DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS

Habibollah Ansari-Toroghy and Shokoufeh Habibi
Received: 13 June 2020; Revised: 26 November 2020; Accepted: 5 December 2020 Communicated by Sait Halıcıoğlu

Abstract

Let M be a module over a commutative ring R. The annihilatingsubmodule graph of M, denoted by $A G(M)$, is a simple undirected graph in which a non-zero submodule N of M is a vertex if and only if there exists a nonzero proper submodule K of M such that $N K=(0)$, where $N K$, the product of N and K, is denoted by $(N: M)(K: M) M$ and two distinct vertices N and K are adjacent if and only if $N K=(0)$. This graph is a submodule version of the annihilating-ideal graph and under some conditions, is isomorphic with an induced subgraph of the Zariski topology-graph $G\left(\tau_{T}\right)$ which was introduced in [H. Ansari-Toroghy and S. Habibi, Comm. Algebra, 42(2014), 3283-3296]. In this paper, we study the domination number of $A G(M)$ and some connections between the graph-theoretic properties of $A G(M)$ and algebraic properties of module M.

Mathematics Subject Classification (2020): 13C13, 13C99, 05C75
Keywords: Commutative ring, annihilating-submodule graph, domination number

1. Introduction

Throughout this paper R is a commutative ring with a non-zero identity and M is a unital R-module. By $N \leq M$ (resp. $N<M$) we mean that N is a submodule (resp. proper submodule) of M.

Define $\left(N:_{R} M\right)$ or simply $(N: M)=\{r \in R \mid r M \subseteq N\}$ for any $N \leq M$. We denote $((0): M)$ by $A n n_{R}(M)$ or simply $\operatorname{Ann}(M) . M$ is said to be faithful if $\operatorname{Ann}(M)=(0)$. Let $N, K \leq M$. Then the product of N and K, denoted by $N K$, is defined by $(N: M)(K: M) M$ (see [6]). Define $\operatorname{ann}(N)$ or simply ann $N=\{m \in M \mid$ $m(N: M)=0\}$.

The prime spectrum of M is the set of all prime submodules of M and denoted by $\operatorname{Spec}(M), \operatorname{Max}(M)$ is the set of all maximal submodules of M, and $J(M)$, the jacobson radical of M, is the intersection of all elements of $\operatorname{Max}(M)$, respectively.

[^0]There are many papers on assigning graphs to rings or modules (see, for example, [5,7,13,14]). The annihilating-ideal graph $A G(R)$ was introduced and studied in [14]. $A G(R)$ is a graph whose vertices are ideals of R with nonzero annihilators and in which two vertices I and J are adjacent if and only if $I J=(0)$. Later, it was modified and further studied by many authors (see [1,2,3,20,22]).

In [7], the present authors introduced and studied the graph $G\left(\tau_{T}\right)$ (resp. $A G(M)$), called the Zariski topology-graph (resp. the annihilating-submodule graph), where T is a non-empty subset of $\operatorname{Spec}(M)$.
$A G(M)$ is an undirected simple graph with vertices $V(A G(M))=\{N \leq M \mid$ there exists $(0) \neq K<M$ with $N K=(0)\}$. In this graph, distinct vertices $N, L \in V(A G(M))$ are adjacent if and only if $N L=(0)$ (see [8,9]). Let $A G(M)^{*}$ be the subgraph of $A G(M)$ with vertices $V\left(A G(M)^{*}\right)=\{N<M$ with $(N: M) \neq$ $\operatorname{Ann}(M) \mid$ there exists a submodule $K<M$ with $(K: M) \neq \operatorname{Ann}(M)$ and $N K=$ $(0)\}$. By [7, Theorem 3.4], one conclude that $A G(M)^{*}$ is a connected subgraph. Note that M is a vertex of $A G(M)$ if and only if there exists a nonzero proper submodule N of M with $(N: M)=\operatorname{Ann}(M)$ if and only if every nonzero submodule of M is a vertex of $A G(M)$. Clearly, if M is not a vertex of $A G(M)$, then $A G(M)=$ $A G(M)^{*}$. In [10, Lemma 2.8], we showed that under some conditions, $A G(M)$ is isomorphic with an induced subgraph of the Zariski topology-graph $G\left(\tau_{T}\right)$.

In this paper, we study the domination number of $A G(M)$ and some connections between the graph-theoretic properties of $A G(M)$ and algebraic properties of module M.

A prime submodule of M is a submodule $P \neq M$ such that whenever $r e \in P$ for some $r \in R$ and $e \in M$, we have $r \in(P: M)$ or $e \in P$ [18].

