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Abstract. Let ‹ be a star operation on a ring extension R Ď S. A ring

extension R Ď S is called Prüfer star-multiplication extension (P‹ME) if

pRrms,mrmsq is a Manis pair in S for every ‹-maximal ideal m of R. We estab-

lish some results on star operations, and we study P‹ME in pullback diagrams

of type ˝. We show that, for a maximal ideal m of R, the extension Rrms Ď S

is Manis if and only if RrXsrmRrXss Ď SrXs is a Manis extension.
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1. Introduction

In this article, all rings are commutative with identity. Let R Ď S be a ring

extension. In [8, Definition 1, p. 139], M. Knebusch and T. Kaiser define a star

operation on the extension R Ď S to be a map ‹: J pR,Sq ÝÑ J pR,Sq, where

J pR,Sq is the set of all R-submodules of S, satisfying the following conditions for

all A, B P J pR,Sq.

pc1q A Ď A‹.

pc2q If A Ď B, then A‹ Ď B‹.

pc3q pA
‹q‹ “ A‹.

pc4q AB
‹ Ď pABq‹.

A star operation ‹ on a ring extension R Ď S is said to be strict if R‹ “ R [8,

Definition 1, p. 139]. A star operation ‹ on a ring extension R Ď S is said to be of

finite type if for each R-submodule A of R, A‹ “
Ť

K‹, where K ranges over all

the finitely generated R-submodules of S contained in A [8, Definition 1, p. 156] .

Remark 1.1. [8, Proposition 6.3, p.156] For a star operation ‹ : J pR,Sq ÝÑ
J pR,Sq, and each R-submodule A of S, define A‹f “

Ť

K‹, where K ranges

over all the finitely generated R-submodules of S contained in A. Then the map

‹f : J pR,Sq ÝÑ J pR,Sq defined by A ÞÝÑ A‹f is a star operation of finite type

on the extension R Ď S.
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Remark 1.2. Let R Ď S be a ring extension, and ‹ be a star operation on the

extension R Ď S. If A is an R-submodule of S such A‹ “ R‹, then pAnq‹ “ R‹ for

each positive integer n. In fact, if A‹ “ R‹, then by [8, Proposition 4.1(a), p. 146]

we have pAnq
‹
“ pA ¨ ¨ ¨A

loomoon

n times

q‹ “ pA‹ ¨ ¨ ¨A‹
loooomoooon

n times

q‹ “ pR‹ ¨ ¨ ¨R‹
loooomoooon

n times

q‹ “ R‹.

Let I be an ideal of R. The ideal I is said to be a ‹-ideal if I‹ “ I. Following

the terminology use in [1], we called an ideal I of R a ‹-prime ideal if I is both a

star-ideal and a prime ideal of R. A maximal element in the set of all ‹-ideal of R

is called ‹-maximal ideal.

Lemma 1.3. [12, Remark 2.4] Let R Ď S be a ring extension, and let ‹ be a strict

star operation of finite type on R Ď S. Then each proper ‹-ideal of R is contained

in a ‹-prime ideal of R (which is also a ‹-maximal ideal of R).

Let R Ď S be a ring extension, and let A be an R-submodule of S. The R-

submodule A is said to be S-regular if AS “ S [7, Definition 1, p. 84]. The

R-submodule A of S is called S-invertible, if there exists an R-submodule B of S

such that AB “ R [7, Definition 3, p. 90]. In this case, we write B “ A´1, and

A´1 “ rR :S As “ tx P S : xA Ď Ru[7, Remarks 1.10, p. 90].

For a ring S, and an additive totally ordered abelian group Γ, let Γ Y 8 “

ΓY t8u, where 8` g “ g `8 “ 8 for all g P ΓY8, and g ă 8 for all g P Γ. A

valuation on S with values in Γ is a map v : S ÝÑ ΓY8 such that:

p1q vpxyq “ vpxq ` vpyq for all x, y P S.

p2q vpx` yq ě min tvpxq, vpyqu for all x, y P S.

p3q vp1q “ 0 and vp0q “ 8.

The set V “ tx P S : vpxq ě 0u is called a valuation subring of S. If vpSq “ t0,8u,

then v is said to be trivial, otherwise v is called non-trivial. If vpSq “ ΓY8, then

v is called a Manis valuation on S and V “ tx P S : vpxq ě 0u is called a Manis

subring of S.

For a subring R of S, if there exists a Manis valuation v : S ÝÑ Γ Y 8 such

that R “ tx P S : vpxq ě 0u, then the extension R Ď S is called a Manis extension.

In this case, pR, pq is called a Manis pair in S, where p “ tx P S : vpxq ą 0u. The

ring S is called a Prüfer extension of R if pRrps, prpsq is a Manis pair in S for every

maximal ideal p of R. In this case, we say that R is Prüfer in S. More on Manis

valuations and Prüfer extensions can be found in [7]. The ring extension R Ď S

is called (weak) Prüfer star-multiplication extension (P‹ME) if pRrms,mrmsq is a

Manis pair in S for every (S-regular) ‹-maximal ideal m of R [10, Defintion 3.1].
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Remark 1.4. If R Ď S is a Manis extension, then RrXs Ď SrXs is Manis extension,

where X is an indeterminate over S. In fact, suppose that v : S Ñ Γ Y t8u is a

valuation map such that vpSq “ Γ Y t8u and R “ ta P S : vpaq ě 0u. Denote

by rv the extension of v to SrXs. The map rv : SrXs Ñ Γ Y t8u is defined by

rv

ˆ

ř̀

i“1

aiX
i

˙

“ inf tvpaiq : 1 ď i ď `u, where ai P S for 1 ď i ď `. Then by [8,

Remarks(b), p.130], rv is a valuation map. Furthermore, by the definition of rv, we

have rvpSrXsq “ Γ Y t8u and RrXs “ tf P SrXs : rvpfq ě 0u. It follows that the

extension RrXs Ď SrXs is Manis.

In this paper, we prove several results on localization (in the ring extension

context), and we discuss associated polynomial ring extensions, Nagata rings, star

invertibility, and Prüfer star-multiplication extensions. Many results in this article

have well-known origins in the domain case (see for example [6]). In Section 2, we

discuss some properties of ring extensions. These properties will be needed in the

proofs of results presented in Section 3.

