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Abstract. The chromatic polynomial is characterized as the unique polyno-

mial invariant of graphs, compatible with two interacting bialgebras structures:

the first coproduct is given by partitions of vertices into two parts, the second

one by a contraction-extraction process. This gives Hopf-algebraic proofs of

Rota’s result on the signs of coefficients of chromatic polynomials and of Stan-

ley’s interpretation of the values at negative integers of chromatic polynomials.

We also consider chromatic symmetric functions and their noncommutative

versions.
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1. Introduction

In graph theory, the chromatic polynomial, introduced by Birkhoff and Lewis

[5] in order to treat the four color theorem, is a polynomial invariant attached to

a graph; its values at X “ k gives the number of valid colorings of the graph with

k colors, for any integer k ě 1. Numerous results are known on this object, as for

example the alternation of signs of its coefficients, a result due to Rota [23], proved

with the help of the Möbius inversion in certain lattices.

Our aim here is to insert chromatic polynomials into the theory of combinatorial

Hopf algebras, and to recover new proofs of these classical results. Our main tools,

presented in the first section, will be a Hopf algebra pHG ,m,∆q and a bialgebra

pHG ,m, δq, both based on graphs. They share the same product, given by disjoint

union; the first (cocommutative) coproduct, denoted by ∆, is given by partitions

of vertices into two parts; the second (not cocommutative) one, denoted by δ, is
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given by a contraction-extraction process. For example:

∆p q “ b 1` 1b ` 3 b ` 3 b ,

δp q “ b ` 3 b ` b ,

or, in a decorated version, where a, b, c are positive integers:

∆p a

cb

q “ a

cb

b 1` 1b a

cb

` a
b

b c ` a
c

b b ` b

c

b a

` c b a
b

` b b a
c

` a b b

c

,

δp a

cb

q “ a ` b ` c b a

cb

` a ` b
c

b c a
b

` a ` c
b

b b a
c

` b ` c
a

b a b

c

` a

cb

b a b c .

We obtain a Hopf algebra pHG ,m,∆q, graded by the cardinality of graphs, and

connected, that is to say its connected component of degree 0 is reduced to the

base field Q: this is what is usually called a combinatorial Hopf algebra. On the

other side, pHG ,m, δq is a bialgebra, graded by the degree defined by:

degpGq “ 7tvertices of Gu ´ 7tconnected components of Gu.

These two bialgebras are in cointeraction, a notion described in [7,10,19,20]: we

obtain that pHG ,m,∆q is a bialgebra-comodule over pHG ,m, δq, see Theorem 2.13.

Another example of interacting bialgebras is the pair pQrXs,m,∆q and pQrXs,m, δq,
where m is the usual product of QrXs and the two coproducts ∆ and δ are defined

by:

∆pXq “ X b 1` 1bX, δpXq “ X bX.

This has interesting consequences, proved and used on quasi-posets in [10], listed

here in Theorem 3.1. In particular:

(1) There exists a unique morphism φ1 : HG Ñ QrXs, which is a Hopf algebra

morphism from pHG ,m,∆q to pQrXs,m,∆q and also a bialgebra morphism

from pHG ,m, δq to pQrXs,m, δq.
(2) We denote by pMG , ˚q the monoid of characters of pHG ,m, δq. This monoid

acts on the set EHGÝÑQrXs of Hopf algebra morphisms from pHG ,m,∆q to

pQrXs,m,∆q, via the map:

Ð :

#

EHGÑQrXs ˆMG ÝÑ EHGÑQrXs

pφ, λq ÝÑ φÐ λ “ pφb λq ˝ δ.
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Moreover, the action of MG over EHGÑQrXs is free of rank 1, with φ1 as a

generator.

The morphism φ1 is described in the second section: for any graph G, φ1pGq is the

chromatic polynomial PchrpGq (Theorem 3.5). This characterizes the chromatic

polynomial as the unique polynomial invariant on graphs compatible with both

bialgebraic structures. To this morphim is attached a character denoted by λchr,

which allows to reconstruct Pchr trough the action of MG : for any graph G,

PchrpGq “
ÿ

„

λchrpG| „qX
clp„q,

where the sum is over a family of equivalences „ on the set of vertices of G, clp„q is

the number of equivalence classes of „, and G| „ is a graph obtained by restricting

G to the classes of „ (Corollary 3.6). Moreover, the inverse of λchr for the con-

volution associated to the coproduct δ is the character λ0 which sends any graph

to 1, whereas the inverse of λchr for the convolution associated to the coproduct

δ is related to acyclic orientations of graphs and allows to describe the antipode

of pHG ,m,∆q, see Corollary 3.26. Therefore, the knowledge of the chromatic char-

acter implies the knowledge of the chromatic polynomial; we give a formula for

computing this chromatic character on any graph with the notion (used in Quan-

tum Field Theory) of forests, through the antipode of a quotient of pHG ,m, δq, see

Proposition 3.7. We give a Hopf-algebraic proof of the classical way to compute

the chromatic polynomial by induction on the number of edges by an extraction-

contraction of an edge in Proposition 3.10, and deduce a similar way to compute

the chromatic character. As consequences, we obtain proofs of Rota’s result on the

sign of the coefficients of a chromatic polynomial (Corollary 3.19) and of Stanley’s

interpretation of values at negative integers of a chromatic polynomial in Corollary

3.25. The link with Rota’s proof is made via the lattice attached to a graph, defined

in Proposition 3.12.

We then study morphisms from this double bialgebra of graphs to the function

of quasisymmetric functions QSym [2,12,14,18,27]. For this, we need to generalize

the construction on graphs to graphs decorated by elements of an abelian semigroup

pD,`q, obtaining a Hopf algebra pHGpDq,m,∆q and a bialgebra pHGpDq,m, δq on the

same algebra, which we give a graduation with the help of a map wt : pD,`q ÝÑ
Ną0 (Proposition 2.20). Using Aguiar, Bergeron and Sottile’s theory of combina-

torial Hopf algebras [2], we introduce a homogeneous Hopf algebra morphism F
pDq
chr

from HGpDq to QSym. This morphism F
pDq
chr sends any graph G to its chromatic
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symmetric function, as defined by Stanley [26]. Moreover, F
pDq
chr is the unique po-

tential homogeneous morphism compatible with both bialgebraic structure and we

prove that it indeed satisfies this property if, and only if the map wt giving the

graduation is a semigroup morphism (Theorems 4.4 and 4.9). Note that this con-

dition excludes the nondecorated case, identified with D “ t˚u, giving its unique

semigroup structure ˚ ` ˚ “ ˚ and the graduation defined by wtp˚q “ 1. As a

consequence, we obtain a diagram of Hopf algebra morphisms:

HGpDq
P
pDq
chr //

F
pDq
chr

��

QrXs

QSym

H

::

where H is given with the help of Hilbert polynomials (Proposition 4.2). The last

section deals with a non-commutative version of the chromatic symmetric func-

tion: the Hopf algebra of graphs is replaced by a non-commutative Hopf algebra

of indexed graphs, and QSym is replaced by the Hopf algebra of packed words

WQSym. For any indexed graph G, its non-commutative chromatic symmetric

function FchrpGq can also be seen as a symmetric formal series in non-commutative

indeterminates (Theorem 5.7): we recover in this way Gebhard and Sagan’s chro-

matic symmetric function introduced in [11] and related in [22] to MacMahon sym-

metric functions.

Notation 1.1. (1) All the vector spaces in the text are taken over Q.

(2) We denote by Ną0 “ t1, 2, 3, . . .u the set of positive integers.

(3) For any integer n ě 0, we denote by rns the set t1, . . . , nu. In particular,

r0s “ H.

(4) The usual product of the polynomial algebra QrXs is denoted by m. This

algebra is given two bialgebra structures, defined by:

∆pXq “ X b 1` 1bX, δpXq “ X bX.

Identifying QrX,Y s and QrXs bQrY s:

@P P QrXs, ∆pP qpX,Y q “ P pX ` Y q, δpP qpX,Y q “ P pXY q.

The counit of ∆ is given by:

@P P QrXs, εpP q “ P p0q.
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The counit of δ is given by:

@P P QrXs, ε1pP q “ P p1q.

Moreover, pQrXs,m,∆q is a Hopf algebra, of antipode S sending any P pXq P

QrXs to P p´Xq.

2. Hopf algebraic structures on graphs

We refer to [13] for classical results and vocabulary on graphs. Recall that a

graph is a pair G “ pV pGq, EpGqq, where V pGq is a finite set, and EpGq is a subset

of the set of parts of V pGq of cardinality 2. In sections 2 and 3, we shall work

with isoclasses of graphs, which we will simply call graphs. For any graph G, we

denote by |G| the cardinality of V pGq and by ccpGq the number of its connected

components. By convention, the empty graph 1 is considered as non connected.

The set of graphs is denoted by G. For example, here are graphs G with |G| ď 4:

1; ; , ; , , , ; , , , , , , , , , , .

A graph is totally disconnected if it has no edge.

We denote by HG the vector space generated by the set of graphs. The disjoint

union of graphs gives it a commutative, associative product m. As an algebra, HG

is (isomorphic to) the free commutative algebra generated by connected graphs.

2.1. The first coproduct.

Definition 2.1. Let G be a graph and I Ď V pGq. The graph G|I is defined by:

‚ V pG|Iq “ I.

‚ EpG|Iq “ ttx, yu P EpGq | x, y P Iu.

We refer to [1,17,28] for classical results and notations on bialgebras and Hopf

algebras. The following Hopf algebra is introduced in [24]:

Proposition 2.2. We define a coproduct ∆ on HG by:

@G P G, ∆pGq “
ÿ

V pGq“I\J

G|I bG|J .

Then pHG ,m,∆q is a graded, connected, cocommutative Hopf algebra. Its counit is

given by:

@G P G, εpGq “ δG,1.
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Proof. If G,H are two graphs, then V pGHq “ V pGq \ V pHq, so:

∆pGHq “
ÿ

V pGq“I\J,
V pHq“K\L

GH| I \K bGH|J\L

“
ÿ

V pGq“I\J,
V pHq“K\L

G|IH|K bG|JH|L

“ ∆pGq∆pHq.

If G is a graph, and I Ď J Ď V pGq, then pG|Iq|J “ G|J . Hence:

p∆b Idq ˝∆pGq “
ÿ

V pGq“I\L,
I“J\K

pG|Iq|J b pG|Iq|K bG|L

“
ÿ

V pGq“J\K\L

G|J bG|K bG|L

“
ÿ

V pGq“J\I,
I“K\L

G|J b pG|Iq|K b pG|Iq|L

“ pIdb∆q ˝∆pGq.

So ∆ is coassociative. It is obviously cocommutative. �

Example 2.3.

∆p q “ b 1` 1b ,

∆p q “ b 1` 1b ` 2 b ,

∆p q “ b 1` 1b ` 3 b ` 3 b ,

∆p q “ b 1` 1b ` 2 b ` b ` 2 b ` b .

2.2. The second coproduct.

Notation 2.4. Let V be a finite set „ be an equivalence on V .

‚ We denote by π„ : V ÝÑ V { „ the canonical surjection.

‚ We denote by clp„q the cardinality of V { „.

Definition 2.5. Let G a graph, and „ be an equivalence relation on V pGq.

(1) (Contraction). The graph V pGq{ „ is defined by:

V pG{ „q “ V pGq{ „,

EpG{ „q “ ttπ„pxq, π„pyqu | tx, yu P EpGq, π„pxq ‰ π„pyqu.
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(2) (Extraction). The graph V pGq| „ is defined by:

V pG| „q “ V pGq,

EpG| „q “ ttx, yu P EpGq | x „ yu.

(3) We shall write „ ŸG if, for any c P V pGq{ „, G|c is connected.

Roughly speaking, G{ „ is obtained by contracting each equivalence class of „ to

a single vertex, and by deleting the loops and multiple edges created in the process;

G |„ is obtained by deleting the edges which extremities are not equivalent, so is

the product of the restrictions of G to the equivalence classes of „.

We now define a coproduct on HG . This coproduct, which can also be found in

[24], can also be deduced from a general operadic construction [29], see also [3]. A

similar construction is defined on various families of oriented graphs in [19].

Proposition 2.6. We define a coproduct δ on HG by:

@G P G, δpGq “
ÿ

„ŸG

pG{ „q b pG| „q.

Then pHG ,m, δq is a bialgebra. Its counit is given by:

@G P G, ε1pGq “

$

&

%

1 if G is totally disconnected,

0 otherwise.

It is graded, putting:

@G P G, degpGq “ |G| ´ ccpGq.

In particular, a basis of its homogeneous component of degree 0 is given by totally

disconnected graphs, including 1.

Proof. Let G, H be graphs and „ be an equivalence on V pGHq “ V pGq \ V pHq.

We put „1“„|V pGq and „2
|V pHq. The connected components of GH are the ones of

G and H, so „ ŸGH if, and only if, the two following conditions are satisfied:

‚ „1 ŸG and „2 ŸH.

‚ If x „ y, then px, yq P V pGq2 \ V pHq2 .

Note that the second point implies that „ is entirely determined by „1 and „2.