The notations $Z(R)$ and $\operatorname{Nil}(R)$ will denote the set of all zero-divisors, the set of all nilpotent elements of R, respectively. Also, $Z_{R}(M)$ or simply $Z(M)$, the set of zero divisors on M, is the set $\{r \in R \mid r m=0$ for some $0 \neq m \in M\}$. If $Z(M)=0$, then we say that M is a domain. An ideal $I \leq R$ is said to be nil if I consist of nilpotent elements.

Let us introduce some graphical notions and denotations that are used in what follows: A graph G is an ordered triple $\left(V(G), E(G), \psi_{G}\right)$ consisting of a nonempty set of vertices, $V(G)$, a set $E(G)$ of edges, and an incident function ψ_{G} that associates an unordered pair of distinct vertices with each edge. The edge e joins x and y if $\psi_{G}(e)=\{x, y\}$, and we say x and y are adjacent. The number of edges incident at x in G is called the degree of the vertex x in G and is denoted by $d_{G}(x)$ or simply $d(x)$. A path in graph G is a finite sequence of vertices $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, where x_{i-1} and x_{i} are adjacent for each $1 \leq i \leq n$ and we denote $x_{i-1}-x_{i}$ for existing an edge
between x_{i-1} and x_{i}. The distance between two vertices x and y, denoted $d(x, y)$, is the length of the shortest path from x to y. The diameter of a connected graph G is the maximum distance between two distinct vertices of G. For any vertex x of a connected graph G, the eccentricity of x, denoted $e(x)$, is the maximum of the distances from x to the other vertices of G. The set of vertices with minimum eccentricity is called the center of the graph G, and this minimum eccentricity value is the radius of G. For some $U \subseteq V(G)$, we denote by $N(U)$, the set of all vertices of $G \backslash U$ adjacent to at least one vertex of U and $N[U]=N(U) \cup\{U\}$.

A graph H is a subgraph of G, if $V(H) \subseteq V(G), E(H) \subseteq E(G)$, and ψ_{H} is the restriction of ψ_{G} to $E(H)$. A subgraph H of G is a spanning subgraph of G if $V(H)=V(G)$. A spanning subgraph H of G is called a perfect matching of G if every vertex of G has degree 1. A subset S of the vertex set $V(G)$ is called independent if no two vertices of S are adjacent in G.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in G, denoted by $\operatorname{cl}(G)$, is called the clique number of G. Let $\chi(G)$ denote the chromatic number of the graph G, that is, the minimal number of colors needed to color the vertices of G so that no two adjacent vertices have the same color. Obviously $\chi(G) \geq \operatorname{cl}(G)$.

A graph G is a split graph if $V(G)$ can be partitioned into two subsets A and B such that the subgraph induced by A in G is a clique in G , and B is an independent subset of $V(G)$.

A subset D of $V(G)$ is called a dominating set if every vertex of G is either in D or adjacent to at least one vertex in D. The domination number of G, denoted by $\gamma(G)$, is the number of vertices in a smallest dominating set of G. A total dominating set of a graph G is a dominating set S such that every vertex is adjacent to a vertex in S. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set. A dominating set of cardinality $\gamma(G)\left(\gamma_{t}(G)\right)$ is called a γ-set (γ_{t}-set). A dominating set D is a connected dominating set if the subgraph $<D>$ induced by D is a connected subgraph of G. The connected domination number of G, denoted by $\gamma_{c}(G)$, is the minimum cardinality of a connected dominating set of G. A dominating set D is a clique dominating set if the subgraph $<D>$ induced by D is complete in G. The clique domination number $\gamma_{c l}(G)$ of G equals the minimum cardinality of a clique dominating set of G. A dominating set D is a paired-dominating set if the subgraph $<D>$ induced by D has a perfect matching. The paired-domination number $\gamma_{p r}(G)$ of G equals the minimum cardinality of a paired-dominating set of G.

A vertex u is a neighbor of v in G, if $u v$ is an edge of G, and $u \neq v$. The set of all neighbors of v is the open neighborhood of v or the neighbor set of v, and is denoted by $N(v)$; the set $N[v]=N(v) \cup\{v\}$ is the closed neighborhood of v in G.

Let S be a dominating set of a graph G, and $u \in S$. The private neighborhood of u relative to S in G is the set of vertices which are in the closed neighborhood of u, but not in the closed neighborhood of any vertex in $S \backslash\{u\}$. Thus the private neighborhood $P_{N}(u, S)$ of u with respect to S is given by $P_{N}(u, S)=$ $N[u] \backslash\left(\cup_{v \in S \backslash\{u\}} N[v]\right)$. A set $S \subseteq V(G)$ is called irredundant if every vertex v of S has at least one private neighbor. An irredundant set S is a maximal irredundant set if for every vertex $u \in V \backslash S$, the set $S \cup\{u\}$ is not irredundant. The irredundance number $\operatorname{ir}(G)$ is the minimum cardinality of maximal irredundant sets. There are so many domination parameters in the literature and for more details one can refer [16].

