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ABSTRACT. The chromatic polynomial is characterized as the unique polyno-
mial invariant of graphs, compatible with two interacting bialgebras structures:
the first coproduct is given by partitions of vertices into two parts, the second
one by a contraction-extraction process. This gives Hopf-algebraic proofs of
Rota’s result on the signs of coefficients of chromatic polynomials and of Stan-
ley’s interpretation of the values at negative integers of chromatic polynomials.
We also consider chromatic symmetric functions and their noncommutative

versions.
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1. Introduction

In graph theory, the chromatic polynomial, introduced by Birkhoff and Lewis
[5] in order to treat the four color theorem, is a polynomial invariant attached to
a graph; its values at X = k gives the number of valid colorings of the graph with
k colors, for any integer k > 1. Numerous results are known on this object, as for
example the alternation of signs of its coefficients, a result due to Rota [23], proved
with the help of the Md6bius inversion in certain lattices.

Our aim here is to insert chromatic polynomials into the theory of combinatorial
Hopf algebras, and to recover new proofs of these classical results. Our main tools,
presented in the first section, will be a Hopf algebra (Hg, m,A) and a bialgebra
(Hg,m,d), both based on graphs. They share the same product, given by disjoint
union; the first (cocommutative) coproduct, denoted by A, is given by partitions

of vertices into two parts; the second (not cocommutative) one, denoted by 4, is
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given by a contraction-extraction process. For example:

AVY=VR1+10V +3l®.+3.01,
(VY=o V +3le.0+V®...,

or, in a decorated version, where a, b, ¢ are positive integers:

b ¢

A('\_/?L):97?1®1+1®13\7'Z+IZ®.6+IZ®.b+IZ®-a
te@lito@liteel,

J(Vz)z ea+bte @E\_/‘ZHZM@.CIZ“ZH@.NZ
+IZ+c®.aIz+va®.a.b.C.

We obtain a Hopf algebra (Hg,m,A), graded by the cardinality of graphs, and
connected, that is to say its connected component of degree 0 is reduced to the
base field Q: this is what is usually called a combinatorial Hopf algebra. On the
other side, (Hg, m, ) is a bialgebra, graded by the degree defined by:

deg(G) = #{vertices of G} — #{connected components of G}.

These two bialgebras are in cointeraction, a notion described in [7,10,19,20]: we
obtain that (Hg, m,A) is a bialgebra-comodule over (Hg, m, ), see Theorem 2.13.
Another example of interacting bialgebras is the pair (Q[X], m, A) and (Q[X], m, 9),
where m is the usual product of Q[X] and the two coproducts A and ¢ are defined
by:

AX)=X®1+1QX, 5(X)=X®X.

This has interesting consequences, proved and used on quasi-posets in [10], listed

here in Theorem 3.1. In particular:

(1) There exists a unique morphism ¢; : Hg — Q[X], which is a Hopf algebra
morphism from (Hg,m,A) to (Q[X], m,A) and also a bialgebra morphism
from (Hg,m,0) to (Q[X],m,0).

(2) We denote by (Mg, ) the monoid of characters of (Hg,m,d). This monoid
acts on the set Ey,_,qrx] of Hopf algebra morphisms from (Hg,m, A) to
(Q[X],m, A), via the map:

. { Eug—aix) x Mg — Eugoqx)
(@A) — o= A=(0®A)00.
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Moreover, the action of Mg over Ey,_,q[x] is free of rank 1, with ¢; as a

generator.

The morphism ¢, is described in the second section: for any graph G, ¢1(G) is the
chromatic polynomial Pep,(G) (Theorem 3.5). This characterizes the chromatic
polynomial as the unique polynomial invariant on graphs compatible with both
bialgebraic structures. To this morphim is attached a character denoted by Acpr,

which allows to reconstruct Py, trough the action of Mg: for any graph G,
Pchr(G) = Z Achr(C:| "’)XCZ(N)v

where the sum is over a family of equivalences ~ on the set of vertices of G, cl(~) is
the number of equivalence classes of ~, and G| ~ is a graph obtained by restricting
G to the classes of ~ (Corollary 3.6). Moreover, the inverse of A.p, for the con-
volution associated to the coproduct J is the character Ay which sends any graph
to 1, whereas the inverse of A.p, for the convolution associated to the coproduct
§ is related to acyclic orientations of graphs and allows to describe the antipode
of (Hg,m,A), see Corollary 3.26. Therefore, the knowledge of the chromatic char-
acter implies the knowledge of the chromatic polynomial; we give a formula for
computing this chromatic character on any graph with the notion (used in Quan-
tum Field Theory) of forests, through the antipode of a quotient of (Hg, m,d), see
Proposition 3.7. We give a Hopf-algebraic proof of the classical way to compute
the chromatic polynomial by induction on the number of edges by an extraction-
contraction of an edge in Proposition 3.10, and deduce a similar way to compute
the chromatic character. As consequences, we obtain proofs of Rota’s result on the
sign of the coefficients of a chromatic polynomial (Corollary 3.19) and of Stanley’s
interpretation of values at negative integers of a chromatic polynomial in Corollary
3.25. The link with Rota’s proof is made via the lattice attached to a graph, defined
in Proposition 3.12.

We then study morphisms from this double bialgebra of graphs to the function
of quasisymmetric functions QSym [2,12,14,18,27]. For this, we need to generalize
the construction on graphs to graphs decorated by elements of an abelian semigroup
(D, +), obtaining a Hopf algebra (Hg(py, m, A) and a bialgebra (Hg(p), m, d) on the
same algebra, which we give a graduation with the help of a map wt : (D, +) —
N.¢ (Proposition 2.20). Using Aguiar, Bergeron and Sottile’s theory of combina-
torial Hopf algebras [2], we introduce a homogeneous Hopf algebra morphism r®

chr
£(D)

he sends any graph G to its chromatic

from Hg(py to QSym. This morphism
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symmetric function, as defined by Stanley [26]. Moreover, F c(f?r)

is the unique po-
tential homogeneous morphism compatible with both bialgebraic structure and we
prove that it indeed satisfies this property if, and only if the map wt giving the
graduation is a semigroup morphism (Theorems 4.4 and 4.9). Note that this con-
dition excludes the nondecorated case, identified with D = {*}, giving its unique
semigroup structure = + * = * and the graduation defined by wt(x) = 1. As a

consequence, we obtain a diagram of Hopf algebra morphisms:

where H is given with the help of Hilbert polynomials (Proposition 4.2). The last
section deals with a non-commutative version of the chromatic symmetric func-
tion: the Hopf algebra of graphs is replaced by a non-commutative Hopf algebra
of indexed graphs, and QSym is replaced by the Hopf algebra of packed words
WQSym. For any indexed graph G, its non-commutative chromatic symmetric
function F.p,(G) can also be seen as a symmetric formal series in non-commutative
indeterminates (Theorem 5.7): we recover in this way Gebhard and Sagan’s chro-
matic symmetric function introduced in [11] and related in [22] to MacMahon sym-

metric functions.

Notation 1.1. (1) All the vector spaces in the text are taken over Q.
(2) We denote by Nog = {1,2,3,...} the set of positive integers.
(3) For any integer n > 0, we denote by [n] the set {1,...,n}. In particular,
[0] = &.
(4) The usual product of the polynomial algebra Q[X] is denoted by m. This

algebra is given two bialgebra structures, defined by:
AX)=X®1+1®X, I(X)=X®X.
Identifying Q[X,Y] and Q[X] ® Q[Y]:
VP e Q[X], AP)(X,Y)=P(X+Y), §(P)(X,Y)=P(XY).
The counit of A is given by:

VP e Q[X], e(P) = P(0).
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The counit of § is given by:
VP e Q[X], e'(P) = P(1).

Moreover, (Q[X],m, A) is a Hopf algebra, of antipode S sending any P(X) €
Q[X] to P(—X).

2. Hopf algebraic structures on graphs

We refer to [13] for classical results and vocabulary on graphs. Recall that a
graph is a pair G = (V(G), E(G)), where V(G) is a finite set, and E(G) is a subset
of the set of parts of V(G) of cardinality 2. In sections 2 and 3, we shall work
with isoclasses of graphs, which we will simply call graphs. For any graph G, we
denote by |G| the cardinality of V(G) and by cc(G) the number of its connected
components. By convention, the empty graph 1 is considered as non connected.

The set of graphs is denoted by G. For example, here are graphs G with |G| < 4:

V.V 1o, BRAUOKLUV. VI o

1; o I .. ;

) b

A graph is totally disconnected if it has no edge.
We denote by Hg the vector space generated by the set of graphs. The disjoint
union of graphs gives it a commutative, associative product m. As an algebra, Hg

is (isomorphic to) the free commutative algebra generated by connected graphs.

2.1. The first coproduct.

Definition 2.1. Let G be a graph and I < V(G). The graph G| is defined by:
e V(Gp) =1.
o E(G1) = {{z,y} € E(G) | z,y € I}.

We refer to [1,17,28] for classical results and notations on bialgebras and Hopf

algebras. The following Hopf algebra is introduced in [24]:
Proposition 2.2. We define a coproduct A on Hg by:

VG eg, AG) = D> GueG),.

V(G)=TuJ

Then (Hg,m,A) is a graded, connected, cocommutative Hopf algebra. Its counit is

given by:

VG e G, (G) =61
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Proof. If G, H are two graphs, then V(GH) = V(G) u V(H), so:

A(GH)

Y GHIIUK®GH,.

V(G)=IulJ,
V(H)=KulL

Z GHg®G ;H
V(G)=ILJ,
V(H)=KuL

A(G)A(H).

If G is a graph, and I < J < V(G), then (G;); = G|;. Hence:

AR oAG) = > Gy G k@G

V(G)=IuL,
I=JuK

Z GG Kk ®G|L
V(G)=JuKuL

Z G e (G ik ® (G

§ri
= (Id® A) o A(G).

So A is coassociative. It is obviously cocommutative. (|
Example 2.3.

A(e)=e®14+1® .,

A =Ile®1+10l+2.0.,

AVY=Ve1+10oV +3l®.+3.®1,

) =

AVY=Ve1+1oV+2l@.+.e®.+2.01 +.®...

2.2. The second coproduct.

Notation 2.4. Let V be a finite set ~ be an equivalence on V.
e We denote by m. : V. —> V/ ~ the canonical surjection.
e We denote by cl(~) the cardinality of V/ ~.
Definition 2.5. Let G a graph, and ~ be an equivalence relation on V(G).
(1) (Contraction). The graph V(G)/ ~ is defined by:

V(G/~) =V(G)/ ~,
E(G) ~) = {{r<(2), 7~ ()} [ {2, y} € E(G), 7~ (2) # 7 (y)}-



122 LOIC FOISSY

(2) (Extraction). The graph V(G)| ~ is defined by:

E(G| ~) = {{z,y} € B(G) |z ~ y}.
(3) We shall write ~ <G if, for any c € V(G)/ ~, G|. is connected.

Roughly speaking, G/ ~ is obtained by contracting each equivalence class of ~ to
a single vertex, and by deleting the loops and multiple edges created in the process;
G |~ is obtained by deleting the edges which extremities are not equivalent, so is
the product of the restrictions of G to the equivalence classes of ~.

We now define a coproduct on Hg. This coproduct, which can also be found in
[24], can also be deduced from a general operadic construction [29], see also [3]. A

similar construction is defined on various families of oriented graphs in [19].

Proposition 2.6. We define a coproduct 6 on Hg by:
VG e g, 5(G) = Y. (G ~)® (G| ~).
~<G
Then (Hg,m,9) is a bialgebra. Its counit is given by:
, 1 if G is totally disconnected,
VG e g, e'(G) =

0 otherwise.
It is graded, putting:
VG e G, deg(G) = |G| — cc(G).

In particular, a basis of its homogeneous component of degree 0 is given by totally

disconnected graphs, including 1.