In Section 3, we establish some results on star operations. These properties

are observations made while working on other projects (see for example [9], [10],

[12]). Their proofs are contributions to a better understanding of the structures

of star operations on ring extensions. In Theorem 3.13, we show that for each

maximal ideal m of R, the extension Rrms Ď S is Manis if and only RrXsrmRrXss Ď

SrXs is a Manis extension whenever RrXs Ď SrXs is integrally closed and X is

an indeterminate over S. In Theorem 3.15, we study Prüfer star-multiplicative

extension in pullback diagrams of type ˝.

2. Preliminaries

For a ring extension R Ď S and an R-submodule M of S, if τ is a multiplicatively

closed subset of R, we denote by Mrτs the set of all x P S such that tx PM for some

t P τ . The set Mrτs is an R-submodule of S. In particular, Rrτs is a ring satisfying

R Ď Rrτs Ď S (see comment after [7, Definition 10, p. 18]). If p is a prime ideal of

R, and τ “ Rzp, then Mrps denotes the set of all x P S such that tx P M for some

t P τ .

Remark 2.1. Let R Ď S be a ring extension, and let N be a multiplicatively closed

subset of R. Let p be a prime ideal of R such that pXN “ H. Then

p1q The set prNs is a prime ideal of RrNs and prNs XN “ H.

p2q If I is an ideal of R such that IrNs Ď prNs, then I Ď p.
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Proof. p1q Let x, y P RrNs such that xy P prNs. Then there exist t, t1, t2 P N such

that t1x P R, t2y P R and txy P p. It follows that tpt1xqpt2yq “ pt1t2qptxyq P p.

But t R p since p XN “ H. Therefore pt1xqpt2yq “ pt1t2qptxyq P p. Hence t1x P p

or t2y P p. Thus x P prNs or y P prNs. This shows that prNs is prime ideal of RrNs.

We show that prNs X N “ H. By contradiction, suppose that prNs X N ‰ H.

Let t1 P PrNs X N . Then there exists t2 P N such that t1t2 P p. Furthermore,

t1t2 P N since N is multiplicatively closed. It follows that t1t2 P P XN . Which is

a contradiction since pXN “ H. This shows that prNs XN “ H.

p2q Let a P I. Then a P I Ď IrNs Ď prNs. Hence, there exists t P N such that

ta P p. But t R p since p X N “ H. It follows that a P p since p is prime. This

shows that I Ď p. �

Remark 2.2. Let R Ď S be a ring extension, and let N be a multiplicatively closed

subset of R. Let J be a proper ideal of the ring RrNs. Then

p1q pJ XRqrNs “ JrNs.

p2q If J is prime ideal of RrNs and J XN “ H, then J “ JrNs.

p3q If J is prime ideal of RrNs and J XN ‰ H, then JrNs “ RrNs

Proof. p1q We show that pJ X RqrNs “ JrNs. Let w P pJ X RqrNs. Then tw P

J X R Ď J for some t P N . Hence w P JrNs. This shows that pJ X RqrNs Ď JrNs.

On the other hand, if u is an element of JrNs, then there exists t P N such that

tu P J Ď RrNs. So there exists t1 P N such that t1ptuq P R. It follows that

pt1tqu P J X R. Thus u P pJ X RqrNs since tt1 P N . Therefore, JrNs Ď pJ X RqrNs.

This shows that pJ XRqrNs “ JrNs.

(2) Suppose that J is a prime ideal of RrNs such that J XN “ H. We show that

JrNs Ď J since the containment J Ď JrNs is always true. Let x P JrNs. Then tx P J

for some t P N . But t R J since J XN “ H. It follows that x P J since J is prime.

This shows that J “ JrNs.

(3) Suppose that J is a prime ideal of RrNs such that JXN ‰ H. Let t P JXN .

Then tp1q P J X N . Hence, 1 P pJ X NqrNs. Therefore, pJ X NqrNs “ RrNs. It

follows from (1) that JrNs “ RrNs. �

Lemma 2.3. Let R Ď S be a ring extension, and let N be a multiplicatively

closed subset of R. Let P “ tp : p is a prime ideal of R and pXN “ Hu and M “

tm : m is a maximal ideal of R and mXN “ Hu.

p1q For each p P P, prNs is a prime ideal of RrNs satisfying prNs XN “ H.

p2q For each m PM, mrNs is a maximal ideal of RrNs satisfying mrNsXN “ H.
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Proof. p1q By Remark 2.1(1), each element of the set
 

prNs : p P P
(

is a prime

ideal of RrNs which does not intercept with N . Let J be a proper prime ideal of

RrNs such that JXN “ H, and let p0 “ JXR. Then by Remark 2.2(2), J “ p0rNs.

Hence J P
 

prNs : p P P
(

.

p2q Let m be an element of M. By Remark 2.1(1), mrNs is a prime ideal of

RrNs and mrNs X N “ H. Suppose that J0 is a maximal ideal of RrNs such that

mrNs Ď J0. Then m Ď J0XR. It follows from the maximality of m that m “ J0XR

or J0XR “ R. If J0XR “ R, then 1 P J0. Which is a contradiction since J0 Ĺ RrNs.

Thus m “ J0 X R. Hence mrNs “ pJ0 X RqrNs. Suppose that J0 X N ‰ H. Let

t P J0 XN Ď J0 XR. Then tp1q P J0 XR. Hence 1 P pJ0 XRqrNs “ mrNs. Which is

a contradiction since mrNs is a proper ideal of RrNs. This shows that J0 XN “ H.

It follows from Remark 2.2(2) that mrNs “ pJ0 X RqrNs “ J0rNs “ J0. This shows

that mrNs is a maximal ideal of RrNs. �

Let R Ď S and L Ď T be two ring extensions, and consider the following com-

mutative diagram

R L

S T
Ψ

α

where ker Ψ is an ideal of R, Ψ : S ÝÑ T is surjective, the restriction α : R ÝÑ L

of Ψ is also surjective and the vertical mappings are inclusions. When ker Ψ is a

maximal ideal of S, the previous commutative diagram is called a pullback diagram

of type ˝. Pullback diagrams of type ˝ are studied by S. Gabelli and E. Houston in

[2].

