
An Efficient Design Procedure to Implement the
Fractional-Order Chaotic Jerk Systems with the
Programmable Analog Platform
Nimet Korkmaz ID ∗,1 and Ibrahim Ethem SACU ID α,2

∗Department of Electrical and Electronics Engineering, Kayseri University, Kayseri 38280, Turkey, αDepartment of Clinical Engineering Research Center,
Erciyes University, Kayseri 38039, Turkey.

ABSTRACT An effective design procedure has been introduced for implementing the fractional order integrator
structures with a modified low pass filters (LPFs) and its functionality is verified by realizing a fractional-order
chaotic system. In these applications, the state variables of the fractional-order Sprott’s Jerk system are
emulated by these first order LPFs. Since the discrete device based designs have the hard adjustment features
and the circuit complexities; the realizations of these LPFs are carried out with the Field Programmable Analog
Arrays (FPAAs), sensitively. Hence, the introduced LPF based method has been applied to the fractional order
Sprott’s Jerk systems and these fractional-order systems, which are built by the several nonlinear functions,
have been implemented with a programmable analog device. In this context, the minimum fractional-orders of
the Sprott’s Jerk systems are calculated by considering the stability of the fractional-order nonlinear systems.
After that, these systems are simulated by employing the Grünwald-Letnikov (G-L) fractional derivative method
by using a common fractional-order. Thus, the stability analyses of the fractional-order Sprott’s Jerk system
are supported by the numerical simulation results. After the numerical simulation stage, the design procedures
of the FPAA based implementations of the Sprott’s Jerk systems have been dealt with in detail. Finally, thanks
to the introduced first-order LPF method, the hardware realizations of the Sprott’s Jerk systems have been
achieved successfully with a single FPAA device.
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INTRODUCTION

After the discovery of the Lorenz’s chaotic system, the chaos con-
cepts, the chaotic stability and the circuit implementations of the
chaotic structures are well documented in the literature. Simu-
lations of the chaotic attractors by solving two- or higher dimen-
sional ordinary differential equations with numerical analysis tools
or generations of these structures by emulating their mathematical
descriptions with the several electronic hardware have become
more interesting in the last few decades (Kiliç 2010). However,
expressing a nonlinear system with simple definitions is very im-
portant in terms of both adaptation of the system to different
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research fields and applicability to the problems in real life. Thus,
these systems have been studied easily; also they have found an
extensive application field in scientific engineering problems such
as quantum chaos (Stöckmann 1999), chaos-based secure commu-
nications (Chen and Ueta 2002), to truly random number generator
(Öztürk and Kılıç 2019) and the fractional-order definitions of the
chaotic systems (Tlelo-Cuautle et al. 2020). Among these scientific
accretions about the chaotic systems, Sprott’s chaotic models have
taken a considerable attention in the literature thanks to their sim-
plicities and rich contents (Sprott 1994). This simple chaotic system
is based on “Jerk systems” and the source of its rich contents is to
include the different nonlinear functions in the system definition
(Sprott 1997, 2000b,a; Ahmad and Sprott 2003).

The simplicities of the nonlinear systems provide an extra ad-
vantage for the fractional-order definition, because the fractional
order models have the extra degrees and these methods enrich the
analysis with more details in new dimensions. Thus, the real time
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problems and systems are able to be modeled by the fractional
equations more accurately than the integer ones. Fractional calcu-
lus has found various applications in areas such as control system
theory, biochemistry and medicine, circuit theory and design (El-
wakil 2010). While the fractional-order PID controllers provide an
extra freedom for tuning of time and frequency responses in the
control system theory (Deniz et al. 2019); the fractional calculus is
used for modeling the measured impedance versus the frequency
of the investigated material in the biochemistry (Azar et al. 2018).
Besides, the fractional capacitor (-fractance) or fractional induc-
tance concepts are brought in the literature and these structures are
adapted to the canonical theories of the integer order RC-RL-RLC
circuits in the circuit theory (Krishna and Reddy 2008; Atangana
and Alkahtani 2015). The main circuit applications such as os-
cillators, filters, differentiators and integrators etc. are also built
by utilizing their fractional-order definitions (Radwan et al. 2008;
Sacu and Alci 2019; Chen and Moore 2002; Charef 2006). The most
important advantages of the fractional-order systems are able to
be listed as follows: i) The high frequency real-time signals are
generated with the fractional-order oscillators (Ahmad et al. 2001),
ii) Both the frequency and the phase shifts among these generated
signals are controlled by tuning the fractional-orders of the oscilla-
tors (Maundy et al. 2012), iii) The fractional-order differentiators
and integrators provide adjustable phase shifts depending on the
fractional order (Krishna 2011), iv) The slope of the filter response,
the cutoff frequency (-center frequency) and the quality factor in
the fractional filters are changed by adjusting the fractional-orders
(Radwan et al. 2009), and v) the fractional-order controllers can
provide robust performance (Caponetto 2010). Considering the
advantages listed above, the fractional-order chaotic oscillators
have become the one of the most important research fields of the
nonlinear circuits and systems in the resent years.