Proof. Let G, H be graphs and ~ be an equivalence on V(GH) = V(G) u V(H).
We put ~'=~y () and NT/V(H)' The connected components of GH are the ones of

G and H, so ~ <GH if, and only if, the two following conditions are satisfied:

e ~' <@ and ~" <H.
o If z ~y, then (z,y) e V(G)? L V(H)? .

"and ~".

Note that the second point implies that ~ is entirely determined by ~
Moreover, if this holds, (GH)/ ~= (G/ ~')(H/ ~") and (GH)| ~= (G| ~")(H| ~"),
S0:

JGH)= Y, (G/~)H/~")® (G| ~)(H|~") = 5(G)s(H).

~<G, ~<H
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Let G be a graph. If ~ <G, the connected components of G/ ~ are the image
by the canonical surjection of the connected components of G; the connected com-
ponents of G| ~ are the equivalence classes of ~. If ~ and ~ are two equivalences

on G, we shall denote ~'<~ if for all 2,y € V(G),  ~' y implies  ~ y. Then:

@I od(@) = D (G/~)/~ &G/ ~)|~ &G|~
~<G,~'<G/~
= D (G/~)/~' &G/ ~)|~ ®G| ~
~,~'<G,

~<~

Y, (G~ (G~ ~e(G] ~)] ~

~1~/<G’

~'<~
Y. (G/~)®(GI~) ~ (G| ~)| ~
~<G,~'<G|~

(1d®8) 0 6(Q).

So § is coassociative.

We define two special equivalence relations ~¢ and ~; on G: for all z,y € V(G),
e x ~¢y if, and only if, z = y.
e © ~; y if, and only if, x and y are in the same connected component of G.

Note that ~g, ~1 <G. Moreover, if ~ <G, G/ ~ is not totally disconnected, except

if ~=~1; G| ~ is not totally disconnected, except if ~=~(. Hence:

e If G is totally disconnected, then §(G) = G G.
e Otherwise, putting n = |G| and k = cc(G):

5(G) = RG+G® " + ker(e') @ker(e').

So ¢’ is indeed the counit of 4.
Let G be a graph, with n vertices and k connected components (so of degree
n —k). Let ~ <G. Then:

(1) G/ ~ has cardinality cl(~) and k connected components, so is of degree
c(~) — k.

(2) G| ~ has cardinality n and cl(~) connected components, so is of degree
n —cl(~).

Hence, deg(G/ ~) + deg(G| ~) = cl(~) =k +n —cl(~) = n—k = deg(G): ¢ is

homogeneous. (Il
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Example 2.7.

0(e) =+ ®o, sih=.0l+l®..,
(V) =e®dV 43l d+ V®eeo, (V)= V +2l0.l+ V...

Remark 2.8. Let Ge€ G. The following conditions are equivalent:

e '(G)=1.
e '(G) #0.
e deg(G) = 0.

e (G is totally disconnected.

2.3. Antipode for the second coproduct. (Hg,m,¢) is not a Hopf algebra: the
group-like element « has no inverse. However, the graduation of (Hg, m,d) induced
a graduation of Hy = (Hg,m,d)/{s — 1), which becomes a graded, connected
bialgebra, hence a Hopf algebra; we denote its antipode by S’. Note that, as a
commutative algebra, Hg is freely generated by connected graphs different from ..

The notations and ideas of the following definition and theorem come from Quan-
tum Field Theory, where they are applied to Renormalization with the help of Hopf

algebras of Feynman graphs; see for example [8,9] for an introduction.

Definition 2.9. Let G be a connected graph, G # .

(1) A forest of G is a set F of subsets of V(G), such that:
(a) V(G) e F.
(b) IfI,JeF,thenIc J,orJ<I,orInJ=.
(c) For all I € F, G| is connected and not reduced to the graph .
The set of forests of G is denoted by F(G).
(2) Let F € F(G); it is partially ordered by the inclusion. For any I € F(G), the
relation ~g s the equivalence on I which classes are the mazximal elements
(for the inclusion) of {J € F | J < I} (if this is non-empty), and singletons.
We put:
Gr=11G/~1
IeF
Example 2.10. The graph 1 has only one forest, F = {1}; 17 = 1. The graph
Y has four forests:

o F={N}; in this case, ¥ r = V.
o Three forests F = {'\7‘, I}, for each of them, ¥ = =11.
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Theorem 2.11. For any connected graph G, G # «, in Hg:

S(G) = >, (-)¥Gr.
FeF(G)

Proof. By induction on the number n of vertices of G. If n = 2, then G = l. As
Y =le1+1e!, 5(1) = -1 = -1z where F = {1} is the unique forest of !.

Let us assume the result at all ranks < n. Then:

S(G)=-G- > (G/~)S(G|~)
~<G, ~#~1
=-G - Z Z (_1>W:1+“.+W:k (G/ N)(G|Il)]:1 s (G\Ik)]"k

~<G, ~#~1 ]:iEJF(G\Ii)
G/~={I,....Ix}

Note that each forest of G different from {G} consists of {G} with the union of of

forests Fi, ..., Fj on nonintersecting, connected subsets Iy, ..., I} of V(G). There-
fore:
S'(G) = -G — Y —)¥Gr= D ()Y Gr O
FeF(G), F£{G} FeF(G)

Example 2.12. In Hj:
sy = -1, (V) ==V +3ll, (V) =-V +2ll.
2.4. Cointeraction.

Theorem 2.13. With the coaction 6, (Hg,m,A) and (Hg,m,d) are in cointerac-
tion, that is to say that (Hg,m,A) is a (Hg,m,d)-comodule bialgebra, or a Hopf

algebra in the category of (Hg, m,d)-comodules. In other words:

° (5(1) =1®1.
e M13240(0Q0) oA =(A®I)od, with:

m ) Hg®Hg®Hg®Hg — Hg®Hg®Hg
et 1 ®b1®ax @by — a1 @az ® bibs.

e For all a,be Hg, 6(ab) = d(a)d(b).
o Forallae Hg, (e®1d)od(a) =e(a)l.
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Proof. The first and third points are already proved, and the fourth one is imme-
diate for any a € G. Let us prove the second point. For any graph G € G:
(A®Id) 0 6(G) = > (G/~)1®(G/ ~); ®G| ~

~<G, V(G)/~=T0J

= Y. G/~ @G~ @G| ~ (Gl ~
V(G)=I'uJ,
'\’/<C;|I7 '\'”<G‘J

=m1,3240(6®3) 0 A(G).
For the second equality, I' = w2 (I), I” = 7' (J), ~'=~p and ~"=~ . O
2.5. Decorated versions. We fix a nonempty set D.

Definition 2.14. A D-decorated graph is a pair (G,dg), where G is a graph and
dg : V(G) — D is a map. We denote by G(D) the set of isoclasses of D-decorated
graphs, and by Hg(p) the vector space generated by G(D).

Example 2.15. For any k € N, let us denote by Gi(D) the set of D-decorated
graphs with k vertices. Then:

G1({a,b,c}) = {ea, ob, oc},

Go({a,0,¢}) = {ea 00, waat, wauc, wbab, abuc, weue, Ja, Lo, 1o 1o, 10, 10,

00 el ol oG ol ob, oG oG eC, oGabaob, oGabeC,

00 eCoC, obobeb, ebebeC, ebeCeC, 0CeCoC,

a b c b c c a b c
U LSS RS VAP LIS (SIS SIS FANS LIS 14

ol ol wle el el vela, e ls, e s, aele,
aa ap ac bb bc cc aa ap ac
AV IAVARVAR VAR VARV AV IV
bb bc cc aa abpb ac bbb bc cc
Vi, VA VE VL L S VL
a a a b b ¢

a c b b b c c c b b c ¢c ¢ c
AARVARVAR VAL VAL VAR VAR v A v I v

93({% b, C}) =

If G and H are two D-decorated graphs, their disjoint union is naturally also a
D-decorated graph: hence, the disjoint union makes Hg(p) an associative, commu-
tative algebra, which unit is the empty graph 1. Moreover, if G is a D-decorated
graph and I < V(G), then G| is also a D-decorated graph, with dg,, = (dg)|;-
Then Hgp) is a Hopf algebra, with the coproduct defined by:

VG € G(D), AG) = D Gied),.
V(G)=IuJ
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Example 2.16. Ifa,b,ce D:
Aled) = e @14 1® o0,

b b b
Al)=1le@1+1@la+ e @b + o5 @ oa,
b ¢ b c b ¢ c c
ANV =Vi@1+1@ Vet li@ew+ 1@ + 1@
te@lito@letaels
b ¢ b ¢ b ¢ b c
AVe)=Ve@1+1@ Vet la@ec+ la@ e
+.b.6®.a+.b®1fi+.C®IZ+.a®.b.C.

In order to define the second coproduct, we need more structure on D: let us
assume that (D, +) is an abelian semigroup (that is to say, + is a commutative,
associative binary operation on D). If G is a D-decorated graph and ~ is an
equivalence on V(G). As V(G |~) = V(G), G |~ is a D-decorated graph, with
dg|~ = dG. W deﬁne dG/~ by:

Vee V(G ~) = V(G)/ ~, dgy~(e) = 3 do(a).
TEC
As (D,+) is an abelian semigroup, this is well-defined, and in this way G/ ~
becomes a D-decorated graph. The proof of Proposition 2.6 can be extended to the
D-decorated case; with the notations of the proof of this theorem, if ~, ~’ <G and

~'<~, then, as decorated graphs:
(G ~)) ~'=(G/~), (G/~) |~ =G~ ~ Gl~=(G|¥)|~.
Hence, Hg(p) is a bialgebra, with the coproduct defined by:

VG e g(D), 8(G) = Y (G/ ~)® (G| ~).

~<G

Example 2.17. If a,b,ce D:
5(ea) = 00 ® oa,
(5(12) = ea+b ®IZ+ IZ@,a,b,
5(%) = ea+btec @I:Vfl—i— loss ®.cIZ + IZ:L+C ®.b12
b lhie®aals + bvz®.a.b.c

9

b ¢ c c b ¢
6(\@) —eatbtc @ Vot IZ+C®.IJI@+ Ia+b®.cIZ+ Vo ® eaeboc.
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Theorem 2.18. With the coaction &, (Hgpy,m, D) and (Hgpy, m,d) are in coin-

teraction. Moreover, let us consider the forgetful map:

FO . Hop) — Mg
(G,dg) e G(D) — GEeg,

then FP) is a surjective Hopf algebra morphism from (Hg(py,m, D) to (Hg, m, )
and a bialgebra morphism from compatible (Hgpy,m,d) to (Hg,m,0).

Remark 2.19. When D is a singleton, F(P) is an isomorphism. Through this
isomorphism, we identify Hg with Hg(py, when D = {+} is a singleton, given its

unique semigroup structure * + * = *.

Let us now give Hg(p) a graduation. A graded set is a pair (D, wt), where
wt : D — N, is a map. Given such a map, we put, for any D-decorated graph
G:

wt(G) = Z wt(x).

zeV (G)
For any n > 0, let (Hg(p))n be the subspace of Hgpy generated by the D-decorated
graphs G with wt(G) = n. Then:

Proposition 2.20. If (D,wt) is a graded set, the map wt induces a connected
graduation of the Hopf algebra (Hg(py, m,A).

Remark 2.21. The nondecorated case Hg is obtained with the weight defined by
wt(x) = 1.

3. Chromatic polynomials

In all this section, we fix an abelian semigroup (D, +) and work in Hg(py. This

situation includes the nondecorated case, when D = {x}.

3.1. Consequence of the cointeraction. We can apply the results of [10]:

Theorem 3.1. We denote by Mgpy the monoid of characters of Hg(py. In the
nondecorated case, we shall simply write Mg.
(1) Let X € Mg(py. It is an invertible element if, and only if, for any d € D,
A(ed) # 0.
(2) Let B be a Hopf algebra, and By py—B be the set of Hopf algebra mor-
phisms from (Hgpy, m,A) to B. Then Mgpy acts on By, 5 by:

. ) Prgwy»B x Mgy — Eygp-n
(0, N) — d—=A=(p®N) o0
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(3) Let A€ Mgpy. There exists a unique element ¢ € Ey, ., q[x] such that:
Var € Hom, B(@)(1) = A(@).

