}
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(n(e=a)) = ammlaza) m(@=0)-
m—1

vrig (P1(g") — Gp2(q”)
Uz::kq g, ( A ) (4.20)

where

Use T = ¢No,.¢ > 1,a = and b = ¢ with £ < m, in Theorem 4.1 - Theorem 4.4,
inequalities (4.2), (4.4), (4. ) and (4.8) take the followmg new form in g-calculus, respec-
tively:

m—1

1 Y2 — ml
q""p2(q”) log < log('h) L log(72) q
Uz:% p2(q°) T 2—m -M Uz:%

log[p1(q UZ:%] v— D¢ —G)* [(Cll)z”J (‘I)U (&)) + (421)21) X

[ (@ )l

m—1

Uz::k ¢""'pi(¢’) In plEZ:) < ,72_71 v n(m) + 712_77 2 In(72) ?:%1 2 —
@ [t (v (g =0)) + @ (B (e=a)]
m—1 v
2 0 Inla) ~ala) Bi) < 2Ly 1))
a0 Diat) mg o (S + Gt ) >

(e (G5) - (T (fé)?f?!)*"(@v(é‘f&))}’

-1
mZ vi1P2(q”) — pi(g¥)]? < Yo — 1 (’Y1—1)2Jr 1—7 (92— 1)
v—Fk pi(q )+p2( v) Y2e—71 M+l Ye—7 Y2+1

24 @0 =0 et ((S5)) + G e

o))

where J <<I>v <é%>> is given in (4.20).

5. Zipf-Mandelbrot law

In the field of information sciences, Zipf’s law is used for indexing [32,60], in ecological
field studies [49] and it plays an important role in art for identifying the aesthetics criteria
in music [47].
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For m € {1,2,...},r > 0 and [ > 0 the Zipf-Mandelbrot law (probability mass function)
is defined as

1
; )= ———— =1,... 5.1
f(/U7 m’ r’ ) (U + T)le7,r’l bl U ) 7m7 ( )
where
m 1
Hm,r,l = Z =Y (52)
— (u+r)

is a generalization of a harmonic number.
Let m € {1,2,...},7 > 0 and [ > 0, then Zipf-Mandelbrot entropy may be defined as

I & In(v+r)

Z(H:r 1) = n(H,, ;). 5.3
(Hirl) Hpppy 7= (0 +7) + In(Hnrt) (5:3)
Assume )
v = flosm, ) = ———amr—. 5.4
o= ) = o4
Use (p2)y = m in (4.17) to get the following result which establishes the link of

Mandelbrot entropy (5.3) with discrete Shannon entropy:

Y2 —1 1- ( )
1 L — )1 Y, —
og(n) + 0g(72) Z o Hm,r,l og(p1)

Z(H;r,l) <
Y2— M Y2 — 7 —

’gm_m@_m% (e (EE0)) ()]

where

t—G 72 —1 -G l-m 72— G

(o(5) - 200 (28 e (258)-
G- Y- \G@—Q Y- \G@—G
_ ]
@ ( 1} ’U+7“) Hm,r,l )
Z G—G

Use (pl)v = m and (pQ)U = m in (418) to get fOHOWng result

which establishes the link of Mandelbrot entropy (5.3) with Kullback-Leibler divergence:

l2 = In(v + 79) vy — 1
+ In(H, — In
Hm,ﬁ,ll p— (”U + 7’1)11 ( n’m’b) Yo — M m (71)

Z(H;r,h) >

1= L vy In(y2) +mz:1 20 — 2)1(¢e — 1) [@1)121)1(] (CI)U(C?__CZ))

TT2—n =0

+@21J(@v<<2_<£1>)}v

where Hy, 1, =

and

1 1

Wuﬂm,rz,lg = (ora)2
t—C v —1 M —C 1-m v2 — C1

(n(e=%) = mowleg) o am(Eg)-
( G —C Yo — M G —C Y2 =M G -G

m 1 _ S

Z P ((U+T1)11Hm,r1,ll (v+r2)2 Hpy 7y 15 )
v .

— G-

Remark 5.1. Slmllarly, use (pl)y = m and (pQ)U = m m (419)

to find the relationship of Jeffreys distance J(p1,p2) with Mandelbrot entropy (5.3).
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