The usage of the numerical simulation results is an often re-
ferred approach to demonstrate the effectiveness of the obtained
results in the scientific studies, which are about the fractional-order
chaotic oscillators. Two alternative numerical analyses methods
are commonly used to simulate the fractional-order chaotic oscil-
lators (Arena 2000; Chen et al. 2016). First of them is based on
Grünwald-Letnikov (G-L) fractional derivative that is used for cal-
culation of the time domain responses of the studied systems and
this method demands more memory size. In the second method,
the fractional integral operator 1/sq (0 < q < 1 is fractional order) is
approximated by the high order integer transfer functions within
a limited frequency band. These high order integer transfer func-
tions are generally implemented by the R-C networks, but there is
a tradeoff between simplicity of the implementation and frequency
band in this method. On the other hand, although the circuit imple-
mentations of the fractional-order chaotic systems have impressive
advantages, the number of their hardware implementations is lim-
ited. A large part of these studies are usually realized with discrete
devices by using the coupled R-C circuits (Radwan and Salama
2012; Gómez et al. 2013; Gómez-Aguilar et al. 2017). Also, since
the programmable and reconfigurable analog/digital devices have
several effective specialties such as the flexible designing, the low
time and equipment costs and the rapid prototyping, a few the
programmable analog/digital devices based hardware validation
studies about the fractional-order chaotic systems are also available
in the literature (Petráš 2011; Singh et al. 2020). However, the fol-
lowed processes in these available studies do not offer a common
design procedure in order to implement programmable analog
device based implementations of the fractional-order chaotic sys-
tems.

In this context, an effective alternative design process will be
suggested for realizing of the fractional-order chaotic systems with
the electronic hardware in this study. In this introduced proce-
dure, the state variables of the fractional-order chaotic systems are
emulated by the modified first order low-pass filters (LPFs), so
the hardware usage cost and the circuit complexities have been
decreased at the beginning of the hardware design process. The
analog filter designs and their realizations are carried out with the
Field Programmable Analog Arrays (FPAAs), logically. Thus, the
introduced method has been applied to the fractional order Sprott’s
Jerk systems and the best of our knowledge, the fractional order
Sprott’s Jerk systems, which are built by the several nonlinear func-
tions, have been implemented with a programmable analog device.
To this end, the minimum fractional-orders of the state variables of
the Sprott’s Jerk systems are derived by taking into stability of the
nonlinear systems consideration at the equilibrium points. After
the determination of the fractional orders, the Sprott’s Jerk sys-
tems, which include several nonlinear functions, are simulated by
employing the G-L fractional derivative method. Then, the details
of the introduced alternative design process have been handled.
Finally, by means of this method, the hardware realizations of the
Sprott’s Jerk systems have been achieved successfully with a single
FPAA device.

This paper is organized as follows: The general background
about the Sprott’s Jerk systems and their fractional-order counter-
parts are given in Section 2. The main definition of the G-L frac-
tional derivative method and the numerical simulation results of
the fractional-order Sprott’s Jerk systems are also presented in Sec-
tion 2. The alternative design procedure is introduced in Section 3
and the FPAA based implementation results of the fractional-order
Sprott’s Jerk systems are also given in this section. The discussions
about the performance evaluations of the introduced methods and
the concluding remarks are given in the last section.