(4) There exists a unique morphism ¢§D) : Hgpy — Q[X], such that:
. ngD) is a Hopf algebra morphism from (Hg(py, m,A) to (Q[X],m, A).
. ngD) is a bialgebra morphism from (Hgpy,m,0) to (Q[X],m, ).

This morphism is the unique element ¢ € EHQ(D)—>Q[X] such that:
Vx e HQ(D), (]5(1')(1) = 8l(x)'

In the nondecorated case, we shall simply write ¢ .

(5) The following map is a bijection:

MQ(D) - E’HQ(D)"Q[X]
A — P

We shall determine ngD) in the next section.
3.2. A first morphism.
Proposition 3.2. We define (Z)(()D) :Hgpy — Q[X] by:
VG e G(D), PN (@) = X!V,

Then q’)(()D) is a Hopf algebra morphism from (Hg(py, m,A) to (Q[X],m,A). In the

nondecorated case, we shall simply write ¢g.

Proof. This map is obviously an algebra morphism. For any graph G, of degree

n:
V@) oA = Y, xMexV
V(G)=TuJ
= (?) X' X" = A(X") = Ao o7 (G).
i=0
So gb(()D) is a Hopf algebra morphism. O

Remark 3.3. This morphism (béD) is not compatible with . For example, in the

nondecorated case:
§o¢o(l) =8(X)?
- X’®X2,
(o ®¢0) 0d(1) = (Go® o) (I ®ee +.®1)
= XX’ +X®X2
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3.3. Determination of ¢>§D). Let us recall the definition of the chromatic poly-
nomial, due to Birkhoff and Lewis [5]:

Definition 3.4. Let G be a graph and X a set.

(1) A X-coloring of G is amap f: V(G) — X.

(2) A N-coloring of G is packed if f(V(G)) = [k], with k& > 0. The set of packed
colorings of G is denoted by PC(G).

(3) A walid X-coloring of G by X is a X-coloring f such that if {i,j} € E(G),
then f (i) # f(j). The set of valid X-colorings of G is denoted by VC(G, X );
the set of packed valid colorings of G is denoted by PVC(G).

(4) An independent subset of G is a subset I of V(G) such that G|; is totally
disconnected. We denote by IP(G) the set of partitions {Iy, ..., It} of V(G)
such that for all p € [k], I, is an independent subset of G.

(5) For any k = 1, the number of valid [k]-colorings of G is denoted by
Py (G)(k). This defines a unique polynomial P, (G) € Q[X], called the

chromatic polynomial of G.

Note that if f is a X-coloring of a graph G, it is valid if, and only if, the partition
of V(G) {f~(z) | € f(V(G))} belongs to IP(G).

Theorem 3.5. (1) The morphism Pepy : Hg — Q[X] is the morphism ¢1 of
Theorem 3.1.
D)

€ unique morphism 0 eorem o.1 18 = L'chr © .
(2) The uni hism ¢\7) of Th 3.1is PT) = Py, o FD

Proof. 1. It is immediate that, for any graphs G and H, for any k,
Pchr(GH)(k) = Pchr(G)(k)Pchr(H)(k)
80 Pop(GH) = Popy(G)Popy-(H): Pep, is an algebra morphism. Let G be a graph,
and k,l > 1. We consider the two sets:
C =VC(G, [k +1]),
D ={(I,d,")|I<V(GQ), d e VC(G|,[k]), ¢" € VC(Gv (a1, [1])}-
We define a map ¢ : C' — D by 0(c) = (I,c, "), with:
o [ ={xeV(G)|c(x)e K]}
e Forall z eI, ¢(x) = ¢(x).
e Forallx ¢ I, "(z) = c(x) — k.
We define a map ¢’ : D — C by 6(I,c, ") = ¢, with:

e Forall z eI, ¢(z) = ().
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e Forall z ¢ I, c(z) = "(z) + k.
Both 6 and 6" are well-defined; moreover, § 0§ = Idp and 6’ 0§ = Id¢, so 6 is a
bijection. Via the identification of Q[X]|® Q[X] and Q[X,Y]:
Ao P (G) (k1) = Popr(G)(k + 1)
- 4O
= ﬁD
= Z Penr (G 1) (k) Penr (Glv o) (1)

ICV(G)

= (Pchr®Pch7’) Z G\I®G\J (k7l)
V(G)=IuJ

= (Pchr ® Pchr) o A(G)(k7 l)
As this is true for all k,1 > 1, Ao P (G) = (Pepr ® Pepr) 0 A(G). Moreover:

1if G is empty,
£(Q) = e 0 Popr(G) = Penr (G)(0) =

0 otherwise.

So Penr € Fy g q[x)- For any graph G € G:

1 if G is totally disconnected,

P chr(G)(l) =
0 otherwise;
=£(G).
So ¢1 = Pchr-
2. By composition, Py, o F(P) satisfies the two required conditions. O

3.4. The chromatic character.

Corollary 3.6. For any connected graph G € G, we put:
APy (G)
=——=(0).
We extend X\ as an element of Mg: for any graph G, if G1, ..., Gy are the connected

)\chr (G)

components of G,
)\ChT'(G) = )\chr(Gl) e )\chr(Gk)-
Then Achr is an invertible element of Mg, and we denote its inverse by Ag. Then,

for any graph G, \o(G) = 1, or, equivalently:

VG eg, Z /\chr(G/ N) = Z )\ch'r‘(G |~) = 5/(G)'

~<aG ~<1G
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Moreover, Py, = ¢g < Aehr, 0T equivalently:
VG e G, Popr(G) = Y Aenn(G| ~) X4,
~<a@G

Proof. By Theorem 3.1, there exists a unique A € Mg, such that ¢g = ¢; «— A
Then:

fopp=co(p1@N)od=((0p1)@N)od=(@Nod=¢"+)\=\

Therefore, for any graph G, A(G) = &/(XIV(@l) = 1. As A(.) = 1, by Theorem 3.1,
) is invertible, and then ¢, = ¢o < A*~!. For any graph G, by definition of §:
01(G) = 3, ANTHG| ~) X,
~<G

If G is connected, there exists a unique ~; <G such that cl(~1) = 1: this is the
equivalence relation such that for any z,y € V(G), © ~1 y. Moreover, G |~;= G.
Hence, the coefficient of X in P.j,.(X) is \*71(G |~1) + 0 = M*71(G), so:
_ dPey, (G)

dX
Consequently, )\C_hlr =\ (I

MH@E) (0) = Aenr (G).

The character A.p, will be called the chromatic character. Its inverse is denoted
by Ao. We extend it to any Hg(py by )\gi)

)\(()D) == Xg o FP). Then, as F(P) is compatible with both bialgebraic structures
on Hg(D):

= Aepr © FP). Then its inverse is

(®) _ y(®) _ \(®)

chr*

Proposition 3.7. A\p.(«) = 1; if G is a connected graph, G # ., then:

Aenr(G) = > (=D)H.

FeF(G)

Proof. We have Acpr(o) = Ag(e) = 1, so both A.p,- and Ag can be seen as characters

on Hg. Hence, for any connected graph G, different from «:

Aenr(G) = X0 S'(G) = Y| (=) X(Gr) = D) (-1,

FeF(G) FeF(G)

as \o(H) =1 for any graph H € G. a

Example 3.8. (1) By direct computations, we obtain:
G AN
M@ [ 1] 1] 2 [ 1 [—6]-a]-2|-3]-1]
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(2) If G is a complete graph with n vertices, Pop,(G)(X) = X(X —1)... (X —
n+1), 80 Aenr(G) = (=1)""L(n — ).

(3) If G is a tree with n vertices, Pup(G)(X) = X(X — 1)"7 1, 50 Aenr(G) =
(_1)n—1_

3.5. Extraction and contraction of edges.

Definition 3.9. Let G be a graph and e € E(G).

(1) (Contraction of e). The graph G/e is G/ ~, where ~. is the equivalence
which classes are e and singletons.

(2) (Subtraction of e). The graph G\e is the graph (V(G), E(G)\{e}).

(3) We shall say that e is a bridge (or an isthmus) of G if cc(G\e) > cc(G).

We now give an algebraic proof of the following well-known result [13], which

allows to compute the chromatic polynomial by induction on the number of edges:

Proposition 3.10. For any graph G, for any edge e of G:

Pchr(G) = PChT'(G\e) - PChT'(G/e);

_>\chr<G/e) Zfe 1S a b’f’idg&
Aehr(G\e) — Aenr(G/e) otherwise.

/\chr(G) =

Proof. Let G be a graph, and e € E(G). Let us prove that for all k& > 1,
P (G)(k) = Ponr(G\e)(k) — Penr(GJ/e)(k). We proceed by induction on k. If
k=1, Pp(G)(1) = ¢(G) = 0. If G has only one edge, then G\e and G/e are

totally disconnected, and:

Pchr(G\e)(l) - Pchr(G/e)(l) =1-1=0.

Otherwise, G\e and G/e have edges, and:

Par(G\e)(1) = Popr (G/e)(1) = 0 — 0 = 0.
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Let us assume the result at rank k. Putting e = {x,y}:
P (G\e)(k + 1) — Popr (G/e)(k + 1)

= P('hr((G\e)\I)(k)PPhT((G\e)‘J)(l)
V(G)=IuJ

= > Pun((G/e) 1) (k) Penr((G/e) 5 (1)
Ve

— > Pan((G/e) 1) (k) Penr((G/e) (1)

= Z Pchr((G\e)\I)(k)PChT‘((G\e)U)(l)
s

+ Z PchT((G\E)|[)(k)Pchr((G\€)\J)(l)

V(G)=Iul,
z,yeJ

- Z Pchr((G/e)|I)(k)PChT((G/e)‘J)(]')

V(G)=Iuld,
z,yel

— Y Pan((G/e)) (k) Penr ((G/e) 1) (1)

V(G)=Iul,
z,yeJ

i D P ((G\e) 1) (k) Penr ((G\e) 1) (1)

V(G)=IuJ,
(z,y)e(IxJ)u(JxI)

= Z Pchr((G\I)\e)(k)PChT(G‘J)(1)

V(G)=IuJ,
z,yel

Y PG Panl(G) )

V(G)=Iul,
z,yeJ

— Z Pch7((G|I)/e)(k)PChT(G|J>(1)
e

— Z Pchr(GII)(k)Pchr((GL])/e)(]‘)

V(G)=Iud,
z,yeJ

+ Z Pchr(GII)(k)Pchr(GlJ)(l)
V(G)=IulJ,
(z,y)e(IxJ)u(JxI)

= Y P G®Pur (G W)+ Y Pene(Gir) (k) Pene (G11)(1)

V(G)=ILJ, V(G)=ILJ,
x,yel z,yeJ
+ Z Pchr(GH)(k)Pchr(GU)(l)
V(G)=IuJ,

(z,y)e(IxJ)u(JxI)

= Z Pchr<G|])(k)Pchr(G|J)(1)
V(G)=Tuid

= Ponr (G)(k +1).
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So the result holds for all k£ > 1. Hence, Pep,.(G) = Pop(G\e) — Poprr(G/e).
Let us assume that G is connected. Note that G/e is connected. If e is a
bridge, then G\e is not connected; each of its connected components belongs to

the augmentation ideal of Hg, so their images belong to the augmentation ideal of
Q[X], that is to say XQ[X]; hence, P.p,.(G\e) € X?Q[X], so:

hone (@) = TG ) _ el &) ) APl GIE) ) _ gy, G,
Otherwise, G\e is connected, and:
(@) = ) ) = et ) ) _ A2 (G () = () = Ao (G,

If G is not connected, we can write G = G1G», where (G; is connected and e is
an edge of G;. Then:

/\chr(G) Achr(c;vl))\chr(C;Q)
—Aenr (G1/€)Aenr(Ga) if e is a bridge,

Achr (G1\e)Aehr (G2) — Achr (G1/€)Achr(G2) otherwise;

—Aenr((G1/€)G2) if e is a bridge,

Aehr ((G1\e)G2) — Achr((G1/e)G2) otherwise;
—Aenr(G/e) if e is a bridge,

Achr(G\e) — Aenr(G/e) otherwise.