Moreover, if this holds, pGHq{ „“ pG{ „1qpH{ „2q and pGHq| „“ pG| „1qpH| „2q,

so:

δpGHq “
ÿ

„1ŸG,„2ŸH

pG{ „1qpH{ „2q b pG| „1qpH| „2q “ δpGqδpHq.
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Let G be a graph. If „ ŸG, the connected components of G{ „ are the image

by the canonical surjection of the connected components of G; the connected com-

ponents of G| „ are the equivalence classes of „. If „ and „1 are two equivalences

on G, we shall denote „1ď„ if for all x, y P V pGq, x „1 y implies x „ y. Then:

pδ b Idq ˝ δpGq “
ÿ

„ŸG,„1ŸG{„

pG{ „q{ „1 bpG{ „q| „1 bG| „

“
ÿ

„,„1ŸG,
„
1
ď„

pG{ „q{ „1 bpG{ „q| „1 bG| „

“
ÿ

„,„1ŸG,
„
1
ď„

pG{ „1q b pG| „1q{ „ bpG| „1q| „

“
ÿ

„ŸG,„1ŸG|„

pG{ „1q b pG| „1q{ „ bpG| „1q| „

“ pIdb δq ˝ δpGq.

So δ is coassociative.

We define two special equivalence relations „0 and „1 on G: for all x, y P V pGq,

‚ x „0 y if, and only if, x “ y.

‚ x „1 y if, and only if, x and y are in the same connected component of G.

Note that „0, „1 ŸG. Moreover, if „ ŸG, G{ „ is not totally disconnected, except

if „“„1; G| „ is not totally disconnected, except if „“„0. Hence:

‚ If G is totally disconnected, then δpGq “ GbG.

‚ Otherwise, putting n “ |G| and k “ ccpGq:

δpGq “ k bG`Gb n ` kerpε1q b kerpε1q.

So ε1 is indeed the counit of δ.

Let G be a graph, with n vertices and k connected components (so of degree

n´ k). Let „ ŸG. Then:

(1) G{ „ has cardinality clp„q and k connected components, so is of degree

clp„q ´ k.

(2) G| „ has cardinality n and clp„q connected components, so is of degree

n´ clp„q.

Hence, degpG{ „q ` degpG| „q “ clp„q ´ k ` n ´ clp„q “ n ´ k “ degpGq: δ is

homogeneous. �
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Example 2.7.

δp q “ b , δp q “ b ` b ,

δp q “ b ` 3 b ` b , δp q “ b ` 2 b ` b .

Remark 2.8. Let G P G. The following conditions are equivalent:

‚ ε1pGq “ 1.

‚ ε1pGq ‰ 0.

‚ degpGq “ 0.

‚ G is totally disconnected.

2.3. Antipode for the second coproduct. pHG ,m, δq is not a Hopf algebra: the

group-like element has no inverse. However, the graduation of pHG ,m, δq induced

a graduation of H1G “ pHG ,m, δq{x ´ 1y, which becomes a graded, connected

bialgebra, hence a Hopf algebra; we denote its antipode by S1. Note that, as a

commutative algebra, H1G is freely generated by connected graphs different from .

The notations and ideas of the following definition and theorem come from Quan-

tum Field Theory, where they are applied to Renormalization with the help of Hopf

algebras of Feynman graphs; see for example [8,9] for an introduction.

Definition 2.9. Let G be a connected graph, G ‰ .

(1) A forest of G is a set F of subsets of V pGq, such that:

(a) V pGq P F .

(b) If I, J P F , then I Ď J , or J Ď I, or I X J “ H.

(c) For all I P F , G|I is connected and not reduced to the graph .

The set of forests of G is denoted by FpGq.
(2) Let F P FpGq; it is partially ordered by the inclusion. For any I P FpGq, the

relation „I is the equivalence on I which classes are the maximal elements

(for the inclusion) of tJ P F | J Ĺ Iu (if this is non-empty), and singletons.

We put:

GF “
ź

IPF
pG|Iq{ „I .

Example 2.10. The graph has only one forest, F “ t u; F “ . The graph

has four forests:

‚ F “ t u; in this case, F “ .

‚ Three forests F “ t , u; for each of them, F “ .
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Theorem 2.11. For any connected graph G, G ‰ , in H1G:

S1pGq “
ÿ

FPFpGq
p´1q7FGF .

Proof. By induction on the number n of vertices of G. If n “ 2, then G “ . As

δ1p q “ b 1` 1b , S1p q “ ´ “ ´ F , where F “ t u is the unique forest of .

Let us assume the result at all ranks ă n. Then:

S1pGq “ ´G´
ÿ

„ŸG,„‰„1

pG{ „qS1pG| „q

“ ´G´
ÿ

„ŸG,„‰„1

G{„“tI1,...,Iku

ÿ

FiPFpG|Ii q
p´1q7F1`...`7FkpG{ „qpG|I1qF1

. . . pG|IkqFk .

Note that each forest of G different from tGu consists of tGu with the union of of

forests F1, . . . ,Fk on nonintersecting, connected subsets I1, . . . , Ik of V pGq. There-

fore:

S1pGq “ ´G´
ÿ

FPFpGq, F‰tGu
p´1q7F´1GF “

ÿ

FPFpGq
p´1q7FGF . �

Example 2.12. In H1G:

S1p q “ ´ , S1p q “ ´ ` 3 , S1p q “ ´ ` 2 .

2.4. Cointeraction.

Theorem 2.13. With the coaction δ, pHG ,m,∆q and pHG ,m, δq are in cointerac-

tion, that is to say that pHG ,m,∆q is a pHG ,m, δq-comodule bialgebra, or a Hopf

algebra in the category of pHG ,m, δq-comodules. In other words:

‚ δp1q “ 1b 1.

‚ m1,3,24 ˝ pδ b δq ˝∆ “ p∆b Idq ˝ δ, with:

m1,3,24 :

#

HG bHG bHG bHG ÝÑ HG bHG bHG

a1 b b1 b a2 b b2 ÝÑ a1 b a2 b b1b2.

‚ For all a, b P HG, δpabq “ δpaqδpbq.

‚ For all a P HG, pεb Idq ˝ δpaq “ εpaq1.
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Proof. The first and third points are already proved, and the fourth one is imme-

diate for any a P G. Let us prove the second point. For any graph G P G:

p∆b Idq ˝ δpGq “
ÿ

„ŸG, V pGq{„“I\J

pG{ „q|I b pG{ „q|J bG| „

“
ÿ

V pGq“I1\J 1,
„
1
ŸG|I ,„

2
ŸG|J

pG|I1q{ „
1 bpG|J 1q{ „

2 bpG|I1q| „
1 pG|J 1q| „

2

“ m1,3,24 ˝ pδ b δq ˝∆pGq.

For the second equality, I 1 “ π´1
„ pIq, I

2 “ π´1
„ pJq, „

1“„|I1 and „2“„|J 1 . �

2.5. Decorated versions. We fix a nonempty set D.

Definition 2.14. A D-decorated graph is a pair pG, dGq, where G is a graph and

dG : V pGq ÝÑ D is a map. We denote by GpDq the set of isoclasses of D-decorated

graphs, and by HGpDq the vector space generated by GpDq.

Example 2.15. For any k P N, let us denote by GkpDq the set of D-decorated

graphs with k vertices. Then:

G1pta, b, cuq “ t a, b , cu,

G2pta, b, cuq “ t a a, a b , a c , b b , b c , c c , a
a

, a
b

, a
c

, b
b

, b

c

, c
c

u,

G3pta, b, cuq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

a a a, a a b , a a c , a b b , a b c ,

a c c , b b b , b b c , b c c , c c c ,

a a
a

, a a
b

, a a
c

, a b
b

, a b

c

, a c
c

, b a
a

, b a
b

, b a
c

,

b b
b

, b b

c

, b c
c

, c a
a

, c a
b

, c a
c

, c b
b

, c b

c

, c c
c

,

a

aa

, a

ba

, a

ca

, a

bb

, a

cb

, a

cc

, b

aa

, b

ba

, b

ca

,

b

bb

, b

cb

, b

cc

, c

aa

, c

ba

, c

ca

, c

bb

, c

cb

, c

cc

,

a

aa

, a

ba

, a

ca

, a

bb

, a

cb

, a

cc

, b

bb

, b

cb

, b

cc

, c

cc

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

.

If G and H are two D-decorated graphs, their disjoint union is naturally also a

D-decorated graph: hence, the disjoint union makes HGpDq an associative, commu-

tative algebra, which unit is the empty graph 1. Moreover, if G is a D-decorated

graph and I Ă V pGq, then G|I is also a D-decorated graph, with dG|I “ pdGq|I .

Then HGpDq is a Hopf algebra, with the coproduct defined by:

@G P GpDq, ∆pGq “
ÿ

V pGq“I\J

G|I bG|J .
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Example 2.16. If a, b, c P D:

∆p aq “ a b 1` 1b a,

∆p a
b

q “ a
b

b 1` 1b a
b

` a b b ` b b a,

∆p a

cb

q “ a

cb

b 1` 1b a

cb

` a
b

b c ` a
c

b b ` b

c

b a

` c b a
b

` b b a
c

` a b b

c

,

∆p a

cb

q “ a

cb

b 1` 1b a

cb

` a
b

b c ` a
c

b b

` b c b a ` b b a
c

` c b a
b

` a b b c .

In order to define the second coproduct, we need more structure on D: let us

assume that pD,`q is an abelian semigroup (that is to say, ` is a commutative,

associative binary operation on D). If G is a D-decorated graph and „ is an

equivalence on V pGq. As V pG |„q “ V pGq, G |„ is a D-decorated graph, with

dG|„ “ dG. W define dG{„ by:

@c P V pG{ „q “ V pGq{ „, dG{„pcq “
ÿ

xPc

dGpxq.

As pD,`q is an abelian semigroup, this is well-defined, and in this way G{ „

becomes a D-decorated graph. The proof of Proposition 2.6 can be extended to the

D-decorated case; with the notations of the proof of this theorem, if „, „1 ŸG and

„1ď„, then, as decorated graphs:

pG{ „q{ „1 “ pG{ „1q, pG{ „q |„1 “ pG| „1q{ „, G |„ “ pG |„1q |„ .

Hence, HGpDq is a bialgebra, with the coproduct defined by:

@G P GpDq, δpGq “
ÿ

„ŸG

pG{ „q b pG| „q.

Example 2.17. If a, b, c P D:

δp aq “ a b a,

δp a
b

q “ a ` b b a
b

` a
b

b a b ,

δp a

cb

q “ a ` b ` c b a

cb

` a ` b
c

b c a
b

` a ` c
b

b b a
c

` b ` c
a

b a b

c

` a

cb

b a b c ,

δp a

cb

q “ a ` b ` c b a

cb

` a ` c
b

b b a
c

` a ` b
c

b c a
b

` a

cb

b a b c .
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Theorem 2.18. With the coaction δ, pHGpDq,m,∆q and pHGpDq,m, δq are in coin-

teraction. Moreover, let us consider the forgetful map:

F pDq :

#

HGpDq ÝÑ HG

pG, dGq P GpDq ÝÑ G P G,

then F pDq is a surjective Hopf algebra morphism from pHGpDq,m,∆q to pHG ,m,∆q

and a bialgebra morphism from compatible pHGpDq,m, δq to pHG ,m, δq.

Remark 2.19. When D is a singleton, F pDq is an isomorphism. Through this

isomorphism, we identify HG with HGpDq, when D “ t˚u is a singleton, given its

unique semigroup structure ˚ ` ˚ “ ˚.

Let us now give HGpDq a graduation. A graded set is a pair pD,wtq, where

wt : D ÝÑ Ną0 is a map. Given such a map, we put, for any D-decorated graph

G:

wtpGq “
ÿ

xPV pGq

wtpxq.

For any n ě 0, let pHGpDqqn be the subspace of HGpDq generated by the D-decorated

graphs G with wtpGq “ n. Then:

Proposition 2.20. If pD,wtq is a graded set, the map wt induces a connected

graduation of the Hopf algebra pHGpDq,m,∆q.

Remark 2.21. The nondecorated case HG is obtained with the weight defined by

wtp˚q “ 1.

3. Chromatic polynomials

In all this section, we fix an abelian semigroup pD,`q and work in HGpDq. This

situation includes the nondecorated case, when D “ t˚u.

3.1. Consequence of the cointeraction. We can apply the results of [10]:

Theorem 3.1. We denote by MGpDq the monoid of characters of HGpDq. In the

nondecorated case, we shall simply write MG.

(1) Let λ P MGpDq. It is an invertible element if, and only if, for any d P D,

λp dq ‰ 0.

(2) Let B be a Hopf algebra, and EHGpDqÑB be the set of Hopf algebra mor-

phisms from pHGpDq,m,∆q to B. Then MGpDq acts on EHGpDqÑB by:

Ð:

#

EHGpDqÑB ˆMGpDq ÝÑ EHGpDqÑB

pφ, λq ÝÑ φÐ λ “ pφb λq ˝ δ.
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(3) Let λ PMGpDq. There exists a unique element φ P EHGpDqÑQrXs such that:

@x P HGpDq, φpxqp1q “ λpxq.

(4) There exists a unique morphism φ
pDq
1 : HGpDq ÝÑ QrXs, such that:

‚ φ
pDq
1 is a Hopf algebra morphism from pHGpDq,m,∆q to pQrXs,m,∆q.

‚ φ
pDq
1 is a bialgebra morphism from pHGpDq,m, δq to pQrXs,m, δq.

This morphism is the unique element φ P EHGpDqÑQrXs such that:

@x P HGpDq, φpxqp1q “ ε1pxq.

In the nondecorated case, we shall simply write φ1.