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V are each independent sets and is denoted by $B_{n, m}$, where V and U are of size n and m, respectively. A complete bipartite graph on n and m vertices, denoted by $K_{n, m}$, where V and U are of size n and m, respectively, and $E(G)$ connects every vertex in V with all vertices in U. Note that a graph $K_{1, m}$ is called a star graph and the vertex in the singleton partition is called the center of the graph. We denote by C_{n} and P_{n} a cycle and a path of order n, respectively (see [15]).

In Section 2, a dominating set of $A G(M)$ is constructed using elements of the center when M is an Artinian module. Also we prove that the domination number of $A G(M)$ is equal to the number of factors in the Artinian decomposition of M and we also find several domination parameters of $A G(M)$. In Section 3, some relations between the domination numbers and the total domination numbers of annihilating-submodule graphs are studied. Also, we study the domination number of the annihilating-submodule graphs for reduced rings with finitely many minimal primes and faithful modules.

The following results are useful for further reference in this paper.
Proposition 1.1. Suppose that e is an idempotent element of R. We have the following statements.
(a) $R=R_{1} \times R_{2}$, where $R_{1}=e R$ and $R_{2}=(1-e) R$.
(b) $M=M_{1} \times M_{2}$, where $M_{1}=e M$ and $M_{2}=(1-e) M$.
(c) For every submodule N of $M, N=N_{1} \times N_{2}$ such that N_{1} is an R_{1} submodule M_{1}, N_{2} is an R_{2}-submodule M_{2}, and $\left(N:_{R} M\right)=\left(N_{1}:_{R_{1}}\right.$ $\left.M_{1}\right) \times\left(N_{2}:_{R_{2}} M_{2}\right)$.
(d) For submodules N and K of $M, N K=N_{1} K_{1} \times N_{2} K_{2}$ such that $N=$ $N_{1} \times N_{2}$ and $K=K_{1} \times K_{2}$.
(e) Prime submodules of M are $P \times M_{2}$ and $M_{1} \times Q$, where P and Q are prime submodules of M_{1} and M_{2}, respectively.

Proof. This is clear.
We need the following results.

Lemma 1.2. (See [4, Proposition 7.6].) Let $R_{1}, R_{2}, \ldots, R_{n}$ be non-zero ideals of R. Then the following statements are equivalent:
(a) $R=R_{1} \times \ldots \times R_{n}$;
(b) As an abelian group R is the direct sum of R_{1}, \ldots, R_{n};
(c) There exist pairwise orthogonal idempotents e_{1}, \ldots, e_{n} with $1=e_{1}+\ldots+e_{n}$, and $R_{i}=R e_{i}, i=1, \ldots, n$.

Lemma 1.3. (See [17, Theorem 21.28].) Let I be a nil ideal in R and $u \in R$ be such that $u+I$ is an idempotent in R / I. Then there exists an idempotent e in $u R$ such that $e-u \in I$.

Lemma 1.4. (See [9, Lemma 2.4].) Let N be a minimal submodule of M and let Ann (M) be a nil ideal. Then we have $N^{2}=(0)$ or $N=e M$ for some idempotent $e \in R$.

Proposition 1.5. Let $R / \operatorname{Ann}(M)$ be an Artinian ring and let M be a finitely generated module. Then every nonzero proper submodule N of M is a vertex in $A G(M)$.

Theorem 1.6. (See [9, Theorem 2.5].) Let Ann(M) be a nil ideal. There exists a vertex of $A G(M)$ which is adjacent to every other vertex if and only if $M=$ $e M \oplus(1-e) M$, where $e M$ is a simple module and $(1-e) M$ is a prime module for some idempotent $e \in R$, or $Z(M)=\operatorname{Ann}((N: M) M)$, where N is a nonzero proper submodule of M or M is a vertex of $A G(M)$.

Theorem 1.7. (See [9, Theorem 3.3].) Let M be a faithful module. Then the following statements are equivalent.
(a) $\chi\left(A G(M)^{*}\right)=2$.
(b) $A G(M)^{*}$ is a bipartite graph with two nonempty parts.
(c) $A G(M)^{*}$ is a complete bipartite graph with two nonempty parts.
(d) Either R is a reduced ring with exactly two minimal prime ideals, or $A G(M)^{*}$ is a star graph with more than one vertex.

Corollary 1.8. (See [9, Corollary 3.5].) Let R be a reduced ring and assume that M is a faithful module. Then the following statements are equivalent.
(a) $\chi\left(A G(M)^{*}\right)=2$.
(b) $A G(M)^{*}$ is a bipartite graph with two nonempty parts.
(c) $A G(M)^{*}$ is a complete bipartite graph with two nonempty parts.
(d) R has exactly two minimal prime ideals.