Lemma 2.4. Consider a pullback diagram of type ˝. Let A be an R-submodule of

S, and let B be an L-submodule of T .

p1q If AS “ S, then ker Ψ Ď A.

p2q Suppose that ker Ψ Ď Jac pRq. If A “ ΨpBq and BT “ T , then AS “ S.

p3q If AS “ BS and ΨpAq “ ΨpBq, then A “ B.

Proof. The statement (1) is given by [11, Remark 1.1], and the statement (2) is

given by [11, Lemma 2.8].

For the proof of the statement (3), suppose that AS “ BS. Then by (1),

ker Ψ Ď A and ker Ψ Ď B. It follows from [9, Remark 2.5] that A Ď B and B Ď A.

Thus A “ B. �
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Lemma 2.5. Consider a pullback diagram of type ˝. Then R is integrally closed

in S if and only if L is integrally closed in T .

Proof. Suppose that R is integrally closed in S. Let v P T , and let gpXq “
ř̀

i“0

biX
i P LrXs with bi P L for 1 ď i ď ` such that gpvq “ 0, where X is an

indeterminate over S. Since Ψ is surjective and L “ ΨpRq, there exist u P S

and a0, . . . , a` P R such that v “ Ψpuq, b0 “ Ψpa0q, . . . , b` “ Ψpa`q. Let fpXq “
ř̀

i“0

aiX
i. Then fpXq P RrXs and Ψ pfpuqq “

ř̀

i“0

ΨpaiqΨpuq
i “

ř̀

i“0

biv
i “ gpvq “ 0.

This shows that fpuq P ker Ψ Ď R. So there exists r P R such that fpuq “ r. Let

hpXq “ fpXq ´ r. Then hpXq P RrXs, and hpuq “ 0. Therefore u P R since R is

integrally closed in S. It follows that v “ Ψpuq P L. This shows that L is integrally

closed in T .

Conversely, suppose that L is integrally closed in T . Let u P S, and let fpXq “
ř̀

i“0

aiX
i P RrXs be a polynomial with ai P R for 1 ď i ď ` such that fpuq “ 0.

Let gpXq “
ř̀

i“0

ΨpaiqX
i P LrXs. Then gpΨpuqq “

ř̀

i“0

ΨpaiqΨpuq
i “

ř̀

i“0

Ψpaiu
iq “

Ψ

ˆ

ř̀

i“0

aiu
i

˙

“ Ψpfpuqq “ 0. Thus Ψpuq P L, since L is integrally closed in T . Since

L “ ΨpRq, there exists v P R such that Ψpuq “ Ψpvq. Hence u´ v P ker Ψ Ď R. It

follows that u P R since v P R. This proves that R is integrally closed in S. �

For the rest of the article, if R Ď S is a ring extension, and X is an indeterminate

over S, then for any multiplicatively closed subset N of RrXs, RrXsrNs denotes the

set of elements f P SrXs such that hf P RrXs for some h P N .

Lemma 2.6. Let R Ď S be a ring extension, and let T be a multiplicatively closed

subset of R.

p1q RrXsrT rXss “ RrT srXs, where X is an indeterminate over S.

p2q If N is a multiplicatively closed subset of R such that N Ď T , and A is an

R-submodule of S, then TrNs is a multiplicatively closed subset of RrNs and
`

ArNs
˘

rTrNss
“ ArT s.

Proof. p1q Let f “
k
ř

i“1

aiX
i P RrXsrT rXss with ai P S for 1 ď i ď k. Then

hf P RrXs for some h P T rXs. Thus cRphfq Ď R. Hence cRphfqcRphq
` Ď R for

any positive integer `. It follows from the Dedeking-Merteens formula ([8, Theorem

1.1, p. 126]) that cRpfqcRphq
n Ď R for some positive integer n. But cRphq

n Ď T

since T is multiplicatively closed. Let u P cRphq
n. Then uai P R for 1 ď i ď k.

Hence ai P RrT s. It follows that f P RrT srXs. This shows that RrXsT rXs Ď RrT srXs.
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Let f “
k
ř

i“1

aiX
i P RrT srXs with ai P RrT s for 1 ď i ď k. Then for 1 ď i ď k,

there exists ti P T such that tiai P R. Let t “
śk
i“1 ti. Then t P T Ď T rXs

and tf P RrXs. This shows that f P RrXsrT rXss. Hence RrT srXs Ď RrXsrT rXss.

Therefore RrT srXs “ RrXsrT rXss.

p2q Let u1, u2 P TrNs. Then s1u1 P T and s2u2 P T for some s1, s2 P N . Thus

s1s2pu1u2q “ ps1u1qps2u2q P T . It follows that u1u2 P TrNs. This shows that TrNs

is multiplicatively closed. Let x P
`

ArNs
˘

rTrNss
. Then ux P ArNs for some u P TrNs.

Let s, s1 P N such that su P T and s1puxq P A. Then s1psuqx “ pss1qpuxq P A. It

follows that x P ArT s since s1psuq P T . This shows that
`

ArNs
˘

rTrNss
Ď ArT s.

Let x P ArT s. Then tx P A Ď ArNs for some t P T . But T Ď TrNs. Hence

x P
`

ArNs
˘

rTrNss
, and so ArT s Ď

`

ArNs
˘

rTrNss
. Therefore, ArT s “

`

ArNs
˘

rTrNss
. �

3. Some properties of star operations on ring extensions

In this section, we establish some results on star operations. Let ‹ : J pR,Sq ÝÑ
J pR,Sq be a star operation on a ring extension R Ď S. An R-submodule A of R

is said to be ‹-invertible if pAA´1q‹ “ R‹. In the next result, we give a necessary

condition for a finitely generated S-regular R-submodule of S to be ‹-invertible.

Proposition 3.1. Let R Ď S be a ring extension, and let ‹ : J pR,Sq ÝÑ J pR,Sq
be a star operation, and let A be an S-regular R-submodule of S. If A is ‹-invertible,

then for each ‹-maximal ideal m of R, we have Arms “ paqrms for some a P A.