(5) The following map is a bijection:
#

MGpDq ÝÑ EHGpDqÑQrXs

λ ÝÑ φ
pDq
1 Ð λ.

We shall determine φ
pDq
1 in the next section.

3.2. A first morphism.

Proposition 3.2. We define φ
pDq
0 : HGpDq ÝÑ QrXs by:

@G P GpDq, φ
pDq
0 pGq “ X |V pGq|.

Then φ
pDq
0 is a Hopf algebra morphism from pHGpDq,m,∆q to pQrXs,m,∆q. In the

nondecorated case, we shall simply write φ0.

Proof. This map is obviously an algebra morphism. For any graph G, of degree

n:

pφ
pDq
0 b φ

pDq
0 q ˝∆pGq “

ÿ

V pGq“I\J

X |I| bX |J|

“

n
ÿ

i“0

ˆ

n

i

˙

Xi bXn´i “ ∆pXnq “ ∆ ˝ φ
pDq
0 pGq.

So φ
pDq
0 is a Hopf algebra morphism. �

Remark 3.3. This morphism φ
pDq
0 is not compatible with δ. For example, in the

nondecorated case:

δ ˝ φ0p q “ δpXq2

“ X2 bX2,

pφ0 b φ0q ˝ δp q “ pφ0 b φ0qp b ` b q

“ X2 bX2 `X bX2.
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3.3. Determination of φ
pDq
1 . Let us recall the definition of the chromatic poly-

nomial, due to Birkhoff and Lewis [5]:

Definition 3.4. Let G be a graph and X a set.

(1) A X-coloring of G is a map f : V pGq ÝÑ X.

(2) A N-coloring of G is packed if fpV pGqq “ rks, with k ě 0. The set of packed

colorings of G is denoted by PCpGq.
(3) A valid X-coloring of G by X is a X-coloring f such that if ti, ju P EpGq,

then fpiq ‰ fpjq. The set of valid X-colorings of G is denoted by VCpG,Xq;
the set of packed valid colorings of G is denoted by PVCpGq.

(4) An independent subset of G is a subset I of V pGq such that G|I is totally

disconnected. We denote by IPpGq the set of partitions tI1, . . . , Iku of V pGq

such that for all p P rks, Ip is an independent subset of G.

(5) For any k ě 1, the number of valid rks-colorings of G is denoted by

PchrpGqpkq. This defines a unique polynomial PchrpGq P QrXs, called the

chromatic polynomial of G.

Note that if f is a X-coloring of a graph G, it is valid if, and only if, the partition

of V pGq tf´1pxq | x P fpV pGqqu belongs to IPpGq.

Theorem 3.5. (1) The morphism Pchr : HG ÝÑ QrXs is the morphism φ1 of

Theorem 3.1.

(2) The unique morphism φ
pDq
1 of Theorem 3.1 is P

pDq
chr “ Pchr ˝ F pDq.

Proof. 1. It is immediate that, for any graphs G and H, for any k,

PchrpGHqpkq “ PchrpGqpkqPchrpHqpkq

so PchrpGHq “ PchrpGqPchrpHq: Pchr is an algebra morphism. Let G be a graph,

and k, l ě 1. We consider the two sets:

C “ VCpG, rk ` lsq,

D “ tpI, c1, c2q | I Ď V pGq, c1 P VCpG|I , rksq, c2 P VCpG|V pGqzI , rlsqu.

We define a map θ : C ÝÑ D by θpcq “ pI, c1, c2q, with:

‚ I “ tx P V pGq | cpxq P rksu.

‚ For all x P I, c1pxq “ cpxq.

‚ For all x R I, c2pxq “ cpxq ´ k.

We define a map θ1 : D ÝÑ C by θpI, c1, c2q “ c, with:

‚ For all x P I, cpxq “ c1pxq.
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‚ For all x R I, cpxq “ c2pxq ` k.

Both θ and θ1 are well-defined; moreover, θ ˝ θ1 “ IdD and θ1 ˝ θ “ IdC , so θ is a

bijection. Via the identification of QrXs bQrXs and QrX,Y s:

∆ ˝ PchrpGqpk, lq “ PchrpGqpk ` lq

“ 7C

“ 7D

“
ÿ

IĎV pGq

PchrpG|IqpkqPchrpG|V pGqzIqplq

“ pPchr b Pchrq

¨

˝

ÿ

V pGq“I\J

G|I bG|J

˛

‚pk, lq

“ pPchr b Pchrq ˝∆pGqpk, lq.

As this is true for all k, l ě 1, ∆ ˝ PchrpGq “ pPchr b Pchrq ˝∆pGq. Moreover:

εpGq “ ε ˝ PchrpGq “ PchrpGqp0q “

$

&

%

1 if G is empty,

0 otherwise.

So Pchr P EHGÑQrXs. For any graph G P G:

PchrpGqp1q “

$

&

%

1 if G is totally disconnected,

0 otherwise;

“ ε1pGq.

So φ1 “ Pchr.

2. By composition, Pchr ˝ F pDq satisfies the two required conditions. �

3.4. The chromatic character.

Corollary 3.6. For any connected graph G P G, we put:

λchrpGq “
dPchrpGq

dX
p0q.

We extend λ as an element of MG: for any graph G, if G1, . . . , Gk are the connected

components of G,

λchrpGq “ λchrpG1q . . . λchrpGkq.

Then λchr is an invertible element of MG, and we denote its inverse by λ0. Then,

for any graph G, λ0pGq “ 1, or, equivalently:

@G P G,
ÿ

„ŸG

λchrpG{ „q “
ÿ

„ŸG

λchrpG |„q “ ε1pGq.
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Moreover, Pchr “ φ0 Ð λchr, or equivalently:

@G P G, PchrpGq “
ÿ

„ŸG

λchrpG| „qX
clp„q.

Proof. By Theorem 3.1, there exists a unique λ P MG , such that φ0 “ φ1 Ð λ.

Then:

ε1 ˝ φ0 “ ε1 ˝ pφ1 b λq ˝ δ “ ppε
1 ˝ φ1q b λq ˝ δ “ pε

1 b λq ˝ δ “ ε1 ˚ λ “ λ.

Therefore, for any graph G, λpGq “ ε1pX |V pGq|q “ 1. As λp q “ 1, by Theorem 3.1,

λ is invertible, and then φ1 “ φ0 Ð λ˚´1. For any graph G, by definition of δ:

φ1pGq “
ÿ

„ŸG

λ˚´1pG| „qXclp„q.

If G is connected, there exists a unique „1 ŸG such that clp„1q “ 1: this is the

equivalence relation such that for any x, y P V pGq, x „1 y. Moreover, G |„1“ G.

Hence, the coefficient of X in PchrpXq is λ˚´1pG |„1q ` 0 “ λ˚´1pGq, so:

λ˚´1pGq “
dPchrpGq

dX
p0q “ λchrpGq.

Consequently, λ´1
chr “ λ. �

The character λchr will be called the chromatic character. Its inverse is denoted

by λ0. We extend it to any HGpDq by λ
pDq
chr “ λchr ˝ F pDq. Then its inverse is

λ
pDq
0 ““ λ0 ˝ F pDq. Then, as F pDq is compatible with both bialgebraic structures

on HGpDq:

φ
pDq
1 “ φ

pDq
0 Ð λ

pDq
chr .

Proposition 3.7. λchrp q “ 1; if G is a connected graph, G ‰ , then:

λchrpGq “
ÿ

FPFpGq
p´1q7F .

Proof. We have λchrp q “ λ0p q “ 1, so both λchr and λ0 can be seen as characters

on H1G . Hence, for any connected graph G, different from :

λchrpGq “ λ0 ˝ S
1pGq “

ÿ

FPFpGq
p´1q7Fλ0pGF q “

ÿ

FPFpGq
p´1q7F ,

as λ0pHq “ 1 for any graph H P G. �

Example 3.8. (1) By direct computations, we obtain:

G

λchrpGq 1 ´1 2 1 ´6 ´4 ´2 ´3 ´1 ´1
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(2) If G is a complete graph with n vertices, PchrpGqpXq “ XpX ´ 1q . . . pX ´

n` 1q, so λchrpGq “ p´1qn´1pn´ 1q!.

(3) If G is a tree with n vertices, PchrpGqpXq “ XpX ´ 1qn´1, so λchrpGq “

p´1qn´1.

3.5. Extraction and contraction of edges.

Definition 3.9. Let G be a graph and e P EpGq.

(1) (Contraction of e). The graph G{e is G{ „e, where „e is the equivalence

which classes are e and singletons.

(2) (Subtraction of e). The graph Gze is the graph pV pGq, EpGqzteuq.

(3) We shall say that e is a bridge (or an isthmus) of G if ccpGzeq ą ccpGq.

We now give an algebraic proof of the following well-known result [13], which

allows to compute the chromatic polynomial by induction on the number of edges:

Proposition 3.10. For any graph G, for any edge e of G:

PchrpGq “ PchrpGzeq ´ PchrpG{eq;

λchrpGq “

$

&

%

´λchrpG{eq if e is a bridge,

λchrpGzeq ´ λchrpG{eq otherwise.

Proof. Let G be a graph, and e P EpGq. Let us prove that for all k ě 1,

PchrpGqpkq “ PchrpGzeqpkq ´ PchrpG{eqpkq. We proceed by induction on k. If

k “ 1, PchrpGqp1q “ ε1pGq “ 0. If G has only one edge, then Gze and G{e are

totally disconnected, and:

PchrpGzeqp1q ´ PchrpG{eqp1q “ 1´ 1 “ 0.

Otherwise, Gze and G{e have edges, and:

PchrpGzeqp1q ´ PchrpG{eqp1q “ 0´ 0 “ 0.
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Let us assume the result at rank k. Putting e “ tx, yu:

PchrpGzeqpk ` 1q ´ PchrpG{eqpk ` 1q

“
ÿ

V pGq“I\J

PchrppGzeq|IqpkqPchrppGzeq|Jqp1q

´
ÿ

V pGq“I\J,
x,yPI

PchrppG{eq|IqpkqPchrppG{eq|Jp1q

´
ÿ

V pGq“I\J,
x,yPJ

PchrppG{eq|IqpkqPchrppG{eq|Jp1q

“
ÿ

V pGq“I\J,
x,yPI

PchrppGzeq|IqpkqPchrppGzeq|Jqp1q

`
ÿ

V pGq“I\J,
x,yPJ

PchrppGzeq|IqpkqPchrppGzeq|Jqp1q

´
ÿ

V pGq“I\J,
x,yPI

PchrppG{eq|IqpkqPchrppG{eq|Jqp1q

´
ÿ

V pGq“I\J,
x,yPJ

PchrppG{eq|IqpkqPchrppG{eq|Jqp1q

`
ÿ

V pGq“I\J,
px,yqPpIˆJqYpJˆIq

PchrppGzeq|IqpkqPchrppGzeq|Jqp1q

“
ÿ

V pGq“I\J,
x,yPI

PchrppG|IqzeqpkqPchrpG|Jqp1q

`
ÿ

V pGq“I\J,
x,yPJ

PchrpG|IqpkqPchrppG|Jqzeqp1q

´
ÿ

V pGq“I\J,
x,yPI

PchrppG|Iq{eqpkqPchrpG|Jqp1q

´
ÿ

V pGq“I\J,
x,yPJ

PchrpG|IqpkqPchrppG|Jq{eqp1q

`
ÿ

V pGq“I\J,
px,yqPpIˆJqYpJˆIq

PchrpG|IqpkqPchrpG|Jqp1q

“
ÿ

V pGq“I\J,
x,yPI

PchrpG|IqpkqPchrpG|Jqp1q `
ÿ

V pGq“I\J,
x,yPJ

PchrpG|IqpkqPchrpG|Jqp1q

`
ÿ

V pGq“I\J,
px,yqPpIˆJqYpJˆIq

PchrpG|IqpkqPchrpG|Jqp1q

“
ÿ

V pGq“I\J

PchrpG|IqpkqPchrpG|Jqp1q

“ PchrpGqpk ` 1q.
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So the result holds for all k ě 1. Hence, PchrpGq “ PchrpGzeq ´ PchrpG{eq.

Let us assume that G is connected. Note that G{e is connected. If e is a

bridge, then Gze is not connected; each of its connected components belongs to

the augmentation ideal of HG , so their images belong to the augmentation ideal of

QrXs, that is to say XQrXs; hence, PchrpGzeq P X
2QrXs, so:

λchrpGq “
dPchrpGq

dX
p0q “

dPchrpGzeq

dX
p0q ´

dPchrpG{eq

dX
p0q “ 0´ λchrpG{eq.

Otherwise, Gze is connected, and:

λchrpGq “
dPchrpGq

dX
p0q “

dPchrpGzeq

dX
p0q ´

dPchrpG{eq

dX
p0q “ λchrpGzeq ´ λchrpG{eq.

If G is not connected, we can write G “ G1G2, where G1 is connected and e is

an edge of G1. Then:

λchrpGq “ λchrpG1qλchrpG2q

“

$

&

%

´λchrpG1{eqλchrpG2q if e is a bridge,

λchrpG1zeqλchrpG2q ´ λchrpG1{eqλchrpG2q otherwise;

“

$

&

%

´λchrppG1{eqG2q if e is a bridge,

λchrppG1zeqG2q ´ λchrppG1{eqG2q otherwise;

“

$

&

%

´λchrpG{eq if e is a bridge,

λchrpGzeq ´ λchrpG{eq otherwise.