Theorem 1.9. (See [8, Theorem 2.7].) If $A G(M)$ is a tree, then either $A G(M)$ is a star graph or $A G(M) \cong P_{4}$. Moreover, $A G(M) \cong P_{4}$ if and only if $M=F \times S$, where F is a simple module and S is a module with a unique non-trivial submodule.

Proposition 1.10. (See [16, Proposition 3.9].) Every minimal dominating set in a graph G is a maximal irredundant set of G.

2. Domination number in the annihilating-submodule graph for Artinian modules

The main goal in this section, is to obtain the value certain domination parameters of the annihilating-submodule graph for Artinian modules.

Recall that M is a vertex of $A G(M)$ if and only if there exists a nonzero proper submodule N of M with $(N: M)=\operatorname{Ann}(M)$ if and only if every nonzero submodule of M is a vertex of $A G(M)$. In this case, the vertex N is adjacent to every other vertex. Hence $\gamma(A G(M))=1$ and $\gamma_{t}(A G(M))=2$. So we assume that throughout this paper M is not a vertex of $A G(M)$. Clearly, if M is not a vertex of $A G(M)$, then $A G(M)=A G(M)^{*}$.

We start with the following remark which completely characterizes all modules for which $\gamma(A G(M))=1$.

Remark 2.1. Let $\operatorname{Ann}(M)$ be a nil ideal. By Theorem 1.6, there exists a vertex of $A G(M)$ which is adjacent to every other vertex if and only if $M=e M \oplus(1-e) M$, where $e M$ is a simple module and $(1-e) M$ is a prime module for some idempotent $e \in R$, or $Z(M)=\operatorname{Ann}((N: M) M)$, where N is a nonzero proper submodule of M or M is a vertex of $A G(M)$. Now, let $\operatorname{Ann}(M)$ be a nil ideal and M be a domain module. Then $\gamma(A G(M))=1$ if and only if $M=e M \oplus(1-e) M$, where $e M$ is a simple module and $(1-e) M$ is a prime module for some idempotent $e \in R$.

Theorem 2.2. Let M be a finitely generated Artinian local module. Assume that N is the unique maximal submodule of M. Then the radius of $A G(M)$ is 0 or 1 and the center of $A G(M)$ is $\{K \subseteq \operatorname{ann}(N) \mid K \neq(0)$ is a submodule in $M\}$.

Proof. If N is the only non-zero proper submodule of M, then $A G(M) \cong K_{1}$, $e(N)=0$ and the radius of $A G(M)$ is 0 . Assume that the number of non-zero proper submodules of M is greater than 1 . Since M is finitely generated Artinian module, there exists $m \in \mathbb{N}, m>1$ such that $N^{m}=(0)$ and $N^{m-1} \neq(0)$. For any non-zero submodule K of $M, K N^{m-1} \subseteq N N^{m-1}=(0)$ and so $d\left(N^{m-1}, K\right)=1$. Hence $e\left(N^{m-1}\right)=1$ and so the radius of $A G(M)$ is 1 . Suppose K and L are arbitrary non-zero submodules of M and $K \subseteq \operatorname{ann}(N)$. Then $K L \subseteq K N=(0)$ and hence $e(K)=1$. Suppose $(0) \neq K^{\prime} \nsubseteq \operatorname{ann}(N)$. Then $K^{\prime} N \neq(0)$ and so $e\left(K^{\prime}\right)>1$. Hence the center of $A G(M)$ is $\{K \subseteq \operatorname{ann}(N) \mid K \neq(0)$ is a submodule in $M\}$.

Corollary 2.3. Let M be a finitely generated Artinian local module and N is the unique maximal submodule of M. Then the following hold good.
(a) $\gamma(A G(M))=1$.
(b) D is a γ-set of $A G(M)$ if and only if $D \subseteq \operatorname{ann}(N)$.

Proof. (a) Trivial from Theorem 2.2.
(b) Let $D=\{K\}$ be a γ-set of $A G(M)$. Suppose $K \nsubseteq \operatorname{ann}(N)$. Then $K N \neq(0)$ and so N is not dominated by K, a contradiction. Conversely, suppose $D \subseteq \operatorname{ann}(N)$. Let K be an arbitrary vertex in $A G(M)$. Then $K L \subseteq N L=(0)$ for every $L \in D$. i.e., every vertex K is adjacent to every $L \in D$. If $|D|>1$, then $D \backslash\left\{L^{\prime}\right\}$ is also a dominating set of $A G(M)$ for some $L^{\prime} \in D$ and so D is not minimal. Thus $|D|=1$ and so D is a γ-set by (a).