Proof. Let A be an S-regular R-submodule of S. Suppose that A is ‹-invertible,

and let m be a ‹-maximal ideal of R. Then
`

AA´1
˘‹
“ R‹. Hence AA´1 Ę

m, otherwise R Ď R‹ Ď
`

AA´1
˘‹
Ď m. This is a a contradiction. Therefore,

there exists t P AA´1 Ď R such that t R m. Let x P Rrms. Then there exists

s P Rzm such that sx P R. Thus ptsqx “ tpsxq P AA´1. It follows that x P
`

AA´1
˘

rms
since ts R m. This shows that Rrms Ď

`

AA´1
˘

rms
, and so

`

AA´1
˘

rms
“

Rrms. Hence
´

`

AA´1
˘

rms

¯

mrms
“

`

Rrms
˘

mrms
. But by [7, lemma 2.9(b), p.28],

we have
´

`

AA´1
˘

rms

¯

mrms
“

`

AA´1
˘

m
and

`

Rrms
˘

mrms
“ Rm. Hence, AmA

´1
m “

`

AA´1
˘

m
“ Rm. Thus Am is a locally principalRm-submodule of Sm [7, Proposition

2.3, p. 97]. In particular, Am is a principal Rm-submodule of Sm. So there exists

a P R and s P Rzm such that Am “ p
a
s qRm “ paqRm “ paqm. Now we show that

Arms “ paqrms “ paqRrms. Let y P Arms, and let j : S Ñ Sm be the map defined

by jpxq “ x
1 . Then by [7, definition 10, p. 18], Arms “ j´1 pAmq. It follows that

jpyq P Am. Thus y
1 P paqm. Therefore, y

1 “
ra
t for some r P R, and t P Azm. So,
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pstqy “ psrqa P paq for some s P Azm. It follows that y P paqrms since pstq P Azm.

This shows that Arms Ď paqrms. On the other hand, let z P paqrms. Then there

exists t1 P Rzm such that t1z “ ra P Am for some r P R. Hence there exists c P A

and t2 P Rzm such that t1z “
c
t1

. Thus pt1t2t3qz “ ct3 P A for some t3 P Rzm.

Thus z P Arms since t1t2t3 P Rzm. This shows that paqrms Ď Arms. Therefore,

Arms “ paqrms. �

Lemma 3.2. Let ‹ be a strict star operation of finite type on a ring extension

R Ď S, and let A be an R-submodule of S such that A‹ “ A. Then for any

multiplicatively closed subset τ of R, we have
`

Arτs
˘‹
“ Arτs. In particular,

`

Rrτs
˘‹
“ Rrτs.

Proof. Let A be an R-submodule of S such that A‹ “ A. Let x P
`

Arτs
˘‹

. Since

‹ is of finite type, there exists a finitely generated R-module J contained in Arτs

such that x P J‹. Let u1, . . . , u` P Arτs such that J “ pu1, . . . , u`qR. For 1 ď i ď `,

there exists ti P τ such that tiui P A. Let t “
ś̀

i“1

ti. Then tJ Ď A. Hence

tx P tJ‹ Ď ptJq‹ Ď A‹ “ A. Therefore x P Arτs. This shows that
`

Arτs
˘‹
Ď Arτs.

Then
`

Arτs
˘‹
“ Arτs since the containment Arτs Ď

`

Arτs
˘‹

is always true. �

In the next remark, we give an example of a star operation ‹1 on a ring ex-

tension R Ď S, and a star operation ‹2 on the extension RrXs Ď SrXs satisfying

the condition A‹1RrXs “ pARrXsq‹2 for each R-submodule A of S, where X is

an indeterminate over S. This condition will be assumed in many of the results

established in this section.

Remark 3.3. ([12, Remark 3.7]) Let R Ď S be a ring extension, and let X be an

indeterminate over S. For each R-submodule A of S, write A‹1 “ pR :S pR :S Aqq,

and for each RrXs-submodule M of SrXs, write

M‹2 “
`

RrXs :SrXs pRrXs :SrXs Mq
˘

.

Then ‹1 is a strict star on the extension R Ď S, and ‹2 is a strict star opera-

tion on the extension RrXs Ď SrXs satisfying A‹1RrXs “ pARrXsq
‹2 for each

R-submodule A of S.

Proposition 3.4. Let ‹1 be a star operation of finite type on a ring extension,

and let ‹2 be a star extension of finite type on RrXs Ď SrXs, where X is an

indeterminate over S . Let T be a multiplicatively closed subset of RrXs. If I is an

ideal of R such that I‹1RrXs “ pIRrXsq‹2 , then pI‹1rXsqrT s “
`

IrXsrT s
˘‹2

.
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Proof. Let f P
`

IrXsrT s
˘‹2

. Since ‹2 is of finite type, there exist f1, . . . , fn P

IrXsrT s such that f P pf1, . . . , fnq
‹2 . Let ti P T such that tifi P IrXs for 1 ď i ď n,

and let t “
n
ś

i“1

ti. Then tfi P IrXs. Hence tf P t pf1, . . . , fnq
‹2 Ď ptf1, . . . , tfnq

‹2 Ď

pIrXsq
‹2 “ I‹1rXs. It follows that f P pI‹1rXsqrT s. This shows that

`

IrXsrT s
˘‹2

Ď

pI‹1rXsqrT s.

For the other containment, let f P pI‹1rXsqrT s. Then tf P I‹1rXs Ď pIrXsq
‹2 Ď

`

IrXsrT s
˘‹2

for some t P T . Thus f P
´

`

IrXsrT s
˘‹2

¯

rT s
. But by Lemma 3.2,

`

IrXsrT s
˘‹2

Ď
`

RrXsrT s
˘‹2

“ RrXsrT s. Furthermore, RrXsrT s is an overring of

RrXs in SrXs (see comment after [7, Definition, p. 18]). It follows from [8, Propo-

sition 4.2, p. 146] that
`

IrXsrT s
˘‹2

P J
`

pRrT srXsq
‹2 , SrXs

˘

. But by Lemma 3.2

we have pRrT srXsq
‹2 “ RrT srXs. Therefore,

`

IrXsrT s
˘‹2

P J
`

pRrT srXsq, SrXs
˘

.