So the result holds for any graph G. �

Example 3.11. For any n ě 3, let us denote by Cn the cyclic graph with n vertices.

Then λchrpC3q “ 2. Choosing any edge e of Cn with n ě 4, Cn{e “ Cn´1 and Cnze

is a chain on n vertices, so is a tree. Hence:

λchrpCnq “ p´1qn´1 ´ λchrpCn´1q.

A direct induction proves that for any n ě 3, λchrpCnq “ p´1qn´1pn´ 1q.

3.6. Lattices attached to graphs. We here make the link with Rota’s methods

for proving the alternation of signs in the coefficients of chromatic polynomials.

The following order is used to prove Proposition 2.6:

Proposition 3.12. Let G be a graph. We denote by RpGq the set of equivalences

„ on V pGq, such that „ ŸG. Then RpGq is partially ordered by refinement:

@ „,„1P RpGq, „ď„1 if p@x, y P V pGq, x „ y ùñ x „1 yq.
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In other words, „ď„1 if the equivalence classes of „1 are disjoint unions of equiva-

lence classes of „. Then pRpGq,ďq is a bounded graded lattice. Its minimal element

„0 is the equality; its maximal element „1 is the relation which equivalence classes

are the connected components of RpGq.

Proof. Let „,„1P RpGq. We define „ ^ „1 as the equivalence which classes are

the connected components of the subsets Cl„pxq X Cl„1pyq, x, y P V pGq. By its

very definition, „ ^ „1 ŸG, and „ ^ „1ď„,„1. If „2ď„,„1ď in RpGq, then

the equivalence classes of „ and „1 are disjoint union of equivalence classes of „2,

so their intersections also are; as the equivalence classes of „2 are connected, the

connected components of these intersections are also disjoint union of equivalence

classes of „2. This means that „2ď„ ^ „1.

We define „ _ „1 as the relation defined on V pGq in the following way: for all

x, y P V pGq, x „ _ „1 y if there exists x1, x
1
1, . . . , xk, x

1
k P V pGq such that:

x “ x1 „ x11 „
1 x2 „ . . . „1 xk „

1 x1k “ y.

It is not difficult to prove that „ _ „1 is an equivalence. Moreover, if x „ y,

then x „ _ „1 y (x1 “ x, x11 “ y); if x „1 y, then x „ _ „1 y (x1 “ x11 “ x,

x2 “ x12 “ y). Let C be an equivalence class of „ _ „1, and let x, y P C. With the

preceding notations, as the equivalence classes of „ and „1 are connected, for all

p P rks, there exists a path from xp to x1p, formed of elements „-equivalent, hence

„ _ „1-equivalent; for all p P rk ´ 1s, there exists a path from x1p to x1p`1, formed

of elements „1-equivalent, hence „ _ „1-equivalent. Concatening these paths, we

obtain a path from x to y in C, which is connected. So „ _ „1P RpGq, and

„,„1ď„ _ „1. Moreover, if „,„1ď„2, then obviously „ _ „1ď„2. We proved

that RpGq is a lattice.

For any „P RpGq, we put degpGq “ |G| ´ clp„q. Note that degp„0q “ 0. Let

us assume that „ is covered by „1 in RpGq. We denote by C1, . . . , Ck the classes

of „. As „ď„1, the classes of „1 are disjoint unions of Cp; as „‰„1, one of them,

denoted by C 1, contains at least two Cp. As C 1 is connected, there is an edge in

C 1 connecting two different Cp; up to a reindexation, we assume that there exists

an edge from C1 to C2 in C 1. Then C1 \ C2 is connected, and the equivalence „2

which classes are C1 \ C2, C3, . . . Ck satisfies „ď„2ď„1. As „1 covers „, „1“„2,

so degp„1q “ |G| ´ k ` 1 “ degp„q ` 1. �

Remark 3.13. This lattice is isomorphic to the one of [23]. The isomorphism

between them sends a element „P RpGq to the partition formed by its equivalence

classes.
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Example 3.14. We represent „P RpGq by G| „. Here are examples of RpGq,
represented by their Hasse graphs. We index the vertices of the graphs by letters

for a better understanding.

a
b

a b

a

cb

a
b

c a
c

b

a b c

a

cb

b

c
a a

c

b a
b

c

a b c

Proposition 3.15. Let G be a graph. We denote by µG the Möbius function of

RpGq.

(1) If „ď„1 in RpGq, then the poset r„,„1s is isomorphic to RppG| „1q{ „q.
(2) For any „ď„1 in RpGq, µGp„,„1q “ λchrppG| „

1q{ „q. In particular:

µGp„0,„1q “ λchrpGq.

Proof. Let „ď„1P RpGq. If „2 is an equivalence on V pGq, then „ď„2ď„ if, and

only if, the following conditions are satisfied:

‚ „2 goes to the quotient G{ „, as an equivalence denoted by „2.

‚ „2 P RppG| „1q{ „q.

Hence, we obtain a map from r„,„1s to RppG| „1q{ „q, sending „2 to „2. It is

immediate that this is a lattice isomorphism.

Let „ď„1P RpGq. As r„,„1s is isomorphic to the lattice RppG| „1q{ „q:

ÿ

„ď„2ď„1

λchrppG| „
2q{ „q “

ÿ

„2PRppG|„1q{„q

λchrpppG{ „
1q{ „q|„2q

“ PchrppG| „
1q{ „qp1q

“

$

&

%

1 if pG| „1q{ „ is totally disconnected,

0 otherwise;

“

$

&

%

1 if „“„1,

0 otherwise.

Hence, µGp„,„
1q “ λchrppG| „

1q{ „q. �
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Remark 3.16. We now use the notion of incidence algebra of a family of posets

exposed in [24]. We consider the family of posets:

tr„,„1s | G P G,„ď„1 in RpGqu.

It is obviously interval-closed. We define an equivalence relation on this family as

the one generated by r„,„1s ” RppG| „1q{ „q. The incidence bialgebra associated

to this family is pHG ,m, δq.

Proposition 3.17. Let G a graph.

(1) Let G1, . . . , Gk be the connected components of G. Then RpGq « RpG1q ˆ

. . .ˆRpGkq.
(2) Let e be a bridge of G. Then RpGq « RpG{eq ˆRp q.
(3) We consider the following map:

ζG :

#

RpGq ÝÑ PpEpGqq
„ ÝÑ EpG| „q.

This map is injective; for any „, „1P RpGq, „ď„1 if, and only if,

ζGp„q Ď ζGp„
1q.

Moreover, ζG is bijective if, and only if, G is a forest – that is to say a

graph such that any edge is a bridge.

Proof. 1. If G,H are graphs and „ is an equivalence on V pGHq, then „ ŸGH if,

and only if:

‚ „|V pGq ŸG.

‚ „|V pHq ŸH.

‚ For any x, y P V pGq \ V pHq, px „ yq ùñ ppx, yq P V pGq2 \ V pHq2.

Hence, the map sending „ to p„|V pGq,„|V pHqq from RpGHq to RpGqˆRpHq is an

isomorphism; the first point follows.

2. Note that Rp q “ t , u, with ď . By the first point, it is enough

to prove it if G is connected. Let us put e “ tx1, x2u, G1, respectively G2, the

connected components of Gze containing x1, respectively x2. We define a map

ψ : RpG{eq ˆRp q to RpGq in the following way: if „ŸRpG{eq,

‚ ψp„, q “„, defined by x „ y if x„y. This is clearly an equivalence;

moreover, x1 „ x2. if x „ y, there exists a path from x to y in G{e, formed

by vertices „-equivalent to x and y. Adding edges e if needed in this path,

we obtain a path from x to y in G, formed by vertices „-equivalent to x

and y; hence, „ ŸG.
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‚ ψp„, q “„, defined by x „ y if x„y and px, yq P V pG1q2 \ V pG2q2. This

is clearly an equivalence; moreover, we do not have x1 „ x2. If x „ y, let

us assume for example that both of them belong to G1. There is a path

in Gze from x to y, formed by vertices formed by vertices „-equivalent to

x and y. We choose such a path of minimal length. If this path contains

vertices belonging to G2, as e is a bridge of G, it has the form:

x´ . . .´ x1 ´ . . .´ x1 ´ . . .´ y.

Hence, we can obtain a shorter path from x to y: this is a contradiction. So

all the vertices of this path belong to G1; hence, they are all „-equivalent.

Finally, „ ŸG.

Let us assume that ψp„, q “ ψp„1, q “„. If x„y, then x „ y, so x„y; by

symmetry, „ “ „1. Let us assume that ψp„, q “ ψp„1, q “„. If x„y:

‚ If x, y P V pG1q or x, y P V pG2q, then x „ y, so x„y.

‚ If px, yq P V pG1q ˆ V pG2q or px, yq P V pG2q ˆ V pG1q, up to a permutation

we can assume that x P V pG1q and y P V pG2q. As „ Ÿ G{e, there exists

a path from x to y formed by „-equivalent vertices. This path necessarily

goes via x1 “ x2. Hence, x „ x1 and y „ x2, so x„x1 and y„x2, and finally

x„y.

By symmetry, „ “ „1. We proved that ψ is injective.

Let „ ŸG. If x1 „ x2, then „ goes through the quotient G{e and gives an

equivalence „ Ÿ G{e. Moreover, ψp„, q “„. Otherwise, „ ŸGze “ G1G2; let

us denote the equivalence classes of „ by C1, . . . , Ck`l, with x1 P C1, x2 P Ck`1,

C1, . . . , Ck Ď V pG1q, Ck`1, . . . , Ck`l Ď V pG2q. Let „ the equivalence on V pG{eq

which equivalence classes are C1 \ Ck`1, C2, . . . , Ck, Ck`2, . . . , Ck`l. Then „ŸG{e

and ψp„, q “„. We proved that ψ is surjective.

It is immediate that ψp„1,„2q ď ψp„11,„
1
2q if, and only if, „1 ď „

1
1 and „2ď„

1
2.

So ψ is a lattice isomorphism.

3. Let „, „1 be elements of RpGq. If „ď„1, then the connected components of

G| „1 are disjoint unions of connected components of G| „, so EpG| „q Ď EpG| „1q.

If EpG| „q Ď EpG| „1q, then the connected components of G| „1 are disjoint

unions of connected components of G| „, so „ď„1.

Consequently, if ζGp„q “ ζGp„
1q, then „ď„1 and „1ď„, so „“„1: ζG is injec-

tive.

Let us assume that ζG is surjective. Let e P EpGq; we consider „P RpGq, such

that ζGp„q “ EpGqze. In other words, G| „“ Gze. Hence, „‰„1, so clp„q ă
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clp„1q: G| „ has strictly more connected components than G. This proves that e

is a bridge, so G is a forest.

Let us assume that G is a forest. We denote by k the number of its edges. As any

edge of G is a bridge, by the second point, RpGq is isomorphic to Rp qkˆRp qccpGq,
so is of cardinal 2k ˆ 1ccpGq “ 2k. Hence, ζG is surjective. �

Remark 3.18. As a consequence, isomorphic posets may be associated to non-

isomorphic graphs: for example, Rp q « Rp q « Rp q3.

3.7. Applications.

Corollary 3.19. Let G be a graph.

(1) λchrpGq is non-zero, of sign p´1qdegpGq.

(2) We put PchrpGq “ a0 ` . . .` anX
n.

‚ For any i, ai ‰ 0 if, and only if, ccpGq ď i ď |G|.

‚ If ccpGq ď i ď |G|, the sign of ai is p´1q|G|´i.

(3) ´a|G|´1 is the number of edges of |G|.

Proof. (1) For any graph G, we put λ̃chrpGq “ p´1qdegpGqλchrpGq. This defines a

character λ̃ PMG . Let us prove that for any edge e of G:

λ̃chrpGq “

$

&

%

λ̃chrpG{eq if e is a bridge,

λ̃chrpGzeq ` λ̃chrpG{eq otherwise.

We proceed by induction on the number k of edges of G. If k “ 0, there is nothing

to prove. Let us assume the result at all ranks ă k, with k ě 1. Let e be an

edge of G. We shall apply the induction hypothesis to G{e and Gze. Note that

ccpG{eq “ ccpGq and |G{e| “ |G| ´ 1, so degpG{eq “ degpGq ´ 1.

‚ If e is a bridge, then:

λchrpGq “ ´p´1qdegpG{eqλ̃chrpG{eq “ p´1qdegpGqλ̃chrpG{eq.

‚ If e is not a bridge, then ccpGzeq “ ccpGq, and |Gze| “ |G|, so degpGzeq “

degpGq. Hence:

λchrpG{eq “ p´1qdegpGzeqλ̃chrpGzeq ´ p´1qdegpG{eqλ̃chrpG{eq

“ p´1qdegpGqλ̃chrpGzeq ` p´1qdegpGqλ̃chrpG{eq

“ p´1qdegpGqpλ̃chrpGzeq ` λ̃chrpG{eqq.

So the result holds for any graph G.

If G has no edge, then degpGq “ 0 and λchrpGq “ λ̃chrpGq “ 1. An easy

induction on the number of edges proves that for any graph G, λ̃chrpGq ě 1.
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(2) By Corollary 3.6, for any i:

ai “
ÿ

„ŸG, clp„q“i

λchrpG| „q

“
ÿ

„ŸG, clp„q“i

p´1q|G|´iλ̃chrpG| „q

“ p´1q|G|´i
ÿ

„ŸG, clp„q“i

λ̃chrpG| „q.