Theorem 2.4. Let $M=\oplus_{i=1}^{n} M_{i}$, where M_{i} is a finitely generated Artinian local module for all $1 \leq i \leq n$ and $n \geq 2$. Then the radius of $A G(M)$ is 2 and the center of $A G(M)$ is $\{K \subseteq J(M) \mid K \neq(0)$ is a submodule in $M\}$.

Proof. Let $M=\oplus_{i=1}^{n} M_{i}$, where M_{i} is a finitely generated Artinian local module for all $1 \leq i \leq n$ and $n \geq 2$. Let J_{i} be the unique maximal submodule in M_{i} with nilpotency n_{i}. Note that $\operatorname{Max}(M)=\left\{N_{1}, \ldots, N_{n} \mid N_{i}=M_{1} \oplus \ldots \oplus M_{i-1} \oplus\right.$ $\left.J_{i} \oplus M_{i+1} \oplus \ldots \oplus M_{n}, 1 \leq i \leq n\right\}$ is the set of all maximal submodules in M. Consider $D_{i}=(0) \oplus \ldots \oplus(0) \oplus J_{i}^{n_{i}-1} \oplus(0) \oplus \ldots \oplus(0)$ for $1 \leq i \leq n$. Note that $J(M)=J_{1} \oplus \ldots \oplus J_{n}$ is the Jacobson radical of M and any non-zero submodule in M is adjacent to D_{i} for some i. Let K be any non-zero submodule of M. Then $K=\oplus_{i=1}^{n} K_{i}$, where K_{i} is a submodule of M_{i}.
Case 1. If $K=N_{i}$ for some i, then $K D_{j} \neq(0)$ and $K N_{j} \neq(0)$ for all $j \neq i$. Note that $N(K)=\left\{(0) \oplus \ldots \oplus(0) \oplus L_{i} \oplus(0) \oplus \ldots \oplus(0) \mid J_{i} L_{i}=(0), L_{i}\right.$ is a nonzero submodule in $\left.M_{i}\right\}$. Clearly $N(K) \cap N\left(N_{j}\right)=(0), d\left(K, N_{j}\right) \neq 2$ for all $j \neq i$, and so $K-D_{i}-D_{j}-N_{j}$ is a path in $A G(M)$. Therefore $e(K)=3$ and so $e(N)=3$
for all $N \in \operatorname{Max}(M)$.
Case 2. If $K \neq D_{i}$ and $K_{i} \subseteq J_{i}$ for all i. Then $K D_{i}=(0)$ for all i. Let L be any non-zero submodule of M with $K L \neq(0)$. Then $L D_{j}=(0)$ for some $j, K-D_{j}-L$ is a path in $A G(M)$ and so $e(K)=2$.
Case 3. If $K_{i}=M_{i}$ for some i, then $K D_{i} \neq(0), K N_{i} \neq(0)$ and $K D_{j}=(0)$ for some $j \neq i$. Thus $K-D_{j}-D_{i}-N_{i}$ is a path in $A G(M), d\left(K, N_{i}\right)=3$ and so $e(K)=3$. Thus $e(K)=2$ for all $K \subseteq J(M)$. Further note that in all the cases center of $A G(M)$ is $\{K \subseteq J(M) \mid K \neq(0)$ is a submodule in $M\}$.

In view of Theorems 2.2 and 2.4, we have the following corollary.

Corollary 2.5. Let $M=\oplus_{i=1}^{n} M_{i}$, where M_{i} is a simple module for all $1 \leq i \leq n$ and $n \geq 2$. Then the radius of $A G(M)$ is 1 or 2 and the center of $A G(M)$ is $\cup_{i=1}^{n} D_{i}$, where $D_{i}=(0) \oplus \ldots \oplus(0) \oplus M_{i} \oplus(0) \oplus \ldots \oplus(0)$ for $1 \leq i \leq n$.

Proposition 2.6. Let $M=\oplus_{i=1}^{n} M_{i}$, where M_{i} is a finitely generated Artinian local module for all $1 \leq i \leq n$ and $n \geq 2\left(M \neq M_{1} \oplus M_{2}\right.$, where M_{1} and M_{2} are simple modules). Then
(a) $\gamma(A G(M))=n$.
(b) $\operatorname{ir}(A G(M))=n$.
(c) $\gamma_{c}(A G(M))=n$.
(d) $\gamma_{t}(A G(M))=n$.
(e) $\gamma_{c l}(A G(M))=n$.
(f) $\gamma_{p r}(A G(M))=n$, if n is even and $\gamma_{p r}(A G(M))=n+1$, if n is odd.