THE GENERAL BACKGROUND ABOUT THE FRACTIONAL-
ORDER SPROTT’S JERK SYSTEMS

In 1994, Sprott offered several simple chaotic systems (Sprott 1994).
After the response of the Gottlieb’s question about the Jerk function
(Gottlieb 1996), these simple chaotic systems have been adapted
to an explicit third order form as

...
x = J(x, ẋ, ẍ). These redefined

systems have been called Sprott’s Jerk systems and defined by
to following equations (Sprott 1997, 2000b,a; Ahmad and Sprott
2003):

dx
dt = ẋ = y

d2x
dt = ẍ = ẏ = z

d3x
dt =

...
x = ÿ = ż = F(x)− p z − y

(1)

where, ‘x’, ‘y’ and ‘z’ are the state variables of this system. ‘F(x)’
is a nonlinear function and plays an important role in the chaos
mechanism of the system. Several chaotic structures with different
characteristics have been obtained by using these piecewise linear
functions (PWLs), which have different nonlinear definitions as
seen in Table 1 (Sprott 1997, 2000b,a; Ahmad and Sprott 2003). ‘p’
is a control parameter, the chaotic dynamics of this system change
by depending on the values of ‘p’.
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■ Table 1 The nonlinear functions of the Sprott’s Jerk system and the values of the nonlinear function’s parameters

The Nonlinear Functions-‘F(x)’ Eq. No Function Parameters The minimum fractional orders

F1(x) = |x| − r (2) r = 2, p = 0.35 qmin > 0.885

F2(x) = −Bx + Csgn(x) (3) B = 1.2, C = 2, p = 0.6 qmin > 0.904

F3(x) = B(x2/C − C) (4) B = 0.58, C = 1, p = 0.42 qmin > 0.831

F4(x) = Bx(x2/C − 1) (5) B = 1.6, C = 5, p = 0.4 qmin > 0.848

F5(x) = −Bx(x2/C − 1) (6) B = 0.9, C = 0.47, p = 0.4 qmin > 0.837

F6(x) = −B[x − 2 tanh(Cx)/C] (7) B = 2.15, C = 1, p = 0.58 qmin > 0.864

In the literature, several chaotic oscillators such as Chua,
Rössler, Duffing etc. have been redefined by using the fractional-
order integrators (Petráš 2011). The Sprott’s Jerk system has been
also transported a fractional order system in Ref (Ahmad and
Sprott 2003). In Ref (Ahmad and Sprott 2003), only one state vari-
able (‘x’) is given as a fractional-order integrator. In our study, all
state variables are dealt with as the fractional-order integrators
and their fractional-orders are set to equal values. The values of
the fractional-order are calculated by considering the stability of
these nonlinear systems.

The stabilities of the fractional order nonlinear systems are as
important as in the integer-order nonlinear systems. Although
the Lyapunov criterion is commonly employed for the stability
of the integer nonlinear systems, this criterion is not valid for the
fractional-order nonlinear systems. There are two methods in order
to check the stabilities of the fractional-order nonlinear systems:
In the case of the commensurate order fractional system, namely
q1 = q2 = ..... = qn = q, Tavazoei and Haeri (Tavazoei and Haeri
2007) have proposed a method. According to this method, if the
arguments of all the eigenvalues [λi (i = 1, 2, ....., n)] of the system
satisfy the | arg(λi)| >

qπ
2 condition, the equilibrium points of this

system are asymptotically stable. On the other hand, in the case
of the incommensurate order fractional system, namely q1 ̸= q2 ̸=
..... ̸= qn ̸= q, the stability of the system is determined as following
(Tavazoei and Haeri 2008): If the arguments of all the roots λ of
the Eq.8 satisfy the | arg(λi)| > π

2m condition, this system is the
asymptotically stable, where m is the least common factor of the
denominators of fractional orders and ‘J’ is the Jacobian matrix.

det(diag([ λmq λmq ... λmq ])− J = 0 (8)

As mentioned before, all fractional-orders of the Sprott’s Jerk
systems are set to equal values in order to get a simple stability
analysis and the fractional-order Sprott’s Jerk system is given as in
Eq. 9.

dxq

dtq = y

dyq

dtq = z

dzq

dtq = F(x)− p z − y

(9)