Hence
`

IrXsrT s
˘‹2

is an ideal of RrXsrT s. Therefore, from Remark 2.2 we have
´

`

IrXsrT s
˘‹2

¯

rT s
“

`

IrXsrT s
˘‹2

. Hence f P
`

IrXsrT s
˘‹2

, and so pI‹1rXsqrT s Ď
`

IrXsrT s
˘‹2

. Thus pI‹1rXsqrT s “
`

IrXsrT s
˘‹2

. �

For the rest of this article, if ‹ is a star operation on a ring extension R Ď S and

X is an indeterminate over S, then we denote by Maxp‹q the set of all ‹-maximal

ideals of R, and Np‹q “ tf P RrXs : cRpfq
‹ “ R‹u.

Lemma 3.5. Let ‹ be a star operation on a ring extension R Ď S, and let X be

an indeterminate over S. The set Np‹q is multiplicatively closed subset of RrXs.

Proof. Let f, g P Np‹q. Then cRpfq
‹ “ R‹ and cRpgq

‹ “ R‹. By the Dedekind-

Mertens formula [8, Theorem 1.1, p. 126], we have cRpfgqcRpgq
n “ cRpfqcRpgq

n`1

for some positive integer n. Thus pcRpfgqcRpgq
nq
‹
“

`

cRpfqcRpgq
n`1

˘‹
. Fur-

thermore, for any positive integer `, we have pR‹q` “ R‹ since R‹ is a ring [8,

Propisition 4.2 (b), p. 146]. But by [8, Proposition 4.1 (a), p. 146] and Remark

1.2 that pcRpfgqcRpgq
nq
‹
“ pcRpfgq

‹pcRpgq
nq‹q

‹
“ pcRpfgq

‹R‹q
‹
“ cRpfgq

‹ and
`

cRpfqcRpgq
n`1

˘‹
“

`

cRpfq
‹pcRpgq

n`1q‹
˘‹
“ pR‹R‹q

‹
“ R‹. Hence cRpfgq

‹ “ R‹.

This shows that fg P Np‹q. �

For the rest of the article, we denote by d : J pR,Sq ÝÑ J pR,Sq the identity

and Npdq “ tf P RrXs : cRpfq “ Ru, where X is an indeterminate over the ring

extension R Ď S.

Proposition 3.6. Let R Ď S be a ring extension, and let X be an indeterminate

over S. Then the set Npdq contains no zero divisors of RrXs.

Proof. By contradiction, suppose that there exists f P Npdq which is a zero divisor

of RrXs. Then cRpfq “ R and there exists a nonzero g P RrXs such that fg “ 0.
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Hence cRpfgq “ 0. Furthermore, by the Dedekind-Mertens formula ([8, Theorem

1.1, p. 126]), we have cRpgqcRpfq
n`1 “ cRpfgqcRpfq

n “ 0. It follows that cRpgqR “

cRpgq “ 0. This is a contradiction since g ‰ 0. This shows that Npdq has no zero

divisors. �

The following remark is an analog of [6, Proposition 2.1]; which itself originates

from [3, Proposition 33.1, p. 410].

Proposition 3.7. Let ‹ be a strict star operation of finite type on a ring extension

R Ď S, and let X be an indeterminate over S. Then

p1q Np‹q “ RrXsz
Ť

mPMaxp‹qpmrXsq.

p2q For each ‹-maximal ideal m of R, mrXsrNp‹qs is a maximal ideal of RrXsrNp‹qs.

Furthermore, mrNp‹qs XNp‹q “ H.

Proof. (1) Let f P Np‹q. Then cRpfq
‹ “ R. Thus for each m P Maxp‹q, we

have cRpfq Ę m. Otherwise, we will get R Ď R‹ “ cRpfq Ď m‹ “ m; which

is a contradiction. This shows that f R mrXs for each m P Maxp‹q. Hence f P

RrXsz
Ť

mPMaxp‹qmrXs. This shows that Np‹q Ď RrXsz
Ť

mPMaxp‹qpmrXsq.

On the other hand, let f P RrXsz
Ť

mPMaxp‹qpmrXsq. By contradiction, suppose

that cRpfq
‹ Ĺ R. Then cRpfq

‹ is a proper ideal of R. Furthermore, by [8, Propo-

sition 4.6, p. 149], pcRpfq
‹ XRq

‹
“ cRpfq

‹ X R‹ “ cRpfq
‹ X R. So cRpfq

‹ X R

is a proper ‹-ideal of R. It follows from Lemma 1.3 that cRpfq
‹ X R is contained

in a ‹-maximal ideal m0. Therefore, cRpfq Ď cRpfq
‹ X R Ď m0 of R. It follows

that f P m0rXs. This is a contradiction since f P RrXsz
Ť

mPMaxp‹qpmrXsq. Thus

cRpfq
‹ “ R.

(2) The proof follows from part (1) and Lemma 2.3(2). �

Corollary 3.8. Let R Ď S be a ring extension, and let ‹1 be a strict star operation

of finite type on a ring extension R Ď S, and let ‹2 be a star operation on RrXs Ď

SrXs such that A‹1RrXs “ pARrXsq‹2 for each R-submodule A of S, where X is

an indeterminate over S. Then for each ‹1-maximal ideal m of R, mrXsrNp‹1qs is

a ‹2-maximal ideal of RrXsrNp‹1qs.

Proof. By Proposition 3.7(2), mrXsrNp‹1qs is a maximal ideal of RrXsrNp‹1qs. Fur-

thermore, by Proposition 3.4, we have

`

mrXsrNp‹1qs
˘‹2

“ pmrXsq
‹2
rNp‹1qs

“ m‹1rXsrNp‹1qs “ mrXsrNp‹1qs.

This shows that mrXsrNp‹1qs is a ‹2-maximal ideal of RrXsrNp‹1qs. �

Proposition 3.9. Let ‹1 be a star operation on a ring extension R Ď S, and let ‹2

be a star operation on RrXs Ď SrXs, where X is an indeterminate over S. Let A
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be an R-submodule of S such that A‹1RrXs “ pARrXsq‹2 . Then A is ‹1-invertible

if and only if ARrXs is ‹2-invertible.