So the result holds for any graph G. O

Example 3.11. For any n > 3, let us denote by C,, the cyclic graph with n vertices.
Then A, (C3) = 2. Choosing any edge e of C,, withn >4, C,,/e = C,,_1 and C,\e

is a chain on n vertices, so is a tree. Hence:
)\chr(cn) = (*1)”‘71 - )\chr(cn—l)~
A direct induction proves that for any n = 3, Aep,(Cr) = (=1)""1(n — 1).

3.6. Lattices attached to graphs. We here make the link with Rota’s methods
for proving the alternation of signs in the coefficients of chromatic polynomials.

The following order is used to prove Proposition 2.6:

Proposition 3.12. Let G be a graph. We denote by R(G) the set of equivalences
~ on V(G), such that ~ <G. Then R(QG) is partially ordered by refinement:

v ~ ~'e R(G)v ~<~ Zf (V:L',y € V(G)a r~Yy=— ~ y)
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In other words, ~<~' if the equivalence classes of ~' are disjoint unions of equiva-
lence classes of ~. Then (R(G), <) is a bounded graded lattice. Its minimal element
~o 18 the equality; its mazimal element ~1 is the relation which equivalence classes

are the connected components of R(G).

Proof. Let ~,~'e R(G). We define ~ A ~' as the equivalence which classes are
the connected components of the subsets Cl.(z) n Cl./(y), z,y € V(G). By its
very definition, ~ A ~' <G, and ~ A ~'<~ ~. If ~'<~ ~'< in R(G), then
the equivalence classes of ~ and ~’ are disjoint union of equivalence classes of ~",
so their intersections also are; as the equivalence classes of ~” are connected, the
connected components of these intersections are also disjoint union of equivalence
classes of ~”. This means that ~"<~ A ~'.

We define ~ v ~/ as the relation defined on V(G) in the following way: for all

z,y e V(G), z ~ v ~" y if there exists z1, 2}, ..., 2, 2}, € V(G) such that:
r=x; ~2) ~ oo~ ..~y o=y

’ is an equivalence. Moreover, if z ~ ,

It is not difficult to prove that ~ v ~
then x ~ v ~ y (zy =z, 2] = y); if x ~ y, thenz ~ v ~ y (1 = 2] = z,
x9 = x4 = y). Let C' be an equivalence class of ~ v ~/, and let x,y € C. With the

" are connected, for all

preceding notations, as the equivalence classes of ~ and ~
p € [k], there exists a path from z,, to x},, formed of elements ~-equivalent, hence
~ v ~'-equivalent; for all p € [k — 1], there exists a path from z}, to x},,,, formed
of elements ~’-equivalent, hence ~ v ~’-equivalent. Concatening these paths, we
obtain a path from z to y in C, which is connected. So ~ v ~'e¢ R(G), and

/!

~ NS~ v A "

Moreover, if ~, ~'<~", then obviously ~ v ~'<~".
that R(G) is a lattice.

For any ~€ R(G), we put deg(G) = |G| — cl(~). Note that deg(~p) = 0. Let
us assume that ~ is covered by ~" in R(G). We denote by Ci,...,C) the classes

We proved

of ~. As ~<~/, the classes of ~" are disjoint unions of Cp; as ~#~', one of them,
denoted by C’, contains at least two Cp. As C’ is connected, there is an edge in
C’ connecting two different Cp; up to a reindexation, we assume that there exists
an edge from Cy to Cy in C’. Then C7 u Cs is connected, and the equivalence ~”

"

which classes are C7 u Co, Cs, ... C), satisfies ~<~"<~'. As ~' covers ~, ~'=~",
so deg(~') = |G| —k+ 1 = deg(~) + 1. O

Remark 3.13. This lattice is isomorphic to the one of [23]. The isomorphism
between them sends a element ~€ R(G) to the partition formed by its equivalence

classes.
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Example 3.14. We represent ~¢ R(G) by G| ~. Here are examples of R(G),
represented by their Hasse graphs. We index the vertices of the graphs by letters

for a better understanding.

1} \V/ 5
LI F loww  low o ws Lo

Proposition 3.15. Let G be a graph. We denote by ug the Mébius function of
R(G).

(1) If ~<~" in R(G), then the poset [~,~'] is isomorphic to R((G| ~)/ ~).
(2) For any ~<~" in R(G), puc(~,~") = Aenr (G| ~")/ ~). In particular:

/Lg(wo, “’1) = Achr(G)-

Proof. Let ~<~'e R(G). If ~” is an equivalence on V(G), then ~<~"<~ if, and

only if, the following conditions are satisfied:

e ~" goes to the quotient G/ ~, as an equivalence denoted by ~”.
o ~eR((G] ~)/ ~).

Hence, we obtain a map from [~, ~'] to R((G| ~')/ ~), sending ~" to ~". Tt is
immediate that this is a lattice isomorphism.
Let ~<~'e R(G). As [~, ~] is isomorphic to the lattice R((G| ~')/ ~):

Y Aewl(GI~) ~) = > Aenr ((G/ ~1)) ~)[~")

~Se STER((G]~)/~)
= Penr (G| ~)/ ~)(1)
1if (G| ~")/ ~ is totally disconnected,
0 otherwise;
1if ~=~,

0 otherwise.

Hence, pg(~,~") = Aenr (G| ~')/ ~). -



138 LOIC FOISSY

Remark 3.16. We now use the notion of incidence algebra of a family of posets

exposed in [24]. We consider the family of posets:

{[~~11Geg ~<~" inR(G)}.
It is obviously interval-closed. We define an equivalence relation on this family as
the one generated by [~, ~'] = R((G| ~')/ ~). The incidence bialgebra associated
to this family is (Hg, m,0).
Proposition 3.17. Let G a graph.

(1) Let Gy,...,Gy be the connected components of G. Then R(G) ~ R(G1) %
. X R(Gk)
(2) Let e be a bridge of G. Then R(G) ~ R(G/e) x R(}).
(3) We consider the following map:
o { R(G) — P(EG))
G -
(G ~).

This map is injective; for any ~, ~'e R(G), ~<~' if, and only if,

Ca(~) € Ca(~).

Moreover, (g is bijective if, and only if, G is a forest — that is to say a

~ — E

graph such that any edge is a bridge.

Proof. 1. If G, H are graphs and ~ is an equivalence on V(GH), then ~ <GH if,
and only if:

* ~vie) <G

o ~ v <H.

o For any 2,y € V(G) uV(H), (z ~ y) = ((z,y) € V(G)? L V(H)*.
Hence, the map sending ~ to (~|v(q), ~v(m)) from R(GH) to R(G) x R(H) is an
isomorphism; the first point follows.

2. Note that R(I) = {.., I}, with .. < I. By the first point, it is enough
to prove it if G is connected. Let us put e = {z/,2"}, G', respectively G”, the
connected components of G\e containing ', respectively z”. We define a map
¥ : R(G/e) x R(1) to R(G) in the following way: if ~< R(G/e),

o (=, I) =~, defined by x ~ y if T=y. This is clearly an equivalence;
moreover, ' ~ z”. if © ~ y, there exists a path from T to 7 in G/e, formed
by vertices ~-equivalent to T and y. Adding edges e if needed in this path,
we obtain a path from z to y in G, formed by vertices ~-equivalent to x

and y; hence, ~ <G.
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e (=, es) =~, defined by z ~ y if T~y and (z,y) € V(G')? u V(G")2. This
is clearly an equivalence; moreover, we do not have ' ~ z”. If x ~ y, let
us assume for example that both of them belong to G’. There is a path
in G\e from T to 7, formed by vertices formed by vertices =-equivalent to
T and y. We choose such a path of minimal length. If this path contains

vertices belonging to G”, as e is a bridge of G, it has the form:
T—...— 20 —...—x' —...—7.

Hence, we can obtain a shorter path from T to g: this is a contradiction. So
all the vertices of this path belong to G’; hence, they are all ~-equivalent.
Finally, ~ <G.
Let us assume that ¥ (=, I) = Y(=, I) =~. If Z=7, then z ~ y, so T~7; by
symmetry, =~ = ='. Let us assume that (=, «¢) = (=, e s) =~. If T=7:
o Ifz,ye V(@) or z,y € V(G”), then z ~ y, so T~7.
o If (z,y) e V(G') x V(G”) or (z,y) € V(G") x V(G’), up to a permutation
we can assume that x € V(G') and y € V(G"). As =< G/e, there exists
a path from T to § formed by ~-equivalent vertices. This path necessarily
goes via 2/ = 2. Hence, x ~ 2’ and y ~ 2", so Z~2’ and y~z”, and finally
By symmetry, ~ = =’. We proved that 1) is injective.
Let ~ <G. If 2/ ~ 2", then ~ goes through the quotient G/e and gives an
equivalence = < G/e. Moreover, (=, 1) =~. Otherwise, ~ <G\e = G'G"; let

us denote the equivalence classes of ~ by C1,...,Cry, with 2’ € C1, 2" € Ciy1,
Cy,...,Cr, € V(G), Cky1,--.,Cryy © V(G"). Let = the equivalence on V(G/e)
which equivalence classes are C; U Cgy1,Ca, ..., Ck, Crya, ..., Cris. Then ~<G/e

and ¥ (=, « «) =~. We proved that 1 is surjective.

It is immediate that (=1, ~2) < ¥ (=], ~%4) if, and only if, =1 < =] and ~o2<~4.
So ¥ is a lattice isomorphism.

3. Let ~, ~' be elements of R(G). If ~<~', then the connected components of
G| ~' are disjoint unions of connected components of G| ~, so E(G| ~) € E(G| ~').

If E(G| ~) € E(G| ~'), then the connected components of G| ~' are disjoint
unions of connected components of G| ~, so ~<~/.

Consequently, if {g(~) = (g(~'), then ~<~" and ~'<~, s0 ~=~": (g is injec-
tive.

Let us assume that (¢ is surjective. Let e € E(G); we consider ~¢ R(G), such
that (qa(~) = E(G)\e. In other words, G| ~= G\e. Hence, ~#~1, so cl(~) <
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cl(~1): G| ~ has strictly more connected components than G. This proves that e
is a bridge, so G is a forest.
Let us assume that G is a forest. We denote by k the number of its edges. As any

edge of G is a bridge, by the second point, R(G) is isomorphic to R( ! Ve X R(e)eE)]

so is of cardinal 2F x 1°¢(G) = 2% Hence, (g is surjective. O

Remark 3.18. As a consequence, isomorphic posets may be associated to non-
isomorphic graphs: for example, R(IZ.) ~ R(I_I) ~ R(I)?’

3.7. Applications.

Corollary 3.19. Let G be a graph.
(1) Aenr(G) is non-zero, of sign (—1)3e8(),
(2) We put Popr(G) =ag+ ...+ an, X"
e For any i, a; # 0 if, and only if, cc(G) < i < |G|.
o If cc(G) < i < |G, the sign of a; is (—1)I¢1—,
(3) —ajg|—1 is the number of edges of |G].
Proof. (1) For any graph G, we put A, (G) = (—=1)98(9 )\ ;... (G). This defines a
character \ € Mg. Let us prove that for any edge e of G:
- Aenr(G/e) if e is a bridge,
fon(C) = ~ch( /€) ¢ g
Aehr(G\e) + Achr(G/e) otherwise.
We proceed by induction on the number k of edges of G. If k = 0, there is nothing
to prove. Let us assume the result at all ranks < k, with £k > 1. Let e be an
edge of G. We shall apply the induction hypothesis to G/e and G\e. Note that
cc(G/e) = ce(G) and |G/e| = |G| — 1, so deg(G/e) = deg(G) — 1.
e If e is a bridge, then:
Achr (G) = *(*1)deg(G/e)5‘chr(G/e) = (*l)deg(G);\chr(G/e)~
e If e is not a bridge, then cc(G\e) = cc(G), and |G\e| = |G|, so deg(G\e) =
deg(G). Hence:
Aenr (G/e) = (_1)deg(c\e)5‘chr(G\e) - (_1)deg(0/6);\chr(G/e>
= (_1)deg(c)5‘chr(G\e) + (_1)deg(G)5‘chr(G/e)
= (_1)deg(G) (Xchr(G\e) + 5‘chr(G/e))‘
So the result holds for any graph G.