The fractional-order of the Sprott’s Jerk systems including a
PWL function in Eq.3 has been calculated as in the following
part in terms of being an example of the stability analysis of the

fractional-order nonlinear systems. Firstly, the equilibrium points
of the system are derived by equaling the right hand side of the
equations in Eq.9 to zero. Then, three of equilibrium points of
Eq. (9) are calculated for p = 0.6 and the values of the equi-
librium points are reported as E1(−2/1.2, 0, 0), E2(0, 0, 0) and
E1(2/1.2, 0, 0). The eigenvalues of this system are calculated as
(′0.1619 + i 1.1282′,′ 0.1619 − i 1.1282′,′ −0.9237′) by utilizing the
values of the equilibrium points with the det(λI − J) = 0 for-
mula. After the determinations of the eigenvalues, the minimum
fractional order is identified by using the method proposed by
Tavazoei and Haeri (Tavazoei and Haeri 2007). The minimum frac-
tional orders for the Sprott’s Jerk system including the nonlinear
functions in Eqs.2-7 are calculated by following these procedures
and their values are also reported to Table 1.

After these calculations, the fractional-orders of the Sprott’s
Jerk systems are identified as q = 0.95 in order to provide a ro-
bust stability for all applications in this study. Then, the nonlinear
functions in Table 1 have been adapted to the Eq.9 and the em-
ployability of the fractional-order has been verified by observing
the results of the numerical analyses. Several effective methods
such as the Riemann-Liouville, Caputo and Grünwald-Letnikov
are improved for calculating the fractional derivatives in the lit-
erature (Arena 2000; Oldham and Spanier 1974; 199 1999). Here,
the G-L method has been preferred due to its prevalent usage in
the numerical analysis of the chaotic systems. This method is used
for the numerical analyses of the Sprott’s Jerk systems and this
method is defined as in Eq. 10.

aDq
t f (t) = lim

h→0

1
hq

[ t−a
h ]

∑
j=0

(−1)j

 q

j

 f (t − j h) (10)

Where ‘a’ and ‘t’ are bounds of derivative operation, ‘h’ is the
time step, ’

[ t−a
h
]
’ means the integer part of the function and the

binomial coefficients are expressed in terms of Gamma ‘Γ(∗)’ func-
tion as in Eq.11.  q

j

 =
Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
(11)

Here, the G-L numerical analyses method has been applied
to the fractional-order Sprott’s Jerk systems, successfully. The
obtained numerical simulation results of these systems are given
in Figs.1a-f for the nonlinear functions in Eqs.2-7, respectively.
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The value of the ‘j’ parameter is set to 5000 and ‘h’ is equal to
0.1. The initial conditions of the state variables are adjusted as
[(x(0) = 0.1, y(0) = 0, z(0) = 0] in all numerical simulations.

As seen from the numerical simulation results given in Fig.1, the
fractional-order Sprott’s Jerk systems exhibit the chaotic behaviors
for the q = 0.95 value. Additionally, these results support the
results of the stability analyses in the previous part. Therefore, the
all fractional orders of the Sprott’s Jerk systems are taken as 0.95 in
the following parts.

Figure 1 The numerical simulation results of the fractional-order
Sprott’s Jerk systems including the a) F1(x) function in Eq.2, b)
F2(x) function in Eq.3, c) F3(x) function in Eq.4, d) F4(x) function
in Eq.5, e) F5(x) function in Eq.6, and f) F6(x) function in Eq.7

THE APPLICATION OF THE PROPOSED METHOD TO THE
SPROTT’S JERK SYSTEMS BY UTILIZING THE FPAA DE-
VICE

Although the time domain responses of the fractional-order non-
linear systems are observed with the G-L method in the numerical
simulation studies, it is very hard to realize this method with the
electronic hardware because of the requirement to storage of the
previous calculations. Thus, the high order transfer function ap-
proximations of the fractional integration operator 1/sq are able
to be qualified as an alternative analyzing method for the hard-
ware realizations of the fractional-order nonlinear systems. In the
literature, these high order transfer functions are widely derived
from the systematic methods such as the continued fraction expan-
sion (CFE), Carlson, Oustaloup, Matsuda and Valsa (Khovanskii
1963; Carlson and Halijak 1964; Oustaloup et al. 2000; Matsuda
and Fujii 1993; Valsa et al. 2011). These high order approximation
transfer functions are framed in a limited frequency band and they
are implemented with the combinations of the R-C, R-L or R-L-C
pairs. However, it is preferred to use of the R-C networks for their
implementation easiness, and there is also a tradeoff between sim-
plicity of the implementation and frequency band in this method.