Proof. Let A be an R-submodule of S such that A‹1RrXs “ pARrXsq‹2 . Suppose

thatA is ‹1-invertible. Then pArR :S Asq
‹1 “ R. Thus pArR :S Asq

‹1RrXs “ RrXs.

It follows from the hypothesis that

pARrXsrR :S AsRrXsq
‹2 “ pArR :S AsRrXsq

‹2 “ pArR :S Asq
‹1RrXs “ RrXs.

This shows that ARrXs is ‹2-invertible.

Conversely, suppose that the RrXs-submodule ARrXs is ‹2-invertible, and let

E “
“

RrXs :SrXs ARrXs
‰

. Then pARrXsEq‹2 “ RrXs. But by [12, Lemma 2.5(3)],

we have E “
“

RrXs :SrXs ARrXs
‰

“ rR :S AsRrXs. Hence RrXs “ pARrXsEq‹2 “

pARrXsrR :S AsRrXsq
‹2 “ pArR :S AsRrXsq

‹2 “ pArR :S Asq‹1RrXs. Therefore,

pArR :S Asq‹1RrXs “ RrXs. Hence pArR :S Asq‹1 “ R. This shows that A is

‹1-invertible. �

Lemma 3.10. Let ‹ be a strict star operation on a ring extension R Ď S, and let

X be an indeterminate over S. Let T be a multiplicatively closed subset of Np‹q.

For each R-submodule A of S, we have

“

RrXsrT s :SrXs pARrXsqrT s
‰

“
“

RrXs :rSrXss ARrXs
‰

rT s
“ prR :S AsRrXsqrT s .

Proof. The equality
“

RrXs :SrXs ARrXs
‰

rT s
“ prR :S AsRrXsqrT s follows directly

from [12, Lemma 2.5(3)]. It remains to prove that
“

RrXsrT s :SrXs pARrXsqrT s
‰

“
“

RrXs :SrXs ARrXs
‰

rT s
. Let f P

“

RrXs :SrXs ARrXs
‰

rT s
. Then there exists h1 P T

such that h1f P
“

RrXs :SrXs ARrXs
‰

. Hence ph1fqARrXs Ď RrXs. Let g P

pARrXsqrT s. Then there exists h2 P T such that h2g P ARrXs. So ph1h2qfg “

ph1fqph2gq P RrXs. Therefore, fg P RrXsrT s since h1h2 P T . Hence fpARrXsqrT s Ď

RrXsrT s since g was arbitrary in pARrXsqrT s. So f P
“

RrXsrT s :SrXs pARrXsqrT s
‰

.

This shows that
“

RrXs :SrXs ARrXs
‰

rT s
Ď

“

RrXsrT s :SrXs pARrXsqrT s
‰

.

Conversely, let f P
“

RrXsrT s :SrXs pARrXsqrT s
‰

. Then fpARrXsqrT s Ď RrXsrT s. It

follows that fA Ď RrXsrT s since A Ď pARrXsq
rT s. Let a P A. Then af P RrXsrT s.

So there exists h P T such that hpafq P RrXs. Hence cRphafq Ď R. It follows that

cRphafqcRphq
`
Ď R for each positive integer ` since h P RrXs. But by the Dedekind-

Mertens formula ([8, Theorem 1.1,p. 126]), we have cRphq
`0`1cRpafq “ cRphafqcRphq

`0 Ď

R for some positive integer `0. Hence

cRphq
`0`1cRpafq

‹
Ď

´

cRphq
`0`1cRpafq

¯‹

“ pcRphafqcRphq
`0q
‹
Ď R‹ “ R.

It follows from [8, Proposition 4.1 (a), p. 146] that
´

`

cRphq
`0`1

˘‹
cRpafq

‹
¯‹

Ď R‹ “

R. But by Remark 1.2 we have
`

cRphq
`0`1

˘‹
“ R‹ “ R since cRphq

‹
“ R. It fol-

lows that pcRpafq
‹Rq‹ Ď R. Thus cRpafq

‹
Ď R. This shows that af P RrXs. So
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fA Ď RrXs since a was arbitrary chosen in A. Hence fpARrXsq Ď RrXs. Thus

f P
“

RrXs :SrXs ARrXs
‰

. Therefore
“

RrXsrT s :SrXs pARrXsqrT s
‰

Ď
“

RrXs :SrXs ARrXs
‰

.

Hence
“

RrXsrT s :SrXs pARrXsqrT s
‰

“
“

RrXs :SrXs ARrXs
‰

. �

Lemma 3.11. ([12, Lemma 3.9]) Let R Ď S be a ring extension, and Q be a

maximal ideal of RrXs satisfying
`

RrXs :SrXs Q
˘

‰ RrXs. Then Q X R “ 0 or

pQXRqrXs “ Q.

The next result is a generalization of [6, Corollary 2.5] which states that in a

domain R, a nonzero ideal I is t-invertible if and only if IrXsNv is invertible.

Theorem 3.12. Let R Ď S be a ring extension, and let X be an indeterminate

over S. A nonzero ideal I of R is S-invertible if and only if IRrXsrNpdqs is an

SrXs-invertible ideal of RrXsrNpdqs.

Proof. Let I be a nonzero ideal of R. Suppose that I is S-invertible. Then

II´1 “ R. We show that IRrXsrNpdqsI
´1RrXsrNpdqs “ RrXsrNpdqs. By contra-

diction, suppose that IRrXsrNpdqsI
´1RrXsrNpdqs is a proper ideal of RrXsrNpdqs.

Then, IRrXsrNpdqsI
´1RrXsrNpdqs Ď J for some maximal ideal J of RrXsrNpdqs.

So, II´1rXs Ď IrXsI´1rXs Ď IRrXsrNpdqsI
´1RrXsrNpdqs Ď J . Hence II´1rXs Ď

Q “ J X RrXs. Furthermore, Q X R ‰ 0 since R “ II´1 Ď II´1rXs Ď Q.