If G has no edge, then deg(G) = 0 and Aenr(G) = Aenr(G) = 1. An easy
induction on the number of edges proves that for any graph G, S\Chr(G) > 1.
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(2) By Corollary 3.6, for any i:

a; = Z >\chr<G| ~)

~<G, cl(~)=i
= Z (_1)|G|_i5‘chr(G‘ N)
~<@G, cl(~)=i
= (_1)‘G‘_i Z j\chr(G| N)'
~<@G, cl(~)=i

As for any graph H, S\Chr(H) > 1, this is non-zero if, and only if, there exists a
relation ~ <G, such that cl(~) = 4. If this holds, the sign of a; is (—1)I¢I=%, Tt
remains to prove that there exists a relation ~ <G, such that cl(~) = 7 if, and only
if, cc(G) <i < |G|.

(=) If ~ <G, with cl(~) = i, as the equivalence classes of ~ are connected,
each connected component of G is a union of classes of ~, s0 7 = cc¢(G). Obviously,
i <|G|.

(«) We proceed by decreasing induction on . If i = |G|, then the equality of
V(G) answers the question. Let us assume that cc(G) < i < |G| and that the result
holds at rank ¢ + 1. Let ~" <G, with cl(~") =i+ 1. We denote by I, ..., ;11 the
equivalence classes of ~'. As I, ..., I;;1 are connected, the connected components
of G are union of I,; as i + 1 > cc(G), one of the connected components of G, which
we call G’, contains at least two equivalence classes of ~’. As G’ is connected, there
exists an edge in G/, relation two vertices into different equivalence classes of ~’; up
to a reindexation, we assume that they are I; and I,. Hence, I; 1 I5 is connected.

We consider the relation ~ which equivalence classes are I7 1 Is, I, ..., I;11: then
~ <G and cl(~) = 1.

(3) For ¢ = |G|—1, we have to consider relations ~ <G such that cl(~) = |G| —1.
These equivalences are in bijection with edges, via the map (s of Proposition 3.17.

For such an equivalence, G| ~= 141671 s0 A (G| ~) = —1. Finally, a; =
—[EV)- O

Remark 3.20. The result on the signs of the coefficients of P.p,-(G) is due to Rota
[23], who proved it using the Mobius function of the poset of Proposition 3.17.

Corollary 3.21. Let G be a graph; |Achr(G)| = 1 if, and only if, G is a forest.

Proof. (<) Then each component of G is a tree. The result then comes from

Example 3.8, last point.
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(=) If G is not a forest, there exists an edge e of G which is not a bridge. Then:
Aenr (G)] = [Acnr (G\E)| + [Aenr (G/e) = 1+ 1 = 2.
So [Acnr(G)] # 1. O
Lemma 3.22. If G is a graph and e is a bridge of G, then:
Achr (G) = =Aenr (G\e) = —Aenr(GJe).

Proof. We already proved in Proposition 3.17 that Acpr(G) = —Aenr(G/e). Let
us prove that Aepr(G) = —Aenr(G\e) by induction on the number k of edges of
G which are not bridges. If k = 0, then G and G\e are forests with n vertices,
cc(G\e) = ce(G) + 1 and:

Aenr(G) = =Aenr (G\e) = (—1)e8(D),

Let us assume the result at rank £k — 1, £ > 1. Let f be an edge of G which is not
a bridge of G.

Achr (G) = Aenr (G\f) = Acnr (G/ f)
= —Aerr ((G\f)\€) + Acnr ((G/ f)\e€)
= A ((G\\f) + Acnr ((G\e)/f)
= —Aenr(G\e).

So the result holds for any bridge of any graph. (I

Proposition 3.23. (1) Let G and H be two graphs, with V(G) = V(H) and
E(G) < E(H). Then:

[Aehr (G)] < [Achr (H)| + cc(G) — cc(H) — §(E(H) — E(G)) < [Achr (H)|.

Moreover, if cc(G) = cc(H), then |Aenr(G)| = |[Aenr(H)| if, and only if,
G=H.
(2) For any graph G, |Aenr(G)| < (|G] — 1)!, with equality if, and only if, G is

complete.

Proof. 1. We put k = §(E(H)\E(G)). There exists a sequence ey, ..., ey of edges
of H such that:

Go = G, Gk = I{7 Vie [k], Gi—l = Gz\el
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For all i, cc(G;) = cc(Gi—1) + 1 if e; is a bridge of G;, and cc(G;) = cc(Gi—1)
otherwise. Hence, cc(G) —cc(H) < k. We denote by I the set of indices ¢ such that
cc(G;) = cc(Gi—1); then T = k — cc(G) + cc(H). Moreover:
|)\chr(Gi71)| + ‘)\chr((Gi)/ei” > |)\chr(Gi71)| ifie 17

[Aenr (G3)| = o
|)\chr(Gi—1)| if 4 ¢ 1.
As a conclusion, |Aepr(G)| < [Aepr(H)| — 81 = [Aenr(H)| + cc(G) — cc(H) — k <
‘)\chr(H”'

If ce(G) = ce(H) and |Aepr(G)| = [Achr(H)|, then k =0, so G = H.

2. We put n = |G|. We apply the first point with H the complete graph such
that V(H) = V(G). We already observed that [Ap-(H)| = (n — 1)!, so:

[Aenr (G)] < (n = 1)L
If G is not connected, there exist graphs Gy, Gs such that G = G1G2, n1 = |G1] <
n, ng = |G2| < n. Hence:

[Aenr (G)] = | Achr (G| Achr (G2) < (n1 — D(ne — DI < (0 + 12 — 2) < (n— 1)L
If G is connected, then cc(G) = cc(H): if |Aepr(G)| = [Achr(H)|, then G = H. O
3.8. Values of the chromatic polynomial at negative integers.

Theorem 3.24. Let k > 1 and G a graph. Then (—1)!¢1P,,.(G)(—k) is the number

of families ((I,...,Ix),01,...,0) such that:
o Iy u...u I = V(G) (note that one may have empty I,,’s).

e Forall1 <i<k, O;is an acyclic orientation of G|y, .

In particular, (—1)!¢1 Py, (G)(=1) is the number of acyclic orientations of G.

Proof. By the extraction-contraction process:

o If G is totally disconnected, (—1)!¢P.,,.(G)(—1) = 1.
e If G has an edge e,

(—D)! P (G)(=1) = (=1)/ O P (G\) (1) + (=1)/ I Py (G e) (1),

For any graph H, let us denote by 2((H) the set of acyclic orientations of H. Let
G be a graph and e = {z,y} be an edge of G. If o0 € A(G/e), we deduce an
orientation & of G\e by lifting the orientations of the edges of G/e to the edges of
G\e. Obviously, this defines an injective map ¢ from A(G/e) to A(G\e).
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If o € A(G/e), let us denote by ¢y (o), respectively ¢_(G), the orientation of G
obtained from (o) by orientating e from z to y, respectively from y to x. Let us

assume that one of them is not acyclic. We obtain for example a cycle
ToY T ... DT =T,

which induces a cycle in the orientation o of G/e: this is a contradiction. We obtain
two maps ¢y, : A(G/e) — A(G), both injective, with disjoint images.
Let o € A(G\e)\t(2((G/e)). We denote by o, respectively o_, the orientation
of G obtained from o by orientating e from x to y, respectively from y to x. As
L(A(G/e)), there exists a vertex z € V(G), with edges {z,z} and {y, 2z}, such
that, {x, z} is oriented from z to z and {y, z} from z to y, up to a permutation of x
and y. Then y - ¢ — 2z — yis a cycle in o_ : at most one of o and o_ is acyclic.

Let us assume that none of them is acyclic. We obtain two cycles in o4 and o_:
r—=>Y—=>Y... >Yr =17, Yy—>T—>T...—> T =1Y.

We obtain then a cycley - y1... > yp —» 1 — ... = x; = y in o, which is not
acyclic. Hence, exactly one of o_ and o, is acyclic: we obtain an injective map
K A(G\e)\t(A(G/e)) — A(G). Clearly, the images of three maps are disjoint and
cover the whole 2(G). Hence:

UG = 2A(G/e)| + [AG\e)\A(G/e)| = [A(G/e)| + [A(G\e)].

An easy induction on the number of edges of G then proves that (—1)I¢! P.,,.(G)(-1)
is indeed |A(G)|.
Ifk>=2

(1)1 Py (G) (—F)
DI P (G)((—1) + ... + (—1))
DICIAF=D 6 P (G)(~1,...,-1)

)
)
DICIPER o A=D(G)(-1,...,-1)
)

(=
= (-
= (=

(—1)lcl 2 P (G1,)(=1) ... Pepr (Gy1,,)(—1)

V(G)=Lu..uly

= > (=)l Pepp (G, ) (=1) . (D)1 Py (G 1, ) (<),

V(G)=Iu...uly

The case k = 1 implies the result. (I

We recover the interpretation of Stanley [25]:
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Corollary 3.25. Let k > 1 and G a graph. Then (—=1)IP.,,.(G)(=Fk) is the

number of pairs (f,O) where

e fis a map from V(G) to [k].
e O is an acyclic orientation of G.

o If there is an oriented edge from x to y in V(G) for the orientation O, then
flx) < f(y).

Proof. Let A be the set of families defined in Theorem 3.24, and B be the set of
pairs defined in Corollary 3.25. We define a bijection 6 : A — B in the following
way: if ((I1,...,1),01,...,0k) € A, we put 0((I1,...,1;),01,...,0,) = (f,0),
such that:

(1) f71(p) = I for any p e [k].
(2) If e = {z,y} € E(G), we put f(x) =i and f(z) = j. If i = j, then e is
oriented as in O;. Otherwise, if ¢ < j, e is oriented from ¢ to j if ¢ < j and

from j to i if ¢ > j.

Note that O is indeed acyclic: if there is an oriented path from z to y in G of length
> 1, then f increases along this path. If f remains constant, as Oy, is acyclic,
x # y. Otherwise, f(z) < f(y), so ¢ # y. It is then not difficult to see that 6 is
bijective. ]

This gives us a formula for the antipode of (Hg(p),m,A), proved in [16] in

another way in the nondecorated case:

Corollary 3.26. Let us denote by S the antipode of (Hg(py, m,A). For any graph
GeG(D):

S(G) = Z (=1 t{acyclic orientations of G/ ~}G |~ .
~<G

Proof. Let us denote by * the convolution product associated to A in Mg(py, and
by p = & oS the inverse of ¢’ for x. Let us put T = (u ® Id) 0 §. Then, in the
convolution algebra End(#Hgp)), with the product * associated to the Hopf algebra
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(Hg (D), m, A):

Txld=mo(p®Id)o (§®Id)o A
=mo(uRId®e ®Id)o (§®d) oA
=(p®e @Id)omyz20(f®F) oA
= (p® @Id)o (A®Id)o s
=(u*xe' ®Id)od
=(e®Id)od
=T10E,

where 7 : Q — Hg(p) send 1 € Q on the empty graph (unit map). Consequently:
T=TxId*xS=(noe)xS=2=5.
Let us now prove that for any graph G € G(D):

w@G) = P(G)(~1).

chr

As PS) is a Hopf algebra morphism from (Hg(p),m, A) to (Q[X],m,A) and &’ o

chr
PC(,Z,) =&
Pi(G)(=1) = SoPy (G)(1) = €S0P (G) = €'oP ()08 () = €'05(G) = w(G).
By Theorem 3.24:
(@) = (—1)!%4{acyclic orientations of G}. O

4. Chromatic symmetric functions

4.1. Reminders on QSym. The Hopf algebra QSym [2,12,14,18,27] has a basis
(M,,) indexed by compositions, that is to say finite sequences of positive integers.