As for any graph H, λ̃chrpHq ě 1, this is non-zero if, and only if, there exists a

relation „ ŸG, such that clp„q “ i. If this holds, the sign of ai is p´1q|G|´i. It

remains to prove that there exists a relation „ ŸG, such that clp„q “ i if, and only

if, ccpGq ď i ď |G|.

(ñ) If „ ŸG, with clp„q “ i, as the equivalence classes of „ are connected,

each connected component of G is a union of classes of „, so i ě ccpGq. Obviously,

i ď |G|.

(ð) We proceed by decreasing induction on i. If i “ |G|, then the equality of

V pGq answers the question. Let us assume that ccpGq ď i ă |G| and that the result

holds at rank i` 1. Let „1 ŸG, with clp„1q “ i` 1. We denote by I1, . . . , Ii`1 the

equivalence classes of „1. As I1, . . . , Ii`1 are connected, the connected components

of G are union of Ip; as i`1 ą ccpGq, one of the connected components of G, which

we call G1, contains at least two equivalence classes of „1. As G1 is connected, there

exists an edge in G1, relation two vertices into different equivalence classes of „1; up

to a reindexation, we assume that they are I1 and I2. Hence, I1 \ I2 is connected.

We consider the relation „ which equivalence classes are I1 \ I2, I3, . . . , Ii`1: then

„ ŸG and clp„q “ i.

(3) For i “ |G|´1, we have to consider relations „ ŸG such that clp„q “ |G|´1.

These equivalences are in bijection with edges, via the map ζG of Proposition 3.17.

For such an equivalence, G| „“ |G|´1, so λchrpG| „q “ ´1. Finally, ai “

´|EpV q|. �

Remark 3.20. The result on the signs of the coefficients of PchrpGq is due to Rota

[23], who proved it using the Möbius function of the poset of Proposition 3.17.

Corollary 3.21. Let G be a graph; |λchrpGq| “ 1 if, and only if, G is a forest.

Proof. (ð) Then each component of G is a tree. The result then comes from

Example 3.8, last point.
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(ñ) If G is not a forest, there exists an edge e of G which is not a bridge. Then:

|λchrpGq| “ |λchrpGzeq| ` |λchrpG{eq| ě 1` 1 “ 2.

So |λchrpGq| ‰ 1. �

Lemma 3.22. If G is a graph and e is a bridge of G, then:

λchrpGq “ ´λchrpGzeq “ ´λchrpG{eq.

Proof. We already proved in Proposition 3.17 that λchrpGq “ ´λchrpG{eq. Let

us prove that λchrpGq “ ´λchrpGzeq by induction on the number k of edges of

G which are not bridges. If k “ 0, then G and Gze are forests with n vertices,

ccpGzeq “ ccpGq ` 1 and:

λchrpGq “ ´λchrpGzeq “ p´1qdegpGq.

Let us assume the result at rank k ´ 1, k ě 1. Let f be an edge of G which is not

a bridge of G.

λchrpGq “ λchrpGzfq ´ λchrpG{fq

“ ´λchrppGzfqzeq ` λchrppG{fqzeq

“ ´λchrppGzeqzfq ` λchrppGzeq{fq

“ ´λchrpGzeq.

So the result holds for any bridge of any graph. �

Proposition 3.23. (1) Let G and H be two graphs, with V pGq “ V pHq and

EpGq Ď EpHq. Then:

|λchrpGq| ď |λchrpHq| ` ccpGq ´ ccpHq ´ 7pEpHq ´ EpGqq ď |λchrpHq|.

Moreover, if ccpGq “ ccpHq, then |λchrpGq| “ |λchrpHq| if, and only if,

G “ H.

(2) For any graph G, |λchrpGq| ď p|G| ´ 1q!, with equality if, and only if, G is

complete.

Proof. 1. We put k “ 7pEpHqzEpGqq. There exists a sequence e1, . . . , ek of edges

of H such that:

G0 “ G, Gk “ H, @i P rks, Gi´1 “ Gizei.
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For all i, ccpGiq “ ccpGi´1q ` 1 if ei is a bridge of Gi, and ccpGiq “ ccpGi´1q

otherwise. Hence, ccpGq´ ccpHq ď k. We denote by I the set of indices i such that

ccpGiq “ ccpGi´1q; then 7I “ k ´ ccpGq ` ccpHq. Moreover:

|λchrpGiq| “

$

&

%

|λchrpGi´1q| ` |λchrppGiq{eiq| ą |λchrpGi´1q| if i P I,

|λchrpGi´1q| if i R I.

As a conclusion, |λchrpGq| ď |λchrpHq| ´ 7I “ |λchrpHq| ` ccpGq ´ ccpHq ´ k ď

|λchrpHq|.

If ccpGq “ ccpHq and |λchrpGq| “ |λchrpHq|, then k “ 0, so G “ H.

2. We put n “ |G|. We apply the first point with H the complete graph such

that V pHq “ V pGq. We already observed that |λchrpHq| “ pn´ 1q!, so:

|λchrpGq| ď pn´ 1q!.

If G is not connected, there exist graphs G1, G2 such that G “ G1G2, n1 “ |G1s ă

n, n2 “ |G2| ă n. Hence:

|λchrpGq| “ |λchrpG1q||λchrpG2q ď pn1 ´ 1q!pn2 ´ 1q! ď pn1 ` n2 ´ 2q ă pn´ 1q!.

If G is connected, then ccpGq “ ccpHq: if |λchrpGq| “ |λchrpHq|, then G “ H. �

3.8. Values of the chromatic polynomial at negative integers.

Theorem 3.24. Let k ě 1 and G a graph. Then p´1q|G|PchrpGqp´kq is the number

of families ppI1, . . . , Ikq, O1, . . . , Okq such that:

‚ I1 \ . . .\ Ik “ V pGq (note that one may have empty Ip’s).

‚ For all 1 ď i ď k, Oi is an acyclic orientation of G|Ii .

In particular, p´1q|G|PchrpGqp´1q is the number of acyclic orientations of G.

Proof. By the extraction-contraction process:

‚ If G is totally disconnected, p´1q|G|PchrpGqp´1q “ 1.

‚ If G has an edge e,

p´1q|G|PchrpGqp´1q “ p´1q|Gze|PchrpGzeqp´1q ` p´1q|G{e|PchrpG{eqp´1q.

For any graph H, let us denote by ApHq the set of acyclic orientations of H. Let

G be a graph and e “ tx, yu be an edge of G. If σ P ApG{eq, we deduce an

orientation σ of Gze by lifting the orientations of the edges of G{e to the edges of

Gze. Obviously, this defines an injective map ι from ApG{eq to ApGzeq.
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If σ P ApG{eq, let us denote by ι`pσq, respectively ι´pGq, the orientation of G

obtained from ιpσq by orientating e from x to y, respectively from y to x. Let us

assume that one of them is not acyclic. We obtain for example a cycle

xÑ y Ñ x1 Ñ . . .Ñ xk “ x,

which induces a cycle in the orientation σ of G{e: this is a contradiction. We obtain

two maps ι`, ι´ : ApG{eq ÝÑ ApGq, both injective, with disjoint images.

Let σ P ApGzeqzιpApG{eqq. We denote by σ`, respectively σ´, the orientation

of G obtained from σ by orientating e from x to y, respectively from y to x. As

σ R ιpApG{eqq, there exists a vertex z P V pGq, with edges tx, zu and ty, zu, such

that, tx, zu is oriented from x to z and ty, zu from z to y, up to a permutation of x

and y. Then y Ñ xÑ z Ñ y is a cycle in σ´ : at most one of σ` and σ´ is acyclic.

Let us assume that none of them is acyclic. We obtain two cycles in σ` and σ´:

xÑ y Ñ y1 . . .Ñ yk “ x, y Ñ xÑ x1 . . .Ñ xl “ y.

We obtain then a cycle y Ñ y1 . . . Ñ yk Ñ x1 Ñ . . . Ñ xl “ y in σ, which is not

acyclic. Hence, exactly one of σ´ and σ` is acyclic: we obtain an injective map

κ : ApGzeqzιpApG{eqq ÝÑ ApGq. Clearly, the images of three maps are disjoint and

cover the whole ApGq. Hence:

|ApGq| “ 2|ApG{eq| ` |ApGzeqzApG{eq| “ |ApG{eq| ` |ApGzeq|.

An easy induction on the number of edges ofG then proves that p´1q|G|PchrpGqp´1q

is indeed |ApGq|.

If k ě 2:

p´1q|G|PchrpGqp´kq

“ p´1q|G|PchrpGqpp´1q ` . . .` p´1qq

“ p´1q|G|∆pk´1q ˝ PchrpGqp´1, . . . ,´1q

“ p´1q|G|Pbkchr ˝∆pk´1qpGqp´1, . . . ,´1q

“ p´1q|G|
ÿ

V pGq“I1\...\Ik

PchrpG|I1qp´1q . . . PchrpG|Ikqp´1q

“
ÿ

V pGq“I1\...\Ik

p´1q|G|I1 |PchrpG|I1qp´1q . . . p´1q|G|Ik |PchrpG|Ikqp´1q.

The case k “ 1 implies the result. �

We recover the interpretation of Stanley [25]:
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Corollary 3.25. Let k ě 1 and G a graph. Then p´1q|G|PchrpGqp´kq is the

number of pairs pf,Oq where

‚ f is a map from V pGq to rks.

‚ O is an acyclic orientation of G.

‚ If there is an oriented edge from x to y in V pGq for the orientation O, then

fpxq ď fpyq.

Proof. Let A be the set of families defined in Theorem 3.24, and B be the set of

pairs defined in Corollary 3.25. We define a bijection θ : A ÝÑ B in the following

way: if ppI1, . . . , Ikq, O1, . . . , Okq P A, we put θppI1, . . . , Ikq, O1, . . . , Okq “ pf,Oq,

such that:

(1) f´1ppq “ Ip for any p P rks.

(2) If e “ tx, yu P EpGq, we put fpxq “ i and fpxq “ j. If i “ j, then e is

oriented as in Oi. Otherwise, if i ă j, e is oriented from i to j if i ă j and

from j to i if i ą j.

Note that O is indeed acyclic: if there is an oriented path from x to y in G of length

ě 1, then f increases along this path. If f remains constant, as Ofpxq is acyclic,

x ‰ y. Otherwise, fpxq ă fpyq, so x ‰ y. It is then not difficult to see that θ is

bijective. �

This gives us a formula for the antipode of pHGpDq,m,∆q, proved in [16] in

another way in the nondecorated case:

Corollary 3.26. Let us denote by S the antipode of pHGpDq,m,∆q. For any graph

G P GpDq:

SpGq “
ÿ

„ŸG

p´1qclp„q7tacyclic orientations of G{ „uG |„ .

Proof. Let us denote by ‹ the convolution product associated to ∆ in MGpDq, and

by µ “ ε1 ˝ S the inverse of ε1 for ‹. Let us put T “ pµ b Idq ˝ δ. Then, in the

convolution algebra EndpHGpDqq, with the product ‹ associated to the Hopf algebra
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pHGpDq,m,∆q:

T ‹ Id “ m ˝ pµb Idq ˝ pδ b Idq ˝∆

“ m ˝ pµb Idb ε1 b Idq ˝ pδ b δq ˝∆

“ pµb ε1 b Idq ˝m1,3,24 ˝ pδ b δq ˝∆

“ pµb ε1 b Idq ˝ p∆b Idq ˝ δ

“ pµ ‹ ε1 b Idq ˝ δ

“ pεb Idq ˝ δ

“ η ˝ ε,

where η : Q ÝÑ HGpDq send 1 P Q on the empty graph (unit map). Consequently:

T “ T ‹ Id ‹ S “ pη ˝ εq ‹ S “ S.

Let us now prove that for any graph G P GpDq:

µpGq “ P
pDq
chr pGqp´1q.

As P
pDq
chr is a Hopf algebra morphism from pHGpDq,m,∆q to pQrXs,m,∆q and ε1 ˝

P
pDq
chr “ ε1:

P
pDq
chr pGqp´1q “ S˝P

pDq
chr pGqp1q “ ε1˝S˝P

pDq
chr pGq “ ε1˝P

pDq
chr ˝SpGq “ ε1˝SpGq “ µpGq.

By Theorem 3.24:

µpGq “ p´1q|G|7tacyclic orientations of Gu. �

4. Chromatic symmetric functions

4.1. Reminders on QSym. The Hopf algebra QSym [2,12,14,18,27] has a basis

pMuq indexed by compositions, that is to say finite sequences of positive integers.

Its product is given by quasi-shuffles. For example, if a, b, c, d P Ną0:

MaMbcd “Mabcd `Mbacd `Mbcad `Mbcda `Mpa`bqcd `Mbpa`cqd `Mabpc`dq,

MabMcd “Mabcd `Macbd `Macdb `Mcabd `Mcadb `Mcdab

`Mpa`cqbd `Mpa`cqdb `Mcpa`dqb `Mapb`cqd

`Macpb`dq `Mcapb`dq `Mpa`bqpc`dq.

Its coproduct is given by deconcatenation: for any composition w,

∆pMwq “
ÿ

uv“w

Mu bMv.
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For example, if a, b, c P Ną0:

∆pMaq “Ma b 1` 1bMa,

∆pMa,bq “Ma,b b 1`Ma bMb ` 1bMa,b,

∆pMa,b,cq “Ma,b,c b 1`Ma,b bMc `Ma bMb,c ` 1bMa,b,c.