Additionally, as the order of the approximation function increases,
the count of the employed passive components increases also, so
an alternative method is introduced to overcome these problems
in this study. In this proposed method, the fractional integrator
operator is considered as a single parallel connected R-C pair in a
limited frequency band with an acceptable error. This connection
corresponds to a first order low pass filter (LPF) and the transfer
function of this LPF is defined by the following equation:

H(s) =
Vout(s)
Vin(s)

=
k1

s + k2
(12)

In Eq12, while ‘k1’ is the zero of the LPF and its value is calcu-
lated by using the formula in Eq.13, ‘k2’ is the pole of this LPF and
its value is identified by the formula in Eq.14.

k1 = wmax
1−q

/
sin(

qπ

2
) (13)

k2 = wmax

/
tan(

qπ

2
) (14)

where while ‘q’ is the fractional order of the nonlinear system,
‘wmax’ is the radial frequency of the nonlinear system. The fre-
quency response of a fractional-order integrator is shown in the
bode diagram in Fig.2. In this figure, the black line represents an
ideal fractional-order integrator for q = 0.95, the blue dotted line
is plotted for the proposed LPF in Eq.12. The ‘q’ and ‘wmax’ param-
eters of this LPF are set to 0.95 and 100 rad/s, respectively. The
value of the radial frequency is adjusted to this value arbitrarily
similar to Ref (Ahmad and Sprott 2003). However, the proposed
LPF closes to the ideal frequency response at this value.

Figure 2 The bode diagram of an ideal fractional order system
for q = 0.95 and the proposed LPF (q = 0.95 and wmax = 100
rad/s)

As mentioned in the introduction part, the circuit implemen-
tations of the fractional-order chaotic systems have impressive
advantages, but the number of their hardware implementations
is limited. Thus, here, an effective alternative design process has
been suggested for realizing of the fractional-order chaotic sys-
tems with the electronic hardware in an easy way. In this intro-
duced procedure, the LPF’s characteristic in Eq.12 is adapted to
the fractional-order nonlinear systems properly and this modified
LPF structure can be used successfully instead of the fractional-
order integrators in the in Eq.9. Thus, the hardware usage cost and
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the circuit complexities have been decreased at the beginning of
the hardware design process. To this end, after the Sprott’s Jerk
system is transported to the s-domain (the initial conditions are
accepted as zero), its definition can be rewritten as in the following
for adapting to the proposed LPF’s characteristic:

X(s) = [(Y(s) + k2X(s))(1
/

k1)][
k1

(s+k2)
]

Y(s) = [(Z(s) + k2Y(s))(1
/

k1)][
k1

(s+k2)
]

Z(s) = [(F(s)− pZ(s)− Y(s)) + k2Z(s))(1
/

k1)][
k1

(s+k2)
]

(15)

After these arrangements, a representative illustration of the
obtained configuration is given in Fig. 3. In this figure, the LPFs
should provide the characteristic in Eq. 12. Although the imple-
mentation issue of the fractional-order nonlinear system is solved
with this design, the adjustment of the R-C pairs’ values is hard
to get the characteristic in Eq.12. Thus, the analog low pass filter
designs and their realizations are carried out with the Field Pro-
grammable Analog Arrays (FPAAs) very sensitively by using the
“BILINEAR FILTER” block in this device.

Figure 3 A representative illustration of the LPF in Eq. 12 based
design of the fractional-order Sprott’s Jerk system

The FPAA device offers the flexible designing, the low time and
equipment costs, programmability and reconfigurability properties
and the rapid prototyping features by programming a matrix of the
elements. These programmable elements are called Configurable
Analog Blocks (CABs). The Configurable Analog Modules (CAMs)
in the FPAA device are built by using the switched-capacitor tech-
nology, so the predefined CAM block in the FPAA can be pro-
grammed easily in order to get the desired configurations. The
list of these CAM blocks and their functions are available in the
ANADIGM DESIGNERTM tool. According to this tool the “BILIN-