Thus Q X R ‰ 0. Let Q1 be a maximal ideal of RrXs such that Q Ď Q1. Then

m “ Q1 X R ‰ 0 since Q X R ‰ 0. It follows from the previous lemma that m is a

maximal ideal of R satisfying mrXs “ Q1. We show that Q1 XNpdq “ H. By con-

tradiction, Q1XNpdq “ mrXsXNpdq ‰ H. Then there exists f “
ř̀

i“0

aiX
i P mrXs

with a0 . . . a` P m such that R “ cRpfq. It follows that R “ pa0, . . . , a`qR Ď

m. This is a contradiction since m is a proper ideal of R. This shows that

Q1 X Npdq “ mrXs X Npdq “ H. Therefore, by Proposition 3.7(2), we have

QrNpdqs “ mrXsrNpdqs is a maximal ideal of RrXsrNpdqs. Furthermore, by Remark

2.2(1), J Ď JrNpdqs “ pJ X RrXsqrNpdqs “ QrNs “ mrXsrNpdqs. It follows from the

maximality of J that J “ mrXsrNpdqs.

Conversely, suppose that IRrXsrNpdqs is an SrXs-invertible ideal of RrXsrNpdqs.

Then IRrXsrNpdqs
`

IRrXsrNpdqs
˘´1

“ RrXsrNpdqs. Therefore, by Lemma 3.10, we

have IRrXsrNpdqs
`

I´1RrXs
˘

rNpdqs
“ RrXsrNpdqs. Furthermore,

IRrXsrNpdqs
`

I´1RrXs
˘

rNpdqs
Ď

`

IRrXsI´1RrXs
˘

rNpdqs
.

Thus
`

II´1RrXs
˘

rNpdqs
“
`

IRrXsI´1RrXs
˘

rNpdqs
“ RrXsrNpdqs. By contradiction,

suppose that II´1 is contained in a maximal ideal m ofR. Then pII´1RrXsqrNpdqs Ď

mRrXsrNpdqs, and we have RrXsrNpdqs Ď mRrXsrNpdqs. This is a contradiction since



SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS 111

by Corollary 3.8, mRrXsrNpdqs is a maximal ideal of RrXsrNpdqs. This shows that

II´1 is not contained in any maximal ideal of R. It follows from Lemma 1.3 that

II´1 “ R. �

Theorem 3.13. Let R Ď S be a ring extension, and let X be an indeterminate

over S such that RrXs Ď SrXs is integrally closed. Let m be a maximal ideal of R.

Then Rrms Ď S is a Manis extension if and only if RrXsrmRrXss Ď SrXs is a Manis

extension.

Proof. Suppose that the extension Rrms Ď S is Manis. Then by Remark 1.4,

the extension RrmsrXs Ď SrXs is also Manis. But by Lemma 2.6(1), we have

RrmsrXs “ RrXsrmRrXss. Thus the extension RrXsrmRrXss Ď SrXs is Manis.

Conversely, suppose that the extension RrXsrmRrXss Ď SrXs is Manis. Let α be

an element of S. Then α P SrXs. Therefore, by [7, Theorem 2.12, p. 29], there

exists a polynomial F pY q P pSrXsqrY szpmRrXsqrY s such that F pαq “ 0, where Y

is an indeterminate over SrXs. Write F pY q “
n
ř

i“0

fipXqY
i. Then

n
ř

i“0

fipXqα
i
“ 0.

Write fipXq “
ř̀

j“0

aijX
j for a fixed positive integer `, with possibly some of the aij ’s

equal zero. Then
n
ř

i“0

˜

ř̀

j“0

aijX
j

¸

αi
“

ř̀

j“0

ˆ

n
ř

i“0

aijα
i

˙

Xj
“ 0. It follows that

n
ÿ

i“0

aijα
i
“ 0 for each 1 ď j ď ` pΘq.

Since F pY q R pmRrXsqrY s, there exists 1 ď k ď n such that fkpXq R mRrXs. Thus

fkpXq P SrXszmRrXs. So there exists 1 ď j0 ď ` such that akj0 R m. Let gpXq “
n
ř

i“0

aij0X
i. Then by pΘq, we have gpαq “ 0. Furthermore, gpXq P SrXszmrXs since

akj0 R m. By [7, Theorem 2.12, p. 29], the extension Rrms Ď S is Manis. �

Corollary 3.14. Let R Ď S be a ring extension. If the extension RrXsrNpdqs Ď

SrXs is Prüfer, then the extension R Ď S is Prüfer.

Proof. Suppose that RrXsrNpdqs Ď SrXs is a Prüfer extension, and let m be a max-

imal ideal of R. By Proposition 3.7(2), mrXsrNpdqs is a maximal ideal of RrXsrNpdqs.

It follows from the hypothesis that
`

RrXsrNpdqs
˘

rmrXsrNpdqss
Ď SrXs is a Manis ex-

tension. But by Lemma 2.6(2), we have
`

RrXsrNpdqs
˘

rmrXsrNpdqss
“ RrXsrmrXss.

Furthermore, by Lemma 2.6(1) we have RrXsrmrXss “ RrmsrXs. This shows that

RrmsrXs Ď SrXs is a Manis extension. It follows from Proposition 3.13 that the

extension Rrms Ď S is Manis. This shows that R Ď S is a Prüfer. �

Before proving the next result, we recall the definition of a Prüfer star multipli-

cation extension, and the definition of a weak Prüfer star multiplication extension.
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These notions are introduced and studied in [10]. Let R Ď S be a ring exten-

sion, and let ‹ : J pR,Sq ÝÑ J pR,Sq be a star operation. The ring extension

R Ď S is called weak Prüfer star-multiplication extension (weak P‹ME) if the pair

pRrms,mrmsq is Manis in S for every S-regular ‹-maximal ideal m of R. When the

pair pRrms,mrmsq is Manis in S for every ‹-maximal ideal m of R, the extension

R Ď S is called Prüfer star-multiplication extension (P‹ME) [10, Definition 3.1].

Theorem 3.15. Consider the following pullback diagram of type ˝ with ker Ψ Ď

Jac pRq.

R L

S T
Ψ

α

Let ‹1 be a star operation on R Ď S, and let ‹2 be a star operation on the extension

L Ď T such that ΨpA‹1q “ ΨpAq‹2 for each A P J pR,Sq. Then R Ď S is weak

P‹1ME if and only if L Ď T is weak P‹2ME.