For any composition w, we denote by |w| the sum of its letters; this induces a

connected graduation of QSym. There exists a second coproduct δ, such that for

any composition w of length n:

δpMwq “

n
ÿ

k“1

ÿ

w“w1...wk

M|w1|...|wk| bMw1
. . .Mwk .

For example, if a, b, c P Ną0:

δpMaq “Ma bMa,

δpMa,bq “Ma,b bMaMb `Ma`b bMa,b,

δpMa,b,cq “Ma,b,c bMaMbMc `Ma`b,c bMa,bMc

`Ma,b`c bMaMb,c `Ma`b`c bMa,b,c.

The counit of this coproduct is denoted by ε1; for any composition u,

ε1pMuq “

$

&

%

1 if u has only one letter,

0 otherwise.

Moreover, QSym admits a polynomial representation. Let X be a totally or-

dered alphabet – that is to say a set with a total order. For any u1 . . . un P Ną0,

we consider the element:

repXpMu1,...,unq “
ÿ

x1ă...ăxn in X

xu1
1 . . . xunn P QrrXss.

We define in this way an algebra morphism repX : QSym ÝÑ QrrXss. Moreover,

for any k P N, the restriction of repX to the k-th homogeneous component QSymk

of QSym is injective if, and only if, |X| ě k.

If X and Y are two totally ordered alphabets, X\Y is also totally ordered: for

all x P X, y P Y, x ď y. We identify QrrX \Yss with QrrXss b QrrYss, via the

continous morphism sending x P X to xb 1 and y P Y to 1b y. Then:

repX\Y “ prepX b repYq ˝∆.

The cartesian product XˆY is totally ordered by the lexicographic order: for any

x, x1 P X, y, y1 P Y, xy ď x1y1 if, and only if, px ă x1q or (x “ x1 and y ď y1).
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We identify QrrXˆYss with a subring of QrrXss bQrrYss through the continous

morphism sending px, yq P XˆY to xb y. Then:

repXˆY “ prepX b repYq ˝ δ.

Let us prove the associativity of ∆ and of δ and the cointeraction with the help

of these polynomial representations. We choose X, Y and Z three infinite totally

alphabets. Firstly, observe that, as totally ordered alphabets:

pX \ Y q \ Z “ X \ pY \ Zq.

Therefore:

prepX b repY b repZq ˝ p∆b Idq ˝∆ “ reppX\Y q\Z

“ repX\pY\Zq

“ prepX b repY b repZq ˝ pIdb∆q ˝∆.

As repX , repY and repZ are injective, p∆ b Idq ˝ ∆ “ pId b ∆q ˝ ∆. Secondly,

observe that, as totally ordered alphabets:

pX ˆ Y q ˆ Z “ X ˆ pY ˆ Zq.

Therefore:

prepX b repY b repZq ˝ pδ b Idq ˝ δ “ reppXˆY qˆZ

“ repXˆpYˆZq

“ prepX b repY b repZq ˝ pIdb δq ˝ δ.

Hence, pδ b Idq ˝ δ “ pIdb δq ˝ δ. Finally, as totally ordered alphabets1:

pX \ Y q ˆ Z “ pX ˆ Zq \ pY ˆ Zq.

Therefore:

prepX b repY b repZq ˝m1,3,24 ˝ pδ b δq ˝∆

“ prepX b repZ b repY b repZq ˝ pδ b δq ˝∆

“ reppXˆZq\pYˆZq

“ reppX\Y qˆZ

“ prepX b repY b repZq ˝ p∆b Idq ˝ δ.

Hence, m1,3,24 ˝ pδ b δq ˝∆ “ p∆b Idq ˝ δ. We obtain:

1but X ˆ pY \ Zq ‰ pX ˆ Y q \ pX ˆ Zq in general.
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Proposition 4.1. With the coaction δ, pQSym,m,∆q and pQSym,m, δq are in

cointeraction.

The Hopf algebra QSym contains the cocommutative Hopf subalgebra Sym of

symmetric functions; this subalgebra is linearly generated by the elements:

Mtu1,...,uku “
ÿ

σPSk

Muσp1q,...uσpkq ,

where k ě 1 and u1, . . . , uk P Ną0. Let us apply the results of [10] to QSym.

Proposition 4.2. For any k ě 0, we denote by Hk the k-th Hilbert polynomial:

HkpXq “
XpX ´ 1q . . . pX ´ k ` 1q

k!
.

Let us consider the map:

H :

#

QSym ÝÑ QrXs
Mu1...uk ÝÑ Hk.

Then H is the unique morphism from QSym to QrXs compatible with m, ∆ and

δ.

Proof. By [10], such a morphism exists and is unique. Let us prove that H is

indeed compatible with m, ∆ and δ. For any finite totally ordered alphabet X, of

cardinality k, for any a P QSym, by definition of the polynomial representation of

QSym:

Hpaqpkq “ repXpaq|@xPX, x“1.

If a, b P QSym, for any k ě 1, if X is a totally ordered alphabet of cardinality k:

Hpabqpkq “ repXpabq|@xPX, x“1

“ repXpaq|@xPX, x“1repXpbq|@xPX, x“1 “ HpaqpkqHpbqpkq.

Hence, Hpabq “ HpaqHpbq. If a P QSym, for any k, l ě 1, choosing totally ordered

alphabets X and Y of respective cardinality k and l:

∆ ˝Hpaqpk, lq δ ˝Hpaqpk, lq

“ Hpaqpk ` lq “ Hpaqpklq

“ repX\Ypaq|@xPX\Y, x“1 “ repXˆYpaq|@xPX\Y, x“1

“ prepX b repYq ˝∆paq|@xPX\Y, x“1 “ prepX b repYq ˝ δpaq|@xPX\Y, x“1

“ pH bHq ˝∆paqpk, lq; “ pH bHq ˝ δpaqpk, lq.

Hence, ∆ ˝H “ pH bHq ˝∆ and δ ˝H “ pH bHq ˝ δ. �



150 LOÏC FOISSY

4.2. Cointeraction and quasi-symmetric functions. The following result is

proved by Aguiar and Bergeron in [2]. It states that QSym is a terminal object in

a suitable category of combinatorial Hopf algebras:

Theorem 4.3. Let pA,m,∆q be a graded, connected Hopf algebra, and α be a

character on A. There exists a unique homogeneous Hopf algebra morphism Φα :

pA,m,∆q ÝÑ pQSym,m,∆q, such that α “ ε1 ˝ Φα. For any a P A:

Φαpaq “ εpaq1`
8
ÿ

k“1

ÿ

u1,...,uką0

αbk ˝ pπu1 b . . .b πukq ˝∆pk´1qpaqMu1,...,uk ,

where, for any j ě 1, πj is the canonical projection on the j-th homogeneous com-

ponent Aj of A.

Theorem 4.4. Let pA,m,∆q and pA,m, δq be cointeracting bialgebras, such that

pA,m,∆q is a graded connected Hopf algebra. We denote by ε1 the counit of the

coalgebra pA, δq.

(1) There exists a morphism Φ1 : A ÝÑ QSym such that:

(a) Φ1 : pA,m,∆q ÝÑ pQSym,m,∆q is a homogeneous morphism of Hopf

algebras,

(b) Φ1 : pA,m, δq ÝÑ pQSym,m, δq is a morphism of bialgebras,

if, and only if:

@n P N, δpAnq Ď An bA` kerpΦε1q bA`Ab kerpΦε1q.

Moreover, if this holds, then Φ1 “ Φε1 , and the unique morphism φ1 : A ÝÑ

KrXs given by Theorem 3.1 is Φ1 ˝H.

(2) If:

@n P N, δpAnq Ď An bA` kerpΦε1q bA,

then for any character α on A, Φα “ Φε1 Ð α.

Proof. (1) Unicity. If Φ1 is such a morphism, then ε1 ˝ Φ1 “ ε1. By Theorem 4.3,

Φ1 “ Φε1 . From now, we put Φ1 “ Φε1 .

Existence, (ñ) Let us assume that δ ˝ Φ1 “ pΦ1 b Φ1q ˝ δ. Let x P An. Let us

put

δpxq “
8
ÿ

i“0

ÿ

j

xi,j b yi,j ,
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where xi,j P Ai for any pi, jq. As Φ1 is homogeneous, Φ1pxq P QSymn. By

definition of the coproduct δ of QSym, δ ˝ Φ1pxq P QSymn bQSymn. Hence:

pΦ1 b Φ1q ˝ δpxq “
8
ÿ

i“0

ÿ

j

Φ1pxi,jq
looomooon

PQSymi

bΦ1pyi,jq P QSymn bQSymn.

Hence:

i ‰ n ùñ
ÿ

j

Φ1pxi,jq b Φ1pyi,jq “ 0.

So:

i ‰ n ùñ
ÿ

j

xi,j b yi,j P kerpΦ1 b Φ1q “ kerpΦ1q bA`Ab kerpΦ1q,

and finally x P An bA` kerpΦ1q bA`Ab kerpΦ1q.

Existence, (ð) We shall use the polynomial representation of QSym. If X,Y

are totally ordered alphabets, as Φ1 is compatible with ∆:

repX\Y ˝ Φ1 “ prepX b repYq ˝∆ ˝ Φ1 “ prepX b repYq ˝ pΦ1 b Φ1q ˝∆.

Let us prove that for any finite totally ordered alphabet X, for any totally ordered

alphabet Y:

repXˆY ˝ Φ1 “ prepX b repYq ˝ pΦ1 b Φ1q ˝ δ.

We proceed by induction on n “ |X|. If n “ 1, we put X “ txu. Let a P Ak, with

k P N. By the hypothesis on A:

pΦ1 b Φ1q ˝ δpaq P QSymk bQSym.

Therefore:

prepX b repYqpΦ1 b Φ1q ˝ δpaq “ xkpε1 b repYq ˝ pΦ1 b Φ1q ˝ δpaq

“ xkpε1 b repY ˝ Φ1q ˝ δpaq

“ xk pIdQ b repY ˝ Φ1q
loooooooooomoooooooooon

“repY˝Φ1

˝ pε1 b Idq ˝ δ
loooooomoooooon

“IdA

paq

“ xkrepY ˝ Φ1paq

“ repXˆY ˝ Φ1paq.

Let us assume that the results holds for any totally ordered alphabet X1 such

that |X1| ă |X|, with |X| ě 2. Let xn be the maximal element of X. We put

X1 “ Xztxnu and X2 “ txnu, such that X “ X1 \X2. Then:

XˆY “ pX1 \X2q ˆY “ pX1 ˆYq \ pX2 ˆYq,
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so:

repXˆY ˝ Φ1

“ reppX1ˆYq\pX2ˆYq ˝ Φ1

“ prepX1ˆY b repX2ˆYq ˝ pΦ1 b Φ1q ˝∆

“ prepX1 b repY b repX2 b repYq ˝ pΦ1 b Φ1 b Φ1 b Φ1q ˝ pδ b δq ˝∆

“ prepX1 b repX2 b repYq ˝m1,3,24 ˝ pΦ1 b Φ1 b Φ1 b Φ1q ˝ pδ b δq ˝∆

“ prepX1 b repX2 b repYq ˝ pΦ1 b Φ1 b Φ1q ˝m1,3,24 ˝ pδ b δq ˝∆

“ prepX1 b repX2 b repYq ˝ pΦ1 b Φ1 b Φ1q ˝ p∆b Idq ˝ δ

“ prepX1\X2 b repYq ˝ pΦ1 b Φ1q ˝ δ

“ prepX b repYq ˝ pΦ1 b Φ1q ˝ δ.

Let a P A. Let us choose a totally ordered alphabet X of cardinality n such that:

δpaq P
à

k,lďn

Ak bAl.

Then:

repXˆX ˝ Φ1paq “ prepX b repXq ˝ δ ˝ Φ1paq “ prepX b repXq ˝ pΦ1 b Φ1q ˝ δpaq.

By injectivity of repX till degree n, as |X| ě n, δ ˝ Φ1paq “ pΦ1 b Φ1q ˝ δpaq.

The morphism Φ1 ˝ H : A ÝÑ QSym is compatible with both bialgebraic

structures by composition. By unicity in Theorem 3.1, it is equal to φ1.

(2) Let a P An. Then by hypothesis, Φ1 Ð αpaq “ pΦ1 b αq ˝ δpaq P QSymn, so

Φ1 Ð α is a homogeneous Hopf algebra morphism. Moreover:

ε1 ˝ pΦ1 Ð αq “ pε1 ˝ Φ1 b αq ˝ δ “ pε
1 b αq ˝ δ “ α ˝ pε1 b Idq ˝ δ “ α,

so pΦ1 Ð αq “ Φα. �

4.3. Double morphisms from graphs to quasisymmetric functions.

Notation 4.5. For any graph G P GpDq, for any f P PCpGq and for any i P

rmaxpfqs, we put:

wtpf´1piqq “
ÿ

G connected component of G
|f´1piq

wt

¨

˝

ÿ

xPV pGq

dpxq

˛

‚;

Mf “Mwtpf´1p1qq...wtpf´1 maxpfqq P QSym.
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In other words, f´1piq is the sum of the weights of the connected components of

the subgraph of G which vertices are the vertices of G colored by i.

Remark 4.6. If wt : pD,`q ÝÑ pNą0,`q is a semigroup morphism, this simplify:

wtpf´1piqq “ wt

¨

˝

ÿ

xPV pGq, fpxq“i

dpxq

˛

‚.