EAR FILTER” CAM block ( ) has the characteristic as in Eq.
16:

LPF(s) =
Vout(s)
Vin(s)

= ± 2 π f0 G
s + 2 π f0

(16)

where, ‘G’ is the adjustable gain value and ‘ f0’ is the corner
frequency of this LPF. The characteristic of the “BILINEAR FIL-
TER” CAM block in Eq.16 is very similar to the LPF in Eq.12 that is
proposed to realize the fractional-order integrators. Therefore, the
“BILINEAR FILTER” block can be used to implement the desired
LPF in the FPAA based realizations of the Sprott’s Jerk systems.
The remained mathematical descriptions in Eq.15 are also real-

ized by using the “SUM DIFF” ( ) and the “TRANSFER

FUNCTION” ( ) blocks. An example of the FPAA based
design scheme of the Sprott’s Jerk system is given in Fig.4. In this
figure, while the “SUM DIFF” block creates a half cycle summing/
subtraction stage with up to four inputs, the “TRANSFER FUNC-
TION” block implements a user specified voltage transfer function
with 256 quantization steps. The nonlinear functions in Table 1
have been embedded to the “TRANSFER FUNCTION” blocks in
all designs. On the other hand, the FPAA device has a saturation
level (±2 V), so the studied model must be rescaled according to
this saturation level. After these modifications, the coefficients of
the Sprott’s Jerk systems in Eq.15 have been rearranged and their
final values are given in Table 2. The gain inputs of the “SUM
DIFF” blocks have been set to these values. Additionally, the ‘k1’
and ‘k2’ parameters of the LPF are calculated as 1.2628 and 7.8702
respectively for q = 0.95 and wmax = 100 rad/s.

Figure 4 An example FPAA design scheme of the fractional-
order Sprott’s Jerk system

After the similar configurations are completed in ANADIGM
DESIGNERTM tool for all nonlinear functions in Table 1, the de-
signed models are downloaded to the AN231E04 FPAA board one
by one via a serial interface by utilizing the FPAA board’s pro-
grammability and reconfigurability properties. The less power
consumptions and the CAB usages are also seen in Fig. 4 and they
are common in all realizations for the different nonlinear function
based Sprott’s Jerk system. Additionally, only a single FPAA de-
vice has been used in these realizations in contrast to the available
FPAA based applications of the fractional-order chaotic systems
in the literature (Petráš 2011). A photograph of the experimental
setup is seen in Fig.5 and the obtained experimental realization
results of the fractional-order Sprott’s Jerk system are presented in
Fig. 6. The time domain and the phase portraits’ illustrations of
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■ Table 2 The ultimate definitions of the rearranged Sprott’s Jerk systems and the nonlinear functions including in these systems
for the FPAA based implementations

The Nonlinear Functions-‘F(X(s))’ The rearranged Sprott’s Jerk systems

F1(X(s)) = |1.25X(s)| − 1

X(s) = [0.1019Y(s) + 1.02X(s)][ 1.2628
(s+7.8702) ]

Y(s) = [0.128Z(s) + 1.01Y(s)][ 1.2628
(s+7.8702) ]

Z(s) = [0.118F1(X(s)) + 0.891Z(s)− 0.128Y(s)][ 1.2628
(s+7.8702) ]

(17)

F2(X(s)) = −1.2X(s) + sgn(2X(s))

X(s) = [0.128Y(s) + 1.01X(s)][ 1.2628
(s+7.8702) ]

Y(s) = [0.128Z(s) + Y(s)][ 1.2628
(s+7.8702) ]

Z(s) = [0.112F2(X(s)) + 0.908Z(s)− 0.132Y(s)][ 1.2628
(s+7.8702) ]

(18)

F3(X(s)) = 0.58(X(s)2 − 1)

X(s) = [0.128Y(s) + X(s)][ 1.2628
(s+7.8702) ]

Y(s) = [0.128Z(s) + Y(s)][ 1.2628
(s+7.8702) ]

Z(s) = [0.256F3(X(s)) + 0.921Z(s)− 0.128Y(s)][ 1.2628
(s+7.8702) ]

(19)

F4(X(s)) = 1.6X(s)(0.2X(s)2 − 1)

X(s) = [0.128Y(s) + X(s)][ 1.2628
(s+7.8702) ]