Its product is given by quasi-shuffles. For example, if a,b, ¢, d € N~ g:
Mo Myea = Mabed + Mpacd + Mbcad + Mbeda + M(atb)cd + Mo(areya + Mab(c+a)»
MaopMea = Mabed + Macvd + Macdb + Meabd + Meads + Medab
+ M@ayeppa + Mareyay + Mearayp + Mareya
+ Macord) + Meavr+d)y + Mavo)(crd)-
Its coproduct is given by deconcatenation: for any composition w,

A(My) = > M, ® M,

uv=w
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For example, if a,b,c e Nog:

AM,) = Mo ®1+1® M,,
A(Map) =Mup @1+ M, ® My +1® Mg p,
AMape) =Mup e ®1+ My @M+ M, Q@ My +1Q Myp.
For any composition w, we denote by |w| the sum of its letters; this induces a

connected graduation of QSym. There exists a second coproduct d, such that for

any composition w of length n:
n
8(M,,) = Z M) juo] @ My .. My,

For example, if a,b,c e Nog:

0(Ma) = Mo ® Ma,
0(Map) = Map @ MyMy + Myip @ My,
0(Mype) =Mype® MdMyM, + Myyp e @ My M,
+ Mo pte @ MogMp e+ Mo ipre ®@ Mg pc.

The counit of this coproduct is denoted by &’; for any composition wu,

, 1 if u has only one letter,
' (M) =
0 otherwise.
Moreover, QSym admits a polynomial representation. Let X be a totally or-
dered alphabet — that is to say a set with a total order. For any w; ...u, € Ny,
we consider the element:

repx (Mo, ...u,) = > vt e Q[[X]].

T1<..<z, in X
We define in this way an algebra morphism repx : QSym — Q[[X]]. Moreover,
for any k € N, the restriction of repx to the k-th homogeneous component QSym,,
of QSym is injective if, and only if, |X| > k.
If X and Y are two totally ordered alphabets, X 1Y is also totally ordered: for
allz € X, y €Y, ¢ < y. We identify Q[[X u Y]] with Q[[X]] ® Q[[Y]], via the
continous morphism sending r € X to x® 1 and y € Y to 1 ® y. Then:

repx,y = (repx ®repy) o A.

The cartesian product X x Y is totally ordered by the lexicographic order: for any
z, 2’ € X,y € Y, zy < 2’y if, and ounly if, (z < ') or (z = 2’ and y < ¢/).
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We identify Q[[X x Y]] with a subring of Q[[X]] ® Q[[Y]] through the continous
morphism sending (z,y) € X x Y to £ ® y. Then:

repx y = (repx ® repy ) o 6.

Let us prove the associativity of A and of § and the cointeraction with the help
of these polynomial representations. We choose X, Y and Z three infinite totally

alphabets. Firstly, observe that, as totally ordered alphabets:
XuY)uZ=Xu(lYu2Z).
Therefore:
(repx @repy ®repy) o (A®Id) o A =rep(x yv),z

=TIePx(yuZz)

= (repy ®repy ®repy) o (Id® A) o A.

As repy, repy and rep, are injective, (A ® Id) o A = (Id ® A) o A. Secondly,
observe that, as totally ordered alphabets:

(X xY)xZ=Xx(Y x2Z).
Therefore:
(repx ®repy ®repy) o (®1d) 0 d =rep xyy)xz

=TePXx(Yx2)

= (repx ®repy ®repy) o (Id®J) o d.
Hence, (§®1d) o = (Id®J) o §. Finally, as totally ordered alphabets':
(XuY)xZ=(Xx2Z)u(Y xZ).
Therefore:
(repx ®repy ®@repy) omi 3210 (0®J) 0 A
= (repy ®rep; @ repy @repy) o (6@ 4) o A
=TCP(XxZ)u(Y x2)

=TIeP(xuy)xzZ

= (repy ®repy ®repy) o (A®Id) o 6.

Hence, m1,3240 (0 ®3J) o A = (A®]Id)od. We obtain:

hut X x (Y uZ) # (X xY) U (X x Z) in general.
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Proposition 4.1. With the coaction 6, (QSym,m,A) and (QSym,m,§) are in

cointeraction.

The Hopf algebra QSym contains the cocommutative Hopf subalgebra Sym of
symmetric functions; this subalgebra is linearly generated by the elements:
M{ul,...,uk} = Z Mud(l),...ua(kp
O'GGk

where k > 1 and uq,...,u; € Nog. Let us apply the results of [10] to QSym.

Proposition 4.2. For any k = 0, we denote by Hy the k-th Hilbert polynomial:
XX-1)...(X-k+1)
k!

Hy(X) =

Let us consider the map:

i { QSym — Q[X]
Mul...uk - Hk

Then H is the unique morphism from QSym to Q[X] compatible with m, A and
6.

Proof. By [10], such a morphism exists and is unique. Let us prove that H is
indeed compatible with m, A and d. For any finite totally ordered alphabet X, of

cardinality k, for any a € QSym, by definition of the polynomial representation of
QSym:
H(a)(k) = rer(a)WmeX, z=1-
If a,b € QSym, for any k > 1, if X is a totally ordered alphabet of cardinality k:
H(ab)(k) = Tepx(ab)wxex, z=1
= repx(a)\v;z:ex, x=1repx(b)\\mex, o=1 = H(a)(k)H(b)(k).

Hence, H(ab) = H(a)H(b). If a € QSym, for any k,l > 1, choosing totally ordered
alphabets X and Y of respective cardinality k& and I:

Ao H(a)(k,l) 5o H(a)(k,1)

= H(a)(k +1) = H(a)(kl)

= repxuy(a)\\mequ, z=1 = l"epxXY(a)wxequ, z=1

= (repx ®@1epy) © A(@)jvzexiy,2=1 = (1€Ppx @ repy) ©6(a)|veex LY, 2=1
= (H® H) o A(a)(k,1); =(H® H)od(a)(k,1).

Hence, AcH=(H®H)oAanddoH =(H® H)oJd. O
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4.2. Cointeraction and quasi-symmetric functions. The following result is
proved by Aguiar and Bergeron in [2]. It states that QSym is a terminal object in

a suitable category of combinatorial Hopf algebras:

Theorem 4.3. Let (A, m,A) be a graded, connected Hopf algebra, and « be a
character on A. There exists a unique homogeneous Hopf algebra morphism @,
(A,m,A) — (QSym,m, A), such that « =€’ o ®,,. For any a € A:

(I) 1 + Z Z 04®k o (7Tu1 X... ®7Tuk) o A(kil) (U,)Muh“_,uk,

=1u1,...,ur >0

where, for any j = 1, m; is the canonical projection on the j-th homogeneous com-
ponent A; of A.

Theorem 4.4. Let (A,m,A) and (A, m,d) be cointeracting bialgebras, such that
(A,m,A) is a graded connected Hopf algebra. We denote by &' the counit of the
coalgebra (A, 9).

(1) There exists a morphism ®1 : A — QSym such that:
(a) ®1:(A,m,A) — (QSym,m, A) is a homogeneous morphism of Hopf
algebras,
(b) @1 : (A, m,0) — (QSym,m, ) is a morphism of bialgebras,
if, and only if:

Vn e N, 0(An) € A ® A+ ker(P) ® A+ A®ker(D).

Moreover, if this holds, then ®1 = ®./, and the unique morphism ¢1 : A —>
K[X] given by Theorem 3.1 is ®1 0 H.

(2) If:
Vn e N, 3(A,) €A, ® A+ ker(P) ® A,
then for any character a on A, ®, = o — «.

Proof. (1) Unicity. If ®; is such a morphism, then ¢’ o ®; = ¢’. By Theorem 4.3,
®; = ... From now, we put ®; = d...

Ezistence, (=) Let us assume that 6 o 1 = (®; ® $1) 0J. Let z € A,,. Let us
put

[ee]

= ZEij ®y1j,
J

1=0
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where z; ; € A; for any (i,7). As ®; is homogeneous, ®;(r) € QSym,. By
definition of the coproduct ¢ of QSym, ¢ o &1(z) € QSym, ® QSym,,. Hence:

o0
(D1 @P1) 0 d(x) = Y > P1(wi;) @P1 (s ;) € QSym,, ® QSym,,.
=0 N~——
€eQSym;
Hence:
£ N = Z(I)l(xi,j) ®q)1(yi7j) =0.
J
So:

7 #* n = in’j ®yi,j € ker(<I>1 ® ‘bl) = ker(‘bl) ®A + A®ker(<1>1),
J

and finally z € A, ® A + ker(®1) ® A + A® ker(®y).

Ezistence, (<) We shall use the polynomial representation of QSym. If X|Y
are totally ordered alphabets, as ®; is compatible with A:

repx, v © @1 = (repx ® repy) 0 A o & = (repx ®@repy ) o (P1 ® 1) o A.

Let us prove that for any finite totally ordered alphabet X, for any totally ordered

alphabet Y:
repx «y © P1 = (repx ®@repy) o (1 @ 1) 0.
We proceed by induction on n = |X|. If n = 1, we put X = {z}. Let a € Ay, with
k € N. By the hypothesis on A:
(P1 ® 1) 0 6(a) € QSym,;, ® QSym.

Therefore:

(repx ® repy ) (P71 @ ®1) 0 §(a) = 2¥(¢' ® repy ) 0 (B1 ® B1) 0 §(a)
= 2"’ ®@repy 0 ®1) 0 §(a)
= 2¥ (Idg ® repy 0 1) o (' ®1d) 0 6(a)

=repyod; =Ida

— *repy 0 1 (a)
= repx «y © P1(a).

Let us assume that the results holds for any totally ordered alphabet X’ such
that |X'| < |X|, with |X| > 2. Let x, be the maximal element of X. We put
X' = X\{z,} and X" = {z,}, such that X = X’ .y X”. Then:

XxY=XuUuX)TxY=XxY)uX"xY),
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S0O:

repx xy © 1

= Tep(x/xY)u(X”xY) © P1

= (repx/xy ®Tepxr,y) 0 (P1® P1) 0 A

~ (repx @ 1epy @ 1epys @ 1epy) 0 (81 @By ® By ® B1) 0 (@) 0 A
= (repxs ® repxs ®1€Py ) 0M13240 (P1 R P1 R®P1 R P1) 0 (I®F) 0 A
= (repxs ® repx» @repy) o (L1 @ P; @ P1) omyg240 (6 ®F) o A
= (repx, ® repx» @repy ) o (P @ P @ P1) o (A®Id) 0 d
= (repx/ x» @repy) o (1 ® P1) 06
— (repx ®repy) o (&1 @ By) 0 .

Let a € A. Let us choose a totally ordered alphabet X of cardinality n such that:

(5(&) € @ Ak ®Al

k,l<n

Then:

repx xx © ®1(a) = (repx ®repx) 0§ o @ (a) = (repx @ repx) o (01 ® ®1) o 4(a).

By injectivity of repx till degree n, as | X| = n, d o ®1(a) = (P ® P1) 0 d(a).

The morphism ®; o H : A — QSym is compatible with both bialgebraic
structures by composition. By unicity in Theorem 3.1, it is equal to ¢;.

(2) Let a € A,,. Then by hypothesis, &1 — a(a) = (?1 ® @) 0 d(a) € QSym,,, so

®; «— « is a homogeneous Hopf algebra morphism. Moreover:
go(@—a)=(Eo0P®a)od=(Ra)od=aoc(e®Id)od=aqa,

$0 (P «— a) = D,. O

4.3. Double morphisms from graphs to quasisymmetric functions.

Notation 4.5. For any graph G € G(D), for any f € PC(G) and for any i €

[max(f)], we put:

wt(f71(4)) = > we | Y, d@)

G connected component of G|f*1(i) zeV (G)

My = Mys(p-1(1))..wt(f~* max(s)) € QSym.
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In other words, f~1(i) is the sum of the weights of the connected components of

the subgraph of G which vertices are the vertices of G colored by 1.