Proof. Let J_{i} be the unique maximal submodule in M_{i} with nilpotency n_{i}. Let $\Omega=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$, where $D_{i}=(0) \oplus \ldots \oplus(0) \oplus J_{i}^{n_{i}-1} \oplus(0) \oplus \ldots \oplus(0)$ for $1 \leq i \leq n$. Note that any non-zero submodule in M is adjacent to D_{i} for some i. Therefore $N[\Omega]=V(A G(M)), \Omega$ is a dominating set of $A G(M)$ and so $\gamma(A G(M)) \leq n$. Suppose S is a dominating set of $A G(M)$ with $|S|<n$. Then there exists $N \in \operatorname{Max}(M)$ such that $N K \neq(0)$ for all $K \in S$, a contradiction. Hence $\gamma(A G(M))=n$. By Proposition 1.10, Ω is a maximal irredundant set with minimum cardinality and so $\operatorname{ir}(A G(M))=n$. Clearly $<\Omega>$ is a complete subgraph of $A G(M)$. Hence $\gamma_{c}(A G(M))=\gamma_{t}(A G(M))=\gamma_{c l}(A G(M))=n$. If n is even, then $<\Omega>$ has a perfect matching and so Ω is a paired-dominating set of $A G(M)$. Thus $\gamma_{p r}(A G(M))=n$. If n is odd, then $<\Omega \cup K>$ has a perfect matching for some $K \in V(A G(M)) \backslash \Omega$. and so $\Omega \cup K$ is a paired-dominating set of $A G(M)$. Thus $\gamma_{p r}(A G(M))=n$ if n even and $\gamma_{p r}(A G(M))=n+1$ if n is odd.

Let $M=\oplus_{i=1}^{n} M_{i}$, where M_{i} is a finitely generated Artinian local module for all $1 \leq i \leq n$ and $n \geq 2$. Then by Theorem 2.4, radius of $A G(M)$ is 2 . Further, by Proposition 2.6, the domination number of $A G(M)$ is equal to n, where n is the number of distinct maximal submodules of M. However, this need not be true if the radius of $A G(M)$ is 1 . For, consider the ring $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are simple modules. Then $A G(M)$ is a star graph and so has radius 1 , whereas M has two distinct maximal submodules. The following corollary shows that a more precise relationship between the domination number of $A G(M)$ and the number of maximal submodules in M, when M is finite.

Corollary 2.7. Let M be a finitely generated Artinian module, M is a faithful module, and $\gamma(A G(M))=n$. Then either $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are simple modules or M has n maximal submodules.

Proof. When $\gamma(A G(M))=1$, the proof follows from [9, Corollary 2.12]. If $\gamma(A G(M))=n$, where $n \geq 2$, then M can not be $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are simple modules. Hence $M=\oplus_{i=1}^{m} M_{i}$, where M_{i} is a finitely generated Artinian local module for all $1 \leq i \leq m$ and $m \geq 2$. By Proposition 2.6, $\gamma(A G(M))=m$. Hence by assumption $m=n$, i.e., $M=\oplus_{i=1}^{n} M_{i}$, where M_{i} is a finitely generated Artinian local module for all $1 \leq i \leq n$ and $n \geq 2$. One can see now that M has n maximal submodules.

3. The relationship between $\gamma_{t}(A G(M))$ and $\gamma(A G(M))$

The main goal in this section is to study the relation between $\gamma_{t}(A G(M))$ and $\gamma(A G(M))$.

Theorem 3.1. Let M be a module. Then

$$
\gamma_{t}(A G(M))=\gamma(A G(M)) \text { or } \gamma_{t}(A G(M))=\gamma(A G(M))+1
$$

Proof. Assume that $\gamma_{t}(A G(M)) \neq \gamma(A G(M))$ and D is a γ-set of $A G(M)$. If $\gamma(A G(M))=1$, then it is clear that $\gamma_{t}(A G(M))=2$. So let $\gamma(A G(M))>1$ and put $k=\operatorname{Max}\left\{n \mid\right.$ there exist $L_{1}, \ldots, L_{n} \in D$ such that $\left.\sqcap_{i=1}^{n} L_{i} \neq 0\right\}$. Since $\gamma_{t}(A G(M)) \neq \gamma(A G(M))$, we have $k \geq 2$. Let $L_{1}, \ldots, L_{k} \in D$ be such that $\sqcap_{i=1}^{k} L_{i} \neq 0$. Then $S=\left\{\sqcap_{i=1}^{k} L_{i}, a n n L_{1}, \ldots, a n n L_{k}\right\} \cup D \backslash\left\{L_{1}, \ldots, L_{k}\right\}$ is a γ_{t}-set. Hence $\gamma_{t}(A G(M))=\gamma(A G(M))+1$.