Y(s) = [0.128Z(s) + Y(s)][ 1.2628
(s+7.8702) ]

Z(s) = [0.268F4(X(s)) + 0.924Z(s)− 0.128Y(s)][ 1.2628
(s+7.8702) ]

(20)

F5(X(s)) = −0.9X(s)(2.128X(s)2 − 1)

X(s) = [0.128Y(s) + 1.01X(s)][ 1.2628
(s+7.8702) ]

Y(s) = [0.128Z(s) + 0.99Y(s)][ 1.2628
(s+7.8702) ]

Z(s) = [3.19F5(X(s)) + 0.89Z(s)− 0.128Y(s)][ 1.2628
(s+7.8702) ]

(21)

F6(X(s)) = −2.15[X(s)− tanh(2X(s))]

X(s) = [0.128Y(s) + X(s)][ 1.2628
(s+7.8702) ]

Y(s) = [0.128Z(s) + Y(s)][ 1.2628
(s+7.8702) ]

Z(s) = [0.256F6(X(s)) + 0.924Z(s)− 0.128Y(s)][ 1.2628
(s+7.8702) ]

(22)
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the fractional-order Sprott’s Jerk system including the nonlinear
functions in Eqs.2-7 have been given separately in Figs.6a-f, respec-
tively. As seen from these figures, these experimental results agree
well with the numerical simulation results in Fig.1. Therefore,
the proposed LPF based implementations of the fractional-order
systems are achieved with the FPAA based designs, successfully.

Figure 5 A photograph for the experimental setup of the FPAA
based implementation of the fractional-order Sprott’s Jerk sys-
tem

DISCUSSION AND CONCLUSION

In this study, an effective and alternative design process has been
introduced to implement the fractional-order chaotic systems with
the electronic hardware. According to this procedure, the state
variables of the fractional-order chaotic systems have been em-
ulated by the modified first order low-pass filters (LPF), so the
hardware usage costs and the circuit complexities have been de-
creased at the beginning of the hardware design process. Thus, the
introduced method has been tested on the fractional-order Sprott’s
Jerk systems and these systems have been implemented with a
programmable analog device.

In this context, firstly, the minimum fractional-orders of the
state variables of the Sprott’s Jerk systems have been calculated
by considering the stability of the fractional-order nonlinear sys-
tems and the calculation of the minimum fractional-order has been
exemplified in detail for a nonlinear function. After a common
fractional order was identified for all nonlinear functions of the
Sprott’s Jerk system, these fractional-order systems have been sim-
ulated for q = 0.95 by employing the G-L fractional derivative
method. Thus, both the fractional derivative concepts have been
handled and the results of the stability analyses have been verified
by the G-L fractional derivative method. After the identification of
the fractional order for the Sprott’s Jerk system, the modified first
order low-pass filters (LPFs), which emulate the state variables of
the fractional-order chaotic systems, have been dealt with in detail.
The most important arguments about this LPF structure are listed
as following: i) the modified LPF structure has been characterized
by depending on the changes of the fractional order and the ra-
dial frequency, ii) the desired fractional-order integrator has been
built by using this LPF, iii) the adjustment of the discrete devices’
values is hard to get the characteristic of the proposed LPF. On
the other hand, since the identification of the “BILINEAR FILTER”

Figure 6 The time domain and the phase portraits illustrations
of the fractional-order Sprott’s Jerk system including the a) F1(x)
function in Eq.2, b) F2(x) function in Eq.3, c) F3(x) function in
Eq.4, d) F4(x) function in Eq.5, e) F5(x) function in Eq.6, and f)
F6(x) function in Eq.7

CAM block in the FPAA device is very similar to the proposed
LPF structure’s one, this CAM block has been used as a fractional-
order integrator emulator in this study, successfully. Therefore,
the fractional-order Sprott’s Jerk system has been implemented
by using the FPAA devices in order to prove the effectiveness of
the LPF-based approximation for the fractional-order integrators.
Additionally, the fractional-order Sprott’s Jerk systems including
the different nonlinear functions have been realized with a pro-
grammable analog device, namely FPAA. Moreover, the proposed
LPF characteristic can be employed as a fractional-order integrator
in the various research fields, where the desired frequency band is
limited.
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