Proposition 4.7. Let D be a nonempty set. We define F
pDq
chr : HGpDq ÝÑ QSym

by:

F
pDq
chr :

$

’

&

’

%

HGpDq ÝÑ QSym

G P GpDq ÝÑ
ÿ

fPPVCpGq
Mwtpf´1p1qq...wtpf´1pmaxpfqqq.

Then F
pDq
chr is a Hopf algebra morphism, equal to φε1 .

Proof. Let us apply Theorem 4.3 in order to describe Φε1 : for any nonempty

G P GpDq,

Φε1pGq “
8
ÿ

k“1

ÿ

u1,...,uką0

ε1bk ˝ pπu1
b . . .b πukq ˝∆pk´1qpGqMu1,...,uk

“

8
ÿ

k“1

ÿ

u1,...,uką0

ÿ

V pGq“I1\...\Ik

ε1 ˝ πu1pG|I1q . . . ε
1 ˝ πukpG|IkqMu1,...,uk

“

8
ÿ

k“1

ÿ

V pGq“I1\...\Ik

ε1pG|I1q b . . .b ε
1pG|IkqMwtpG|I1 q,...,wtpG|Ik q

.

Moreover, for any graph H, ε1pHq “ 1 if H is totally disconnected and 0 otherwise.

Hence:

Φε1pGq “
8
ÿ

k“1

ÿ

V pGq“I1\...\Ik,
@iPrks, G|Ii totally disconected

MwtpG|I1 q,...,wtpG|Ik q

“
ÿ

fPPVCpGq
Mwtpf´1p1qq...wtpf´1pmaxpfqqq

“ F
pDq
chr pGq. �
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Example 4.8. Let a, b, c P D.

F
pDq
chr p

aq “Mwtpaq,

F
pDq
chr p

a
b

q “Mwtpaq,wtpbq `Mwtpbq,wtpaq,

F
pDq
chr p

a

bc

q “Mwtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq

`Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq,

F
pDq
chr p

a

bc

q “Mwtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq

`Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq

`Mwtpaq,wtpbq`wtpcq `Mwtpbq`wtpcq,wtpaq.

In the nondecorated case, this simplifies:

Fchrp q “M1, Fchrp q “ 6M1,1,1,

Fchrp q “ 2M1,1, Fchrp q “ 6M1,1,1 `M1,2 `M2,1.

For any graph G, FchrpGq is the chromatic symmetric function of [26], when realized

with the totally ordered alphabet X “ tx1 ă x2 ă . . .u. For example:

repX ˝ Fchrp q “
8
ÿ

i“1

xi,

repX ˝ Fchrp q “
ÿ

i,jě1
i‰j

xixj ,

repX ˝ Fchrp q “
ÿ

i,j,kě1,
i‰j,
i‰k,
j‰k

xixjxk,

repX ˝ Fchrp q “
ÿ

i,j,kě1,
i‰j,
i‰k

xixjxk “
ÿ

i,j,kě1,
i‰j,
i‰k,
j‰k

xixjxk `
ÿ

i,jě1,
i‰j

xix
2
j .

We now fix an abelian semigroup pD,`q and a map wt : D ÝÑ Ną0, inducing a

graduation on HGpDq.

Theorem 4.9. There exists a morphism Φ1 : HGpDq ÝÑ QSym such that:

(1) Φ1 : pHGpDq,m,∆q ÝÑ pQSym,m,∆q is a homogeneous morphism of Hopf

algebras,

(2) Φ1 : pHGpDq,m, δq ÝÑ pQSym,m, δq is a morphism of bialgebras,
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if, and only if, wt : pD,`q ÝÑ pNą0,`q is a semigroup morphism. If so, Φ1 “ F
pDq
chr

(and therefore Φ1 is unique).

Proof. (ñ) By Theorem 4.4, ε1 ˝ Φ1 “ ε1, so necessarily Φ1 “ Φε1 “ F
pDq
chr . Let

a, b P D. Then:

δ ˝ Φ1p a
b

q “ pMwtpaq,wtpbq `Mwtpbq,wtpaqq bMwtpaqMwtpbq

`Mwtpaq`wtpbq b pMwtpaq,wtpbq `Mwtpbq,wtpaqq,

“ pΦ1 b Φ1q ˝ δp a
b

q “ pΦ1 b Φ1qp a
b

b a b ` a ` b b a
b

q

“ pMwtpaq,wtpbq `Mwtpbq,wtpaqq bMwtpaqMwtpbq

`Mwtpa`bq b pMwtpaq,wtpbq `Mwtpbq,wtpaqq.

Comparing, we obtain wtpaq `wtpbq “ wtpa` bq, so wt is a semigroup morphism.

(ð) Let us assume that wt is a semigroup morphism. Let G P GpDq and „ ŸG.

Then, obviously, wtpG |„q “ wtpGq and:

wtpG{ „q “
ÿ

cPV pG{„q

wtpdpcqq

“
ÿ

cPV pG{„q

wt

˜

ÿ

xPc

dpxq

¸

“
ÿ

cPV pG{„q

ÿ

xPc

wtpdpxqq

“
ÿ

xPV pGq

wtpdpxqq

“ wtpGq.

Hence, for any n P N, δppHGpDqqnq Ď pHGpDqqn b pHGpDqqn. By Theorem 4.4-2, Φε1

is a morphism for both bialgebraic structures. �

Example 4.10. As a consequence, in the nondecorated case, Fchr is not compatible

with δ. Indeed, for example:

δ ˝ Fchrp q pFchr b Fchrq ˝ δp q

“ 2δpM1,1q “ pFchr b Fchrqp b ` b q

“ 2pM1,1 bM1M1 `M2 bM1,1q, “ 2pM1,1 bM1M1 `M1 bM1,1q.
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On the other side, if pD,`q “ pNą0,`q and wt “ IdNą0
, then F

Dq
chr is compatible

with δ:

δ ˝ Fchrp 1
1

q pFchr b Fchrq ˝ δp 1
1

q

“ 2δpM1,1q “ pFchr b Fchrqp 1
1

b 1 1 ` 2 b 1
1

q

“ 2pM1,1 bM1M1 `M2 bM1,1q, “ 2pM1,1 bM1M1 `M2 bM1,1q.

Proposition 4.11. The image of F
pDq
chr is included in Sym. It is equal to Sym, if

and only if, there exists a P D, such that wtpaq “ 1.

Proof. As HGpDq is cocommutative, F
pDq
chr pHGpDqq is a cocommutative Hopf sub-

algebra of QSym, so is included in Sym, greatest cocommutative subalgebra of

QSym.

If 1 R wtpDq, then there is no element of HGpDq homogeneous of degree 1. As

F
pDq
chr is homogeneous, there is no element x P HGpDq such that Φ1pxq “M1.

If wtpaq “ 1, let us consider the complete graph Gn with n vertices, all decorated

by a. By definition of F
pDq
chr , F

pDq
chr pGnq “ n!M1n , so for any n, M1n P Φ1pHGpDqq.

As these elements (which are the elementary symmetric functions) generate Sym,

Φ1pHGpDqq “ Sym. �

4.4. Extension of φ0.

Proposition 4.12. Let G be a graph and f P PCpGq. We define the equivalence

„f in V pGq as the unique one which classes are the connected components of the

subsets f´1pxq, x P rmaxpfqs. Then, the coloring f induces a packed valid coloring

f of G{ „f :

@x P V pGq, fpxq “ fpxq.

Proof. We have to prove that f is a valid coloring of G{ „f . Let x, y be two

vertices of G{ „f , related by an edge (this implies that they are different); we

assume that fpxq “ fpyq. There exist x1, y1 P V pGq, such that x1 „f x and y1 „f y,

and x1, y1 are related by an edge in G. By definition of „f , there exist vertices

x1 “ x1, . . . , xk “ x, y “ y1, . . . , yl “ y1 in G such that fpx1q “ . . . “ fpxkq,

gpy1q “ . . . “ gpylq, and for all p, q, xp and xp`1, yq and yq`1 are related by an

edge in G. Hence, there is a path in G from x to y, such that for any vertex z

on this path, fpzq “ fpxq “ fpyq: this implies that x „f y, so x “ y. This is a

contradiction, so f is valid. �
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Proposition 4.13. Let us consider the following map:

F
pDq
0 :

$

’

&

’

%

HGpDq ÝÑ QSym

G ÝÑ
ÿ

fPPCpGq
Mf .

This is a Hopf algebra morphism, and F
pDq
0 ˝ H “ φ

pDq
0 . It is homogeneous if,

and only if, wt : pD,`q ÝÑ pNą0,`q is a semigroup morphism. Moreover, in

EHGpDqÑQSym:

F
pDq
chr “ F

pDq
0 Ð λ

pDq
chr .

Proof. Let G be graph. By Proposition 4.12, we have a map:

θ :

$

&

%

PCpGq ÝÑ
ğ

„ŸG

PVCpG{ „q

f ÝÑ f P PVCpG{ „f q.

θ is injective: if θpfq “ θpgq, then „f“„g and for any x P V pGq,

fpxq “ fpxq “ gpxq “ gpxq.

Let us show that θ is surjective. Let f P PVCpG{ „q, with „ ŸG. We define

f P PCpGq by fpxq “ fpxq for any vertex x. By definition of f , the equivalence

classes of „ are included in sets f´1piq, and are connected, as „ ŸG, so are included

in equivalence classes of „f : if x „ y, then x „f y. Let us assume that x „f y.

There exists a path x “ x1, . . . , xk “ y in G, such that fpx1q “ . . . “ fpxkq.

So fpx1q “ . . . “ fpxkq. As f is a valid coloring of G{ „, there is no edge

between xp and xp`1 in G{ „ for any p; this implies that xp “ xp`1 for any p, so

x “ x1 „ xk “ y. Finally, „“„f , so θpfq “ f .

Using the bijection θ, we obtain:

F
pDq
0 pGq “

ÿ

fPPCpGq
Mf

“
ÿ

„ŸG

ÿ

fPPVCpG{„q

Mf

“
ÿ

„ŸG

F
pDq
chr pG{ „q

“
ÿ

„ŸG

F
pDq
chr pG{ „qλ

pDq
0 pG |„q

“

´

F
pDq
chr Ð λ

pDq
0

¯

pGq.
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Therefore, F
pDq
0 “ F

pDq
chr Ð λ

pDq
0 , or equivalently F

pDq
chr “ F

pDq
0 Ð λ

pDq
chr . As a

consequence, F
pDq
0 is a Hopf algebra morphism, taking its values in Sym. Hence:

H ˝ F
pDq
0 “ H ˝ pF

pDq
chr Ð λ

pDq
0 q “ pH ˝ F

pDq
chr q Ð λ

pDq
0 “ Pchr Ð λ

pDq
0 “ φ

pDq
0 .

Let us assume that F
pDq
0 is homogeneous. For any a, b P D, F

pDq
0 p a

b

q is homoge-

neous of degree wtpaq`wtpbq, so Mwtpa`bq is homogeneous of degree wtpaq`wtpbq.

Hence, wtpa` bq “ wtpaq `wtpbq, and wt is a semigroup morphism. Conversely, if

G P GpDq, any term appearing in F
pDq
0 pGq is of degree

ÿ

xPV pGq

wtpdpxqq “ wtpGq,

so F
pDq
0 is homogeneous. �

Example 4.14. Let a, b, c P D.

F
pDq
0 p aq “Mwtpaq,

F
pDq
0 p a

b

q “Mwtpaq,wtpbq `Mwtpbq,wtpaq `Mwtpa`bq,

F
pDq
0 p a

bc

q “Mwtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq

`Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq

`Mwtpa`bq,wtpcq `Mwtpa`cq,wtpbq `Mwtpbq`wtpcq,wtpaq

`Mwtpcq,wtpa`bq `Mwtpbq,wtpa`cq `Mwtpaq,wtpbq`wtpcq `Mwtpa`b`cq,

F
pDq
0 p a

bc

q “Mwtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq

`Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq

`Mwtpa`bq,wtpcq `Mwtpa`cq,wtpbq `Mwtpb`cq,wtpaq

`Mwtpcq,wtpa`bq `Mwtpbq,wtpa`cq `Mwtpaq,wtpb`cq `Mwtpa`b`cq.

In the nondecorated case, this simplifies:

F0p q “M1, F0p q “ 6M111 ` 4M11 `M12 `M21 `M1,

F0p q “ 2M11 `M1, F0p q “ 6M111 ` 6M11 `M1.

5. Non-commutative versions

5.1. Non-commutative Hopf algebra of graphs.

Definition 5.1. (1) An indexed graph is a graph G such that V pGq “ rns,

with n ě 0. The set of indexed graphs is denoted by G .
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(2) Let G “ prns, EpGqq be an indexed graph and let I Ď rns. There exists a

unique increasing bijection f : I ÝÑ rks, where k “ 7I. We denote by G|I

the indexed graph defined by:

G|I “ prks, ttfpxq, fpyqu | tx, yu P EpGq, x, y P Iuq.

(3) Let G be an indexed graph and „ ŸG.

(a) The graph G| „ is an indexed graph.

(b) We order the elements of V pGq{ „ by their minimal elements; using

the unique increasing bijection from V pGq{ „ to rks, G{ „ becomes

an indexed graph.

(4) Let G “ prks, EpGqq and H “ prls, EpHqq be indexed graphs. The indexed

graph GH is defined by:

V pGHq “ rk ` ls,

EpGHq “ EpGq \ ttx` k, y ` lu | tx, yu P EpHqu.