Example 3.2. Let C_{n} and P_{n} be a cycle and a path with n vertices, respectively.
(a) Clearly, $\gamma\left(C_{n}\right)=\gamma\left(P_{n}\right)=[n / 3]$ (see [19, Example 1]).
(b) Let $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ as \mathbb{Z}_{12}-module. It is easy to see that $A G\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right)=P_{2}$ and $\gamma_{t}\left(P_{2}\right)=2=\gamma\left(P_{2}\right)+1$.
(c) By [12, Lemma 10.9.5], for any split graph G, $\gamma_{t}(G)=\gamma(G)$. Let $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ as \mathbb{Z}_{24}-module. The split graph $A G\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)=P_{4}$ and $\gamma_{t}\left(P_{4}\right)=\gamma\left(P_{4}\right)=2$.

In the following result we find the total domination number of $A G(M)$.
Theorem 3.3. Let S be the set of all maximal elements of the set $V(A G(M))$. If $|S|>1$, then $\gamma_{t}(A G(M))=|S|$.

Proof. Suppose that S is the set of all maximal elements of the set $V(A G(M))$. Let $K \in S$. First we show that $K=\operatorname{ann}(\operatorname{ann} K)$ and there exists $m \in M$ such that $K=\operatorname{ann}(R m)$. Since $\operatorname{ann} K \neq 0$, there exists $0 \neq m \in \operatorname{ann} K$. Hence $K \subseteq \operatorname{ann}(\operatorname{ann} K) \subseteq \operatorname{ann}(R m)$. Thus by the maximality of K, we have $K=\operatorname{ann}(\operatorname{ann} K)=\operatorname{ann}(R m)$. For any $K \in S$, choose $m_{K} \in M$ such that $K=\operatorname{ann}\left(R m_{K}\right)$. We assert that $D=\left\{R m_{K} \mid K \in S\right\}$ is a total dominating set of $A G(M)$. Since for every $L \in V(A G(M))$ there exists $K \in S$ such that $L \subseteq K=\operatorname{ann}\left(R m_{K}\right), L$ and $R m_{K}$ are adjacent. Also for each pair $K, K^{\prime} \in S$, we have $\left(R m_{K}\right)\left(R m_{K^{\prime}}\right)=0$. Namely, if there exists $m \in\left(R m_{K}\right)\left(R m_{K^{\prime}}\right) \backslash\{0\}$, then $K=K^{\prime}=\operatorname{ann}(R m)$. Thus $\gamma_{t}(A G(M)) \leq|S|$. To complete the proof, we show that each element of an arbitrary γ_{t}-set of $A G(M)$ is adjacent to exactly one element of S. Assume to the contrary, that a vertex L^{\prime} of a γ_{t}-set of $A G(M)$ is adjacent to K and K^{\prime}, for $K, K^{\prime} \in S$. Thus $K=K^{\prime}=a n n L^{\prime}$, which is impossible. Therefore $\gamma_{t}(A G(M))=|S|$.

The following corollary is a connection between Sections 2 and 3 .
Corollary 3.4. Let $M=\oplus_{i=1}^{n} M_{i}$, where M_{i} is a finitely generated Artinian local module for all $1 \leq i \leq n, n \geq 2\left(M \neq M_{1} \oplus M_{2}\right.$, where M_{1} and M_{2} are simple modules). Then $\gamma_{t}(A G(M))=\gamma(A G(M))=|\operatorname{Max}(M)|$.

Proof. Let $M=\oplus_{i=1}^{n} M_{i}$, where $\left(M_{i}, J_{i}\right)$ is a finitely generated Artinian local module for all $1 \leq i \leq n$ and $n \geq 2$. Recall that $\operatorname{Max}(M)=\left\{N_{1}, \ldots, N_{n} \mid\right.$ $\left.N_{i}=M_{1} \oplus \ldots \oplus M_{i-1} \oplus J_{i} \oplus M_{i+1} \oplus \ldots \oplus M_{n}, 1 \leq i \leq n\right\}$. By Proposition 1.5, every nonzero proper submodule of M is a vertex in $A G(M)$. So the set of maximal elements of $V(A G(M))$ and $\operatorname{Max}(M)$ are equal and hence by Theorem 3.3, $\gamma_{t}(A G(M))=|\operatorname{Max}(M)|$. Finally, the result follows from Proposition 2.6.

Example 3.5. Let $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ as \mathbb{Z}_{24}-module. $S=\left\{(0) \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times \overline{2} \mathbb{Z}_{4}\right\}$ is the set of all maximal elements of $A G\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)$ and $\gamma_{t}\left(A G\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)\right)=\gamma_{t}\left(P_{4}\right)=2=|S|$.

Theorem 3.6. Let R be a reduced ring, M is a faithful module, and $|\operatorname{Min}(R)|<\infty$. If $\gamma(A G(M))>1$, then $\gamma_{t}(A G(M))=\gamma(A G(M))=|\operatorname{Min}(R)|$.