Remark 4.6. If wt: (D,+) — (N=o, +) is a semigroup morphism, this simplify:

wt(f71()) = wt Y, d)
zeV(Q), f(x)=1

Proposition 4.7. Let D be a nonempty set. We define FC(Z;) : Hgpy — QSym
by:

> Hgpy — QSym

F ) :
chr GeGD) — D My(p—1(1)).wt(f~ (max(f)))-
fEPVC(Q)

Then FC(ZZ) is a Hopf algebra morphism, equal to ¢.:.

Proof. Let us apply Theorem 4.3 in order to describe ®.: for any nonempty

Ge G(D),
o0
o (G) =D D> Fo(m, ®...@m,) 0 AFTN(G)IM,, .,

0
= Z Z Z 51071—“1((;\11)-~-5/O7Tuk(G\Ik)Mu1,m,uk

k=1ui,...,us>0V(G)=I1u...ul}

Moreover, for any graph H, ¢/(H) = 1 if H is totally disconnected and 0 otherwise.

Hence:

e}
¢ (G) = Z Z Mt(Gir) )t (Gy,)

k=1 V(G)=Iu...uly,
Vie[k], G|1, totally disconected

= 2 Myt(£-1(1))...wt (£~ (max(£)))
fePVC(G)

= rP(q). O

chr
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Example 4.8. Let a,b,c e D.
D
F (w0) = Myy(a),
D b
Fc(m-)(I“) = Myt(a),wi(v) T Muwt(b),wt(a)>

c b
D
Fc(hr)(vl) = Myt(a),wiv),wi(c) T Muwt(a),wt(c)wt(d) T Mwt(b),wt(a),wt(c)
+ Myt(v),wt(e),wi(a) T Mwt(e),wi(a),wi(v) T Muwt(e),w(b),wt(a)s
c b
D
Fc(hr)(%) = Myt(a),wt(b),wt(c) T Muwt(a),wi(e),wt(d) T Mwt(b),wt(a),wt(c)
+ Myt(v),wt(e),wi(a) T Mwt(c),wt(a),wt(v) T Muws(e),wi(b),wi(a)
+ Myt(a),wi(d) +wt(c) T Muwt(b) +wt(c),wt(a)-

In the nondecorated case, this simplifies:
Fchr(') :Mh Fchr(v) :6M1,1,17
Fchr(I) =2My 1, Fchr(v) =6My11+ Mg+ Ma;.

For any graph G, Fep,,-(G) is the chromatic symmetric function of [26], when realized
with the totally ordered alphabet X = {z1 < z9 < ...}. For example:

o0
repx © Fopp(e) = Y @i,
i=1

3
rep x OFchr(I) = Z ZiZj,
i,j>1
i#]

repy © Chr(V): Z TT Ty,

i,J,k>1,

1#],

i£k,

j#k

2

repy oFch,.(V): Z TiT;Th = Z TiTiTy + Z T;T].

1,5,k=1, 1,,k=>1, 1,521,

£, i#], i#]

itk ik,

j#k
We now fix an abelian semigroup (D, +) and a map wt : D — N, inducing a
graduation on Hg(p).
Theorem 4.9. There exists a morphism ®1 : Hg(py — QSym such that:

(1) @1 : (Hgpy,m,A) — (QSym,m, A) is a homogeneous morphism of Hopf
algebras,

(2) @1 : (Hgpy,m,d0) — (QSym,m,d) is a morphism of bialgebras,
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F(P)

chr

if, and only if, wt : (D, +) — (Nxg, +) is a semigroup morphism. If so, &1 =

(and therefore ® is unique).

Proof. (=) By Theorem 4.4, ¢’ o &1 = &', so necessarily ®; = & = FC(hDT). Let
a,beD. Then:

b
5o @1 (Ja) = (Mypa) wit) + Mut()wi(a)) ® Mus(ay Mt (n)
+ M) +wir) @ (Mut(a),wt(s) T Muwt(s),wt(a))s
b b b
— (@ ®®1)0d(la) = (@, @P1)(Ja ® ea et + satb @ la)
= (Myt(a),wt(d) T Muwt(s),wt(a)) ® Mt(a) Mwtn)

+ Myt(at) © (Myt(a),wiv) + Myt (v),wi(a))-

Comparing, we obtain wt(a) + wt(b) = wt(a + b), so wt is a semigroup morphism.

(<) Let us assume that wt is a semigroup morphism. Let G € G(D) and ~ <G.
Then, obviously, wt(G |~) = wt(G) and:

wi(G/ ~) = D wi(d(e))

ceV (G/~)

5 (L)

eV (G/~) wec

= > D wi(d)

ceV (G/~) vec
= 2, wit(d(x))
eV (G)
= wt(G).

Hence, for any n € N, §((Hg(p))n) S (Hg(p))n ® (Hg(p))n- By Theorem 4.4-2, &/

is a morphism for both bialgebraic structures. ]

Example 4.10. As a consequence, in the nondecorated case, F,p, is not compatible

with 6. Indeed, for example:

50Fchr(1) (Fchr®FchT)O(5(I)

=26(M171) =(Fchr®Fchr)<I®"+'®I)
=2(My1 @ My My + My ® M 1), =2(M11 ® M1 My + My ® My 7).
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On the other side, if (D,+) = (Nsg, +) and wt = Idy_,, then >

"h s compatible
with §:

1 1
6OFChT<Il) (Fchr®Fchr>06<Il)
1 1
:26(M171) :(FC}LT®Fchr)(II®°1°1+°2®Il)
=2(My1 @ My My + My ® M 1), =2(My1 ® M1 My + My ® My 1).
Proposition 4.11. The image of Fc(hDT) is included in Sym. It is equal to Sym, if

and only if, there exists a € D, such that wt(a) = 1.

Proof. As Hg(p) is cocommutative, Fc(,g) (Hg(p)) is a cocommutative Hopf sub-
algebra of QSym, so is included in Sym, greatest cocommutative subalgebra of
QSym.

If 1 ¢ wt(D), then there is no element of Hgpy homogeneous of degree 1. As
Fc(,ﬁ) is homogeneous, there is no element x € Hg(p) such that ®,(x) = M;.

If wt(a) = 1, let us consider the complete graph G, with n vertices, all decorated
by a. By definition of FC(}?T), FC(ZLDT)(G,,) = n!Min, so for any n, Mi» € ®1(Hg(p))-

As these elements (which are the elementary symmetric functions) generate Sym,
®1(Hg(p)) = Sym. O

4.4. Extension of ¢q.

Proposition 4.12. Let G be a graph and f € PC(G). We define the equivalence
~r in V(G) as the unique one which classes are the connected components of the

subsets f~1(x), x € [max(f)]. Then, the coloring f induces a packed valid coloring

fof G) ~y:
Ve V(G), (@) = f(x).

Proof. We have to prove that f is a valid coloring of G/ ~s. Let Z, ¥ be two
vertices of G/ ~y, related by an edge (this implies that they are different); we
assume that f(Z) = f(y). There exist 2/,y’ € V(G), such that 2’ ~; z and ¥’ ~; v,
and z’, y' are related by an edge in G. By definition of ~, there exist vertices
¥ =w,..,xp =z, ¥y = y1,...,y =y in G such that f(z1) = ... = f(zx),
g(y1) = ... = g(y), and for all p, ¢, z, and zp4+1, y, and y,41 are related by an
edge in G. Hence, there is a path in G from x to y, such that for any vertex z
on this path, f(z) = f(z) = f(y): this implies that « ~; y, so T = 7. This is a

contradiction, so f is valid. [
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Proposition 4.13. Let us consider the following map:

Hgpy — QSym

G — Z Mf.
fePC(G)

FéD) :

This is a Hopf algebra morphism, and FO(D) oH = gb(()D). It is homogeneous if,
and only if, wt : (D,+) — (Nxo,+) is a semigroup morphism. Moreover, in
EHQ(D)"QSym'.

FP) _ pP) 5@

chr chr*

Proof. Let G be graph. By Proposition 4.12, we have a map:

PC(G) — || PVC(G/~)
0: ~<aG
f — fePVC(G/~y).

0 is injective: if 6(f) = 6(g), then ~;=~, and for any z € V(G),

f@) = f(@) =5(@) = g(2).

Let us show that 6 is surjective. Let f € PVC(G/ ~), with ~ <G. We define
f € PC(G) by f(z) = f(Z) for any vertex z. By definition of f, the equivalence
classes of ~ are included in sets f~!(i), and are connected, as ~ <G, so are included
in equivalence classes of ~: if x ~ y, then  ~f y. Let us assume that x ~; y.
There exists a path @ = x1,...,2, = y in G, such that f(x1) = ... = f(zx).
So f(@1) = ... = f(Tx)- As f is a valid coloring of G/ ~, there is no edge
between T, and T,5;7 in G/ ~ for any p; this implies that T, = T,51 for any p, so
T =x1 ~x) = y. Finally, ~=~, so 0(f) = f.
Using the bijection 6, we obtain:

= ), M

fePC(G)

-2 X M

~<G FePVC(G/~)

> Fal (G

~<a@G
= Y EPNG DG |~
~<aG

= (i) = A7) (@),
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Therefore, FO(D) = Fc(hDT) — /\(()D), or equivalently Fc(,?) = FéD) — /\(?. As a

T c

consequence, FéD) is a Hopf algebra morphism, taking its values in Sym. Hence:

HoFP =Ho(F) < AP) = (HoFE)) < AP = P = AP = 67

chr chr

b
Let us assume that FO(D) is homogeneous. For any a,b e D, FO(D)(Ia) is homoge-
neous of degree wt(a) +wt(b), 50 My (q4p) is homogeneous of degree wt(a) + wt(b).
Hence, wt(a + b) = wt(a) + wt(b), and wt is a semigroup morphism. Conversely, if

G € G(D), any term appearing in FéD)(G) is of degree

Z wt(d(x)) = wt(G),

zeV(G)
S0 FO(D) is homogeneous. 0
Example 4.14. Let a,b,c e D.

D
FO( )('a) = th(a)a

b
FP(la) = Mt (ay,wiv) + Mt (v),wt(a) T Mwt(a+b)>

c b
D
Fé J(Va) = Mit(a),wi),wi(e) T Muwt(a),wi(e),wt(d) T Mwt(b),wt(a),wt(c)
+ M), wt(e),wi(a) T Muwt(e),wi(a),wt(v) T Mwt(c),wi(b),wt(a)
+ Myt(atb),wi(c) T Mwt(are),wiv) T Muwt(b)+wt(c),wi(a)

+ Myt(e),wi(a+b) + Musv),wi(ate) + Mwt(a),wi®)+wi(e) T Mwt(atbre)s

Fép)(vz) = Myg(a),wi(d),wi(e) + Mut(a),wi(e),we(v) T Muvt(b),wt(a),wi(c)
+ M) wt(e),wi(a) T Mt(e),wi(a) we(r) T Mt(e),wi(b),wt(a)
+ Mut(a+b),wi(e) T Mwt(a+e)wiv) + Muwt(b+c),wt(a)
+ Myt(e),wiatb) + Musv),wi(ate) T Mwt(a),wipre) T Mwt(atbre)-
In the nondecorated case, this simplifies:
Fo(e) = My, Fo(V') = 6My11 + 4Myy + Mo + Moy + My,
Fo(ly =2Mu + My, Fo(V) = 6Min + 6Myy + M.
5. Non-commutative versions
5.1. Non-commutative Hopf algebra of graphs.

Definition 5.1. (1) An indexed graph is a graph G such that V(G) = [n],
with n > 0. The set of indexed graphs is denoted by ¥.
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(2) Let G = ([n], E(G)) be an indexed graph and let I < [n]. There exists a
unique increasing bijection f : I — [k], where k = §I. We denote by G|;
the indexed graph defined by:

G = ([k], {f (), fW)} | {=,y} € E(G), w,y € T}).