Proof. Suppose that R Ď S is a weak P‹1ME. Let n be a T -regular ‹2-maximal

ideal of L, and let m “ Ψ´1pnq. Then by Lemma 2.4(1), m is an ideal of R satisfying

mS “ S. But Ψpmq “ n “ n‹2 “ Ψpmq‹2 “ Ψpm‹1q. It follows from Lemma 2.4(3)

that m “ m‹1 . This shows that m is a ‹1-ideal. Let I be a ‹1-ideal of R such

that m Ď I. Then IS “ S since mS “ S. Furthermore, ΨpIq is a ‹2-ideal of

L since ΨpIq‹2 “ ΨpI‹1q “ ΨpIq. Hence ΨpIq is a ‹2-maximal ideal of L. But

n “ Ψpmq Ď ΨpIq. It follows from the maximality of n that Ψpmq “ ΨpIq or

Ψpmq “ ΨpRq. Therefore, by Lemma 2.4(3), we have m “ I or m “ R. This shows

that m is an S-regular ‹1-maximal ideal of R. It follows from the hypothesis that
`

Rrms,mrms
˘

is a Manis pair of S. Let v be an element of T . There exists u P S

such that v “ Ψpuq. Then by [7, Theorem 2.12, p. 29], there exists a polynomial

F pXq “
ř̀

i“1

aiX
i P RrXszmrXs such that F puq “ 0. Let GpXq “

ř̀

i“1

ΨpaiqX
i.

Then Gpvq “
ř̀

i“1

Ψpaiqv
i “

ř̀

i“1

ΨpaiqΨpuq
i “ ΨpF puqq “ 0. Furthermore, since

F pXq P RrXszmrXs, there exists j, 1 ď j ď ` such that aj P Rzm. We show that

Ψpajq R n. By contradiction, suppose that Ψpajq P n. Then there exists a P m such

that Ψpajq “ Ψpaq. Hence aj ´ a P ker Ψ. But by Lemma 2.4(1), ker Ψ Ď m. It

follows that aj P m. This is a contradiction since aj P Rzm. We have shown that

GpXq P LrXsznrXs and Gpvq “ 0. It follows from [7, Theorem 2.12, p. 29] that
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`

Lrns, nrns
˘

is a Manis pair in T , since v was arbitrary chosen in T . This shows that

the extension L Ď T is a weak P‹2ME.

Conversely, suppose that the extension L Ď T is a weak P‹2ME. Let m be an

S-regular ‹1-maximal ideal of R, and let n “ Ψpmq. Since mS “ S, there exist

r1, . . . , rk P m and s1, . . . , sk P S such that
k
ř

i“1

risi “ 1. Hence
k
ř

i“1

ΨpriqΨpsiq “

Ψp1q “ 1. This shows that nS “ S since Ψpriq P n for 1 ď i ď k. Also, n‹2 “

Ψpmq‹2 “ Ψpm‹1q “ Ψpmq “ n. Thus n is a ‹2-ideal of L. Suppose that J is a

‹2-ideal of L such that n Ď J . Then JS “ S since nS “ S. Let I “ Ψ´1pJq. Then

by Lemma 2.4(2), IS “ S. Furthermore, Ψpmq Ď ΨpIq. It follows from [9, Remark

2.5] that m Ď I. Therefore, by the maximality of m, we have m “ I or I “ R. Hence

n “ J or J “ L. This shows that n is a T -regular ‹2-maximal ideal of L. It follows

from the hypothesis that
`

Lrns, nrns
˘

is a Manis pair of T . Let u be an element of

S. Then v “ Ψpuq is an element of T . By [7, Theorem 2.12, p. 29], there exists a

polynomial GpXq “
ř̀

i“0

biX
i P LrXsznrXs such that Gpvq “ 0. Since L “ ΨpRq,

there exist a0, . . . , a` P R such that bi “ Ψpaiq for 1 ď i ď `. Let F pXq “
ř̀

i“0

aiX
i.

Then ΨpF puqq “ Gpvq “ 0. Hence F puq P ker Ψ Ď R. Therefore F puq “ r for

some r P R. Let HpXq “ F pXq ´ r P RrXs. Then Hpuq “ 0. We show that

HpXq R mrXs. Since GpXq R nrXs, there exists j0 such that bj0 R n, 1 ď j0 ď `.

By contradiction, suppose that aj0 P m. Then bj0 “ Ψpaj0q P Ψpmq “ n. This is a

contradiction. Hence aj0 R m. This shows that F pXq P RrXszmrXs. It follows that

HpXq P RrXszmrXs. We have shown that HpXq P RrXszmrXs and Hpuq “ 0. It

follows from [7, Theorem 2.12, p. 29] that
`

Rrms,mrms
˘

is a Manis pair in S. Thus

the extension R Ď S is a weak P‹1ME. �

Remark 3.16. The notion of ‹-multiplication domain is introduced and studied [5].

A domain D is called ‹-multiplication domain if for each nonzero finitely generated

ideal I of D, there exists a finitely generated fractional ideal J of D satisfying

pIJq‹ “ D, where ‹ is a star operation on D. The name Prüfer v-multiplication

domain (PVMD) has been used for v-multiplication domain, where the v-operation

is defined by Iv “
`

I´1
˘´1

; see for example [4]. Several equivalent conditions to the

notion of ‹-multiplication domains are given in [5, ]. In particular, it is shown that

a domain D is a ‹-multiplication domain if and only if DM is a valuation domain

for each ideal M maximal in the set of ‹-ideals, where ‹ is a star operation of finite

type on D [5, Theorem 1.1]. In this paper, the definition of Prüfer ‹-multiplication

extension involves Manis extensions. This yields the following open question: Is it

possible to characterize Prüfer ‹-multiplication extension with ‹-invertibility? In
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[10, Proposition 2.4], it is shown that for a ring extension R Ď S with QpRq Ď S

(where QpRq is the total ring of fractions of R), and ‹ : J pR,Sq ÝÑ J pR,Sq a star

operation of finite type, if R Ď S is a (weak) P‹ME, then each finitely generated

S-regular R-submodule A of S is ‹-invertible.
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