The Hopf algebra pHG ,m,∆q is, as its commutative version, introduced in [24]:

Theorem 5.2. (1) We denote by HG the vector space generated by indexed

graphs. We define a product m and two coproducts ∆ and δ on HG in the

following way:

@G,H P G , mpGbHq “ GH,

@G “ prns, EpGqq P G , ∆pGq “
ÿ

IĎrns

G|I bGrnszI ,

@G P G , δpGq “
ÿ

„ŸG

G{ „ bG |„ .

Then pHG ,m,∆q is a graded cocommutative Hopf algebra, and pHG ,m, δq

is a bialgebra.

(2) Let $ : HG ÝÑ HG be the surjection sending an indexed graph to its

isoclass.

(a) $ : pHG ,m,∆q ÝÑ pHG ,m,∆q is a surjective Hopf algebra morphism.

(b) $ : pHG ,m, δq ÝÑ pHG ,m, δq is a surjective bialgebra morphism.

(c) We put ρ “ pIdb$q ˝ δ : HG ÝÑ HG bHG. This defines a coaction

of pHG ,m, δq on HG ; moreover, pHG ,m,∆q is a Hopf algebra in the

category of pHG ,m, δq-comodules.

Proof. (1) Similar to the proofs of Propositions 2.2 and 2.6.

(2) Points (a) and (b) are immediate; point (c) is proved in the same way as

Theorem 2.13. �
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Example 5.3.

∆p 1q “ 1 b 1` 1b 1 ,

∆p 1
2

q “ 1
2

b 1` 1b 1
2

` 1 b 1 ,

∆p 1

32

q “ 1

32

b 1` 1b 1

32

` 3 1 b 1
2

` 3 1
2

b 1 ,

∆p 1

32

q “ 1

32

b 1` 1b 1

32

` 2 1
2

b 1 ` 1 2 b 1 ` 2 1 b 1
2

` 1 b 1 2 ;

δp 1q “ 1 b 1 ,

δp 1
2

q “ 1 b 1
2

` 1
2

b 1 2 ,

δp 1

32

q “ 1 b 1

32

` 1
2

b p 1 2
3

` 2 1
3

` 3 1
2

q ` 1

32

b 1 2 3 ,

δp 1

32

q “ 1 b 1

32

` 1
2

b p 2 1
3

` 3 1
2

q ` 1

32

b 1 2 3 .

Remark 5.4. pHG ,m,∆q is not a bialgebra in the category of pHG ,m, δq-comodules,

as shown in the following example:

p∆b Idq ˝ δp 1

32

q “ ∆p 1q b 1

32

` p 1
2

b 1` 1b 1
2

q b p 2 1
3

` 1
2

3q

` 1 b 1 b p 2 1
3

` 1
2

3q `∆p 1

32

q b 1 2 3 ,

m1,3,24 ˝ pδ b δq ˝∆p 1

32

q “ ∆p 1q b 1

32

` p 1
2

b 1` 1b 1
2

q b p 2 1
3

` 1
2

3q

` 1 b 1 b p 1 2
3

` 1
2

3q `∆p 1

32

q b 1 2 3 .

5.2. Reminders on WQSym. Let us recall the construction of WQSym [21].

Definition 5.5. (1) Let w be a word with letters in Ną0. We shall say that w

is packed

@j P Ną0, j appears in w ùñ 1, . . . , j appear in w.

(2) Let w “ x1 . . . xk a wordwith letters in Ną0. There exists a unique in-

creasing bijection f from tx1, . . . , xku to rls, with l ě 0; the packed word

Packpwq is fpx1q . . . fpxkq.

(3) w “ x1 . . . xk a word in Ną0 and I Ď Ną0. The word w|I is the word

obtained by taking the letters of w which are in I.
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The Hopf algebra WQSym has the set of packed words for basis. If w “

w1 . . . wk and w1 “ w11 . . . w
1
l are packed words, then:

w ] w1 “
ÿ

w2“w21 ...w
2
k`l,

Packpw21 ...w
2
kq“w,

Packpw2k`1...w
2
k`l“w

1

w2.

For any packed word w:

∆pwq “

maxpwq
ÿ

i“0

w|ris b Packpwrmaxpwqszrisq.

Then pWQSym,],∆q is a Hopf algebra. Moreover, WQSym has also a second

coproduct δ defined on any packed word w “ w1 . . . wk by:

δpwq “
ÿ

f,g

fpw1q . . . fpwkq b gpw1q . . . gpwkq,

where the sum runs over all pairs of maps pf, gq, where f : rmaxpwqs ÝÑ rmaxpfqs

is an increasing surjective map and g : rmaxpwqs ÝÑ rmaxpgqs is an increasing map

such that for any i P rmaxpfqs, g|f´1piq is increasing. However, pWQSym,],∆q

is not a bialgebra in the category of right pWQSym,], δq-comodules, as shown in

the following example.

p∆b Idq ˝ δpp132qq

“ ∆pp132qq b p1q ] p1q ] p1q

` pp121q b 1` 1b p121qq b pp112q ` p121q ` p132q ` p123q ` p213qq

` p11q b p1q b pp112q ` p121q ` p132q ` p123q ` p213qq

`∆pp122qq b p1q ] p11q `∆pp111qq b p132q,

]1,3,24 ˝pδ b δq ˝∆pp132qq

“ ∆pp132qq b p1q ] p1q ] p1q

` pp121q b 1` 1b p121qq b pp112q ` p121q ` p132q ` p123q ` p213qq

` p11q b p1q b pp121q ` p121q ` p132q ` p123q ` p231qq

`∆pp122qq b p1q ] p11q `∆pp111qq b p132q.

This Hopf algebra admits a polynomial representation: we fix a infinite totally

ordered alphabet X; the set of words in X is denoted by X˚. For any packed word

w, we consider the noncommutative formal series:

RepXpwq “
ÿ

w1PX˚, Packpw1q“w

w1 P QxxXyy.
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Then RepX is an algebra morphism from WQSym to QxxXyy. For example:

RepXp111q “
ÿ

xPX

x3,

RepXp112q “
ÿ

xăy in X

x2y, RepXp221q “
ÿ

xăy in X

y2x,

RepXp121q “
ÿ

xăy in X

xyx, RepXp212q “
ÿ

xăy in X

yxy,

RepXp211q “
ÿ

xăy in X

yx2, RepXp122q “
ÿ

xăy in X

xy2,

RepXp123q “
ÿ

xăyăz in X

xyz, RepXp312q “
ÿ

xăyăz in X

zxy.

If X is infinite, then RepX is injective. If X and Y are two totally ordered alphabets,

we shall consider QxxXyy b QxxYyy as a quotient of QxxX \ Yyy, through the

continuous map:
$

’

’

&

’

’

%

QxxX\Yyy ÝÑ QxxXyy bQxxYyy
x P X ÝÑ xb 1,

y P Y ÝÑ 1b y.

We obtain:

RepX\Y “ pRepX b RepYq ˝∆.

We shall identify QxxXˆYyy with a subalgebra of QxxXyybQxxYyy, through the

continuous map:
#

QxxXˆYyy ÝÑ QxxXyy bQxxYyy
px, yq P XˆY ÝÑ xb y.

We obtain:

RepXˆY “ pRepX b RepYq ˝ δ.

5.3. Non-commutative chromatic symmetric functions.

Definition 5.6. A set partition is a partition of a set rns, with n ě 0. The set of

set partitions is denoted by SP.

Theorem 5.7. (1) For any packed word w of length n and of maximal k, we

denote by ppwq the set partition tw´1p1q, . . . , w´1pkqu. For any set partition

$ P SP, we put:

W$ “
ÿ

wPPW, ppwq“$

w.

These elements are a basis of a cocommutative Hopf subalgebra of WQSym,

denoted by WSym.
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(2) The following map is a Hopf algebra morphism from pHG ,m,∆q to pWQSym,

],∆q:

Fchr :

$

’

&

’

%

HG ÝÑ WQSym

G P G ÝÑ
ÿ

fPPVCpGq
fp1q . . . fp|G|q.

Its image is WSym. Moreover:

@G P G , FchrpGq “
ÿ

$PIPpGq
W$.

Proof. (2) For any totally ordered alphabet X, by definition of RepX , for any

G P G , with n vertices:

RepX ˝ FchrpGq “
ÿ

fPVCpG,Xq
fp1q . . . fpnq.

Let us choose two infinite totally ordered alphabets X and Y. Let G, H P G , of

respective degrees m and n:

RepXpFchrpGHqq “
ÿ

fPVCpGH,Xq
fp1q . . . fpm` nq

“
ÿ

f 1PVCpG,Xq,
f2PVCpH,Xq

f 1p1q . . . f 1pmqf2p1q . . . f2pnq

“ RepX ˝ FchrpGqRepX ˝ FchrpHq

“ RepXpFchrpGq ] FchrpHqq.

As RepX is injective, FchrpGHq “ FchrpGq ] FchrpHq, so Fchr is an algebra mor-

phism.

Let G P G , of degree n.

pRepX b RepYq ˝∆ ˝ FchrpGq

“ RepX\Y ˝ FchrpGq

“
ÿ

fPVCpFG,X\Yq

fp1q . . . fpnq

“
ÿ

V pGq“I\J

ÿ

f 1PVCpF|I ,Xq,
f2PVCpF|J ,Yq

f 1p1q . . . f 1p|I|qf2p1q . . . f2p|J |q

“
ÿ

V pGq“I\J

RepX ˝ FchrpG|Iq b RepY ˝ FchrpG|Jq

“ pRepX b RepYq ˝ pFchr b Fchrq ˝∆pGq.

As RepX and RepY are injective, ∆ ˝ Fchr “ pFchr b Fchrq ˝∆.
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(1) So WSym is a Hopf subalgebra of WQSym, isomorphic to a quotient of

HG , so is cocommutative. �

Remark 5.8. (1) The Hopf algebra WSym, known as the Hopf algebra of

word symmetric functions, is described and used in [4,6,15]. Here is a

description of its product and coproduct, with immediate notations:

‚ For any set partitions $, $1 of respective degree m and n:

W$W$1 “
ÿ

$2PSP, degp$2q“k`l,
Packp$2|rksq“$,

Packp$2|rk`lszrksq“$
1

W$2 .

‚ For any set partition $ “ tP1, . . . , Pku:

∆pPwq “
ÿ

IĎrks

WPackptIp|pPIuq bWPackptIp|pRIuq.

For example:

Wtt1,2uuWtt1uu “Wtt1,2u,t3uu `Wtt1,2,3uu,

Wtt1u,t2uuWtt1uu “Wtt1u,t2u,t3uu `Wtt1,3u,t2uu `Wtt1u,t2,3uu,

∆pWtt1,3u,t2u,t4uuq “Wtt1,3u,t2u,t4uu b 1`Wtt1,3u,t2uu bWtt1uu

`Wtt1,2u,t3uu bWtt1uu `Wtt1u,t2uu bWtt1,2uu

`Wtt1,2uu bWtt1u,t2uu `Wtt1uu bWtt1,2u,t3uu

`Wtt1uu bWtt1,3u,t2uu ` 1bWtt1,3u,t2u,t4uu.

(2) The map Fchr is not a bialgebra morphism from pHG ,m, δq to pWQSym,

], δq. For example:

pFchr b Fchrq ˝ δp 1
2

q “ p1q b pp12q ` p21qq ` pp12q ` p21qq b pp11q ` p12q ` p21qq,

δ ˝ Fchrp 1
2

q “ p11q b pp12q ` p21qq ` pp12q ` p21qq b pp11q ` p12q ` p21qq.

5.4. Non-commutative version of F0. We shall use the notations of Proposition

4.12. If G be an indexed graph and f P PCpGq, then G{ „f is an indexed graph;

we denote its cardinality by k. We put:

wf “ fp1q . . . fpkq.

Proposition 5.9. Let us consider the following map:

F0 :

$

’

&

’

%

HG ÝÑ WSym

G ÝÑ
ÿ

fPPCpGq
wf .
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This is a Hopf algebra morphism. Moreover, in EHGÑWSym:

Fchr “ F0 Ð λchr.

Proof. This is proved in the same way as Proposition 4.13. �

Example 5.10.

F0p 1q “ p1q,

F0p 1
2

q “ p12q ` p21q ` p1q,

F0p 1

32

q “ p123q ` p132q ` p213q ` p231q ` p312q ` p321q ` 3p12q ` 3p21q ` p1q,

F0p 1

32

q “ p123q ` p132q ` p213q ` p231q ` p312q ` p321q

` p122q ` p211q ` 2p12q ` 2p21q ` p1q.

5.5. From non-commutative to commutative. As QrrXss is a quotient of

QxxXyy, this polynomial representations Rep of WQSym and rep of QSym induce

a surjective Hopf algebra morphism:

π :

#

WQSym ÝÑ QSym

w ÝÑ M|w´1p1q|,...,|w´1pmaxpwqq|.

Proposition 5.11. π ˝ F0 “ F0 ˝$ and π ˝ Fchr “ Fchr ˝$.

Proof. Immediate. �

We obtain commutative diagrams of Hopf algebra morphisms:

WQSym
π // // QSym

H // // QrXs

HG

Fchr

OO

$
// // HG

Fchr

OO

Pchr

:: ::
WQSym

π // // QSym
H // // QrXs

HG

F0

OO

$
// // HG

F0

OO

φ0

:: ::
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