(3) Let G be an indexed graph and ~ <G.

(a) The graph G| ~ is an indexed graph.

(b) We order the elements of V(G)/ ~ by their minimal elements; using
the unique increasing bijection from V(G)/ ~ to [k], G/ ~ becomes
an indexed graph.

(4) Let G = ([k], E(G)) and H = ([I], E(H)) be indexed graphs. The indexed
graph GH is defined by:

V(GH) = [k +1],
E(GH) = E(G)u {{z + k,y +1} [ {z,y} € E(H)}.
The Hopf algebra (Hey,m, A) is, as its commutative version, introduced in [24]:

Theorem 5.2. (1) We denote by Heg the vector space generated by indexed
graphs. We define a product m and two coproducts A and § on He in the

following way:

VG, He9, m(G® H) = GH,

¥G = ([n], BE(G)) e 9, AG) = )] G ®Gpans,
Ic[n]

VG e, 5(G)= >, G/ ~®G |~ .
~<aG

Then (Ha, m,A) is a graded cocommutative Hopf algebra, and (Heg,m, )
is a bialgebra.
(2) Let w : Hy —> Hg be the surjection sending an indexed graph to its

tsoclass.

(a) @w: (Heg,m,A) — (Hg,m,A) is a surjective Hopf algebra morphism.

(b) w: (Heg,m,0) — (Hg,m,d) is a surjective bialgebra morphism.

(c) Weput p=(Id®w)od: Hy — Hy ® Hg. This defines a coaction
of (Hg,m,d) on Hg; moreover, (Hg,m,A) is a Hopf algebra in the
category of (Hg, m,d)-comodules.

Proof. (1) Similar to the proofs of Propositions 2.2 and 2.6.
(2) Points (a) and (b) are immediate; point (c) is proved in the same way as
Theorem 2.13. ]
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Example 5.3.

A(e1) =1 ®1+1® o1,

2 2 2
Adn=ligl+1eli+ n®.,

2 3

2 3 2 3 2 9
AV =Vigl+1eVi+3a@li+3li®.a,
2 3

2 3 2 3
A(\/I)Z \/1®1+1®\/1+213®01+0102®01 +201®I?+01®0102;
0(e1) = 01 ® o1,

2

szl li®.a..,

2 3

5(V1): .1®2Vj+If@(.113+.21‘;’+.3If)+%\7‘i®.1.2.3,

2 3

6(\/1): .1®2\/j+I?@(.21?+.31?)+2\/j®.1.2.3,

Remark 5.4. (Hy, m,A) is not a bialgebra in the category of (He, m, §)-comodules,

as shown in the following example:

AR os(V) = ANV + Belr1ol) el + e

ol ® el ®(.2I? + If.?,) +A(2\/j)® ele2e3,
Mis210(0®8) o AM) =A@ Vi+(lT@1+101) @ (211 + 1)
ol ® el ®(.1Ig + If.’a) +A(2\/j)® el e2e3.

5.2. Reminders on WQSym. Let us recall the construction of WQSym [21].

Definition 5.5. (1) Let w be a word with letters in N>o. We shall say that w
is packed

Vj € Nog, J appears in w = 1,...,j appear in w.

(2) Let w = z1...2, a wordwith letters in N-g. There exists a unique in-
creasing bijection f from {x1,...,zx} to [I], with [ > 0; the packed word
Pack(w) is f(z1) ... f(zk).

(3) w = z1...7; a word in N5g and I < N5g. The word w; is the word

obtained by taking the letters of w which are in I.



CHROMATIC POLYNOMIALS AND BIALGEBRAS OF GRAPHS 161

The Hopf algebra WQSym has the set of packed words for basis. If w =

wy ... wg and w' = w) ... w; are packed words, then:

/ "
" " "
W=wWy - Wy s
Pack(w/...w})=w,
Pack(wy 41 .. wy . =w’

For any packed word w:

max(w)

Aw) = Y} wip) ® Pack(Wimax(u)i)-
i=0

Then (WQSym, s, A) is a Hopf algebra. Moreover, WQSym has also a second

coproduct ¢ defined on any packed word w = ws ...wy by:

S(w) = f(wy)... flwp) ®g(wr) ... g(ws),
f.9

where the sum runs over all pairs of maps (f, g), where f : [max(w)] — [max(f)]
is an increasing surjective map and g : [max(w)] — [max(g)] is an increasing map
such that for any i € [max(f)], gj-1(;) is increasing. However, (WQSym, w, A)
is not a bialgebra in the category of right (WQSym, w, §)-comodules, as shown in

the following example.
(A®Id) 0 6((132))
=A((132)) @ (1) w (1) w (1)
F((121) @1+ 1® (121)) @ ((112) + (121) + (132) + (123) + (213))
+ (1) ® (1) ® ((112) + (121) + (132) + (123) + (213))
+A((122) ® (1) w (11) + A((111)) ® (132),
113,04 0(6 ® 8) 0 A((132))
=A((132)) @ (1) w (1) w (1)
F((12) @1+ 1®(121)) ® ((112) + (121) + (132) + (123) + (213))
+ (1) ® (1) ® ((121) + (121) + (132) + (123) + (231))
+A((122) ® (1) w (11) + A((111)) ® (132).

This Hopf algebra admits a polynomial representation: we fix a infinite totally

ordered alphabet X; the set of words in X is denoted by X*. For any packed word

w, we consider the noncommutative formal series:

Repx (w) = > w' € QUX)).

w/'eX*, Pack(w’)=w
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Then Repy is an algebra morphism from WQSym to Q{(X)). For example:

Repy (111) = Z z3,

rzeX
Repy(112) = ). 2%y, Repy(221) = ). ¢z,
z<yin X rz<yin X
Repx(121) = ) ayu, Repy(212) = ). yay,
z<yin X rz<yin X
Repx(211) = Z ya?, Repy (122) = 2 xy?,
r<yin X r<yin X
Repy(123) = 2 TYz, Repy (312) = 2 zzy.
r<y<zin X r<y<zin X

If X is infinite, then Repx is injective. If X and Y are two totally ordered alphabets,
we shall consider QX)) ® QY )) as a quotient of Q((X w Y)), through the

continuous map:
UXLY)) — UX)®QKY))
reX — ®I1,

We obtain:

Repx,,v = (Repx ® Repy ) 0 A.
We shall identify Q{(X x Y)) with a subalgebra of Q{(X))® Q{Y)), through the
continuous map:

UXxY)) — QUX))@QKY))
(z,y) eXxY — z®u.

We obtain:

Repx .y = (Repx ® Repy) o d.

5.3. Non-commutative chromatic symmetric functions.

Definition 5.6. A set partition is a partition of a set [n], with n = 0. The set of
set partitions is denoted by SP.

Theorem 5.7. (1) For any packed word w of length n and of mazimal k, we

denote by p(w) the set partition {w=1(1),...,w™1(k)}. For any set partition

Weo = 2 w.

wePW, p(w)=tw

w e SP, we put:

These elements are a basis of a cocommutative Hopf subalgebra of WQSym,
denoted by WSym.
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(2) The following map is a Hopf algebra morphism from (Heg, m,A) to (WQSym,
w, A):
Hy — WQSym
Far:y Geg — > f1)... f(G).

FEPVC(Q)
Its image is WSym. Moreover:

VG e 4, Fonr(G) = > Wa.
welP(G)

Proof. (2) For any totally ordered alphabet X, by definition of Repy, for any
G € 4, with n vertices:
Repx o Fonr(G) = Y. f(1)... f(n).
fEVC(G,X)
Let us choose two infinite totally ordered alphabets X and Y. Let G, H € ¢, of

respective degrees m and n:

Repx (Fon (GH)) = >, f(1)...f(m+n)
feVC(GH,X)
= > SO ). f(n)
fleve(a,X),
f"evC(H,X)

= Repy © Fen (G)Repy 0 Fop, (H)
= Repx (Fenr (G) & Fep, (H)).
As Repx is injective, Fep (GH) = Fepr(G) @ Fepyr(H), 0 Fep, is an algebra mor-
phism.
Let G € ¢4, of degree n.

(Repx ® Repy ) 0 Ao F oy, (G)
= Repx, v © Fenr (G)
= ) ). f)

fEVC(FG,XLY)

> DI A OO I (TN CO I ()
V(G)=IuJ f'eVC(F|;,X),
f"eVC(F ;,Y)

2 Repx o Fchr(Gll) ® Repy © Fchr(G\J)
V(G)=IuJ

(Repx ® RepY) © (Fchr ® Fchr) © A(G)

Il

As Repx and Repy are injective, A o Fop = (Fepr @ Fepr) 0 Al



164 LOIC FOISSY

(1) So WSym is a Hopf subalgebra of WQSym, isomorphic to a quotient of

He, so is cocommutative. O

Remark 5.8. (1) The Hopf algebra WSym, known as the Hopf algebra of
word symmetric functions, is described and used in [4,6,15]. Here is a
description of its product and coproduct, with immediate notations:

e For any set partitions @, @’ of respective degree m and n:

WoWe = > W
w"eSP, deg(w”)=k+1,
Pack(w‘"[k] )=,
Pack(wl”[k,ﬂ]\[k,] V=’

e For any set partition w = {P,..., Py}

A(Pu) = D Weack(tr,lpery) ® Weack((1,lpe1)-
Ic[k]

For example:
Wi 2anWiayy = Wienen + Wiy,
Wiy enWiay = Wianeney - Wiashen + Wiaesyy
AWy sy g214a1) = Wignan2n,043 @ 1+ Wi sy,0233 @ Wiy
+ Wig2y.481 @ Wiy + Wiy ey © Wi 2y
+ W2y @ Wiy ey + Wiy @ Wi 2y,43)
+ Wiy @ Wi sy ey + 1@ Wi sy 423,443
(2) The map F.p, is not a bialgebra morphism from (He,m,d) to (WQSym,
w, d). For example:
2
(Fenr ® Fepp) 00(11) = (1) @ ((12) + (21)) + ((12) + (21)) ® ((11) + (12) + (21)),
2
§oF (1) = (1) ® ((12) + (21) + ((12) + (21)) ® ((11) + (12) + (21)).

5.4. Non-commutative version of F,. We shall use the notations of Proposition
4.12. If G be an indexed graph and f € PC(G), then G/ ~ is an indexed graph;
we denote its cardinality by k. We put:

wy = F(1)... F (k).
Proposition 5.9. Let us consider the following map:

Hyg — WSym

Fo: G —_— 2 U)f.
fePC(G)
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This is a Hopf algebra morphism. Moreover, in Ey, swWSym:
Feonr = Fo < Achr.
Proof. This is proved in the same way as Proposition 4.13. (]

Example 5.10.

2
1

Fo(l1) = (12) + (21) + (1),

F0(2Vj) = (123) + (132) + (213) + (231) + (312) + (321) + 3(12) + 3(21) + (1),

2 3

Fo( V1) = (123) + (132) + (213) + (231) + (312) + (321)
+ (122) + (211) + 2(12) + 2(21) + (1).

5.5. From non-commutative to commutative. As Q[[X]] is a quotient of
QU{X)), this polynomial representations Rep of WQSym and rep of QSym induce

a surjective Hopf algebra morphism:

{WQSym — QSym
T

w = M1 (1)), o (max(w)]-

Proposition 5.11. toFy = Fyow and toF.p,, = Fep, 0 w@.
Proof. Immediate. |

We obtain commutative diagrams of Hopf algebra morphisms:

WQSym —> QSym —> Q[X] WQSym ——> QSym —>> Q[X]

Fenr T Fepr T P Fo T Fo T /
chr 0

Hy Hg Hy 'Hg

Acknowledgement. I am grateful to Mercedes Rosas, who pointed the link with
Gebhard and Sagan’s chromatic symmetric function in noncommuting variables,
and to Viviane Pons, who noticed an important mistake in the preceding version

of the paper.
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