Proof. Since R is reduced, M is a faithful module, and $\gamma(A G(M))>1$, we have $|\operatorname{Min}(R)|>1$. Suppose that $\operatorname{Min}(R)=\left\{p_{1}, \ldots, p_{n}\right\}$. If $n=2$, the result follows from Corollary 1.8. Therefore, suppose that $n \geq 3$. We define $\widehat{p_{i} M}=$ $p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{n} M$, for every $i=1, \ldots, n$. Clearly, $\widehat{p_{i} M} \neq 0$, for every $i=$ $1, \ldots, n$. Since R is reduced, we deduce that $\widehat{p_{i} M} p_{i} M=0$. Therefore, every $p_{i} M$ is a vertex of $A G(M)$. If K is a vertex of $A G(M)$, then by [11, Corollary 3.5], $(K: M) \subseteq Z(R)=\cup_{i=1}^{n} p_{i}$. It follows from the Prime Avoidance Theorem that $(K: M) \subseteq p_{i}$, for some $i, 1 \leq i \leq n$. Thus $p_{i} M$ is a maximal element of $V(A G(M))$, for every $i=1, \ldots, n$. From Theorem 3.3, $\gamma_{t}(A G(M))=|\operatorname{Min}(R)|$. Now, we show that $\gamma(A G(M))=n$. Assume to the contrary, that $B=\left\{J_{1}, \ldots, J_{n-1}\right\}$ is a dominating set for $A G(M)$. Since $n \geq 3$, the submodules $p_{i} M$ and $p_{j} M$, for $i \neq j$ are not adjacent (from $p_{i} p_{j}=0 \subseteq p_{k}$ it would follow that $p_{i} \subseteq p_{k}$ or $p_{j} \subseteq p_{k}$ which is not true). Because of that, we may assume that for some $k<n-1, J_{i}=p_{i} M$ for $i=1, \ldots, k$, but none of the other of submodules from B are equal to some $p_{s} M$ (if $B=\left\{p_{1} M, \ldots, p_{n-1} M\right\}$, then $p_{n} M$ would be adjacent to some $p_{i} M$, for $\left.i \neq n\right)$. So every submodule in $\left\{p_{k+1} M, \ldots, p_{n} M\right\}$ is adjacent to a submodule in $\left\{J_{k+1}, \ldots, J_{n-1}\right\}$. It follows that for some $s \neq t$, there is an l such that $\left(p_{s} M\right) J_{l}=0=\left(p_{t} M\right) J_{l}$. Since $p_{s} \nsubseteq p_{t}$, it follows that $J_{l} \subseteq p_{t} M$, so $J_{l}^{2}=0$, which is impossible, since the ring R is reduced. So $\gamma_{t}(A G(M))=\gamma(A G(M))=|\operatorname{Min}(R)|$.

Theorem 3.3 leads to the following corollary.
Corollary 3.7. Let R be a reduced ring, M is a faithful module, and $|M i n(R)|<$ ∞. If $\gamma(A G(M))>1$, then the following are equivalent.
(a) $\gamma(A G(M))=2$.
(b) $A G(M)=B_{n, m}$ such that $n, m \geq 2$.
(c) $A G(M)=K_{n, m}$ such that $n, m \geq 2$.
(d) R has exactly two minimal primes.

Proof. Follows from Theorem 3.3 and Corollary 1.8.
In the following theorem the domination number of bipartite annihilating-submodule graphs is given.

Theorem 3.8. Let M be a faithful module. If $A G(M)$ is a bipartite graph, then $\gamma(A G(M)) \leq 2$.

Proof. Let M be a faithful module. If $A G(M)$ is a bipartite graph, then from Theorem 1.7, either R is a reduced ring with exactly two minimal prime ideals, or $A G(M)$ is a star graph with more than one vertex. If R is a reduced ring with
exactly two minimal prime ideals and $\gamma(A G(M))=1$, then we are done. If R is a reduced ring with exactly two minimal prime ideals and $\gamma(A G(M))>1$, then the result follows by Corollary 3.7. If $A G(M)$ is a star graph with more than one vertex, then we are done.

Theorem 3.9. If R is a Notherian ring and M a finitely generated module, then $\gamma(A G(M)) \leq|\operatorname{Ass}(M)|<\infty$.

Proof. By [21], Since R is a Notherian ring and M a finitely generated module, $|\operatorname{Ass}(M)|<\infty$. Let $\operatorname{Ass}(M)=\left\{p_{1}, \ldots, p_{n}\right\}$, where $p_{i}=\operatorname{ann}\left(m_{i}\right)$ for some $m_{i} \in$ M for every $i=1, \ldots, n$. Set $A=\left\{R m_{i} \mid 1 \leq i \leq n\right\}$. We show that A is a dominating set of $A G(M)$. Clearly, every $R m_{i}$ is a vertex of $A G(M)$, for $i=1, \ldots, n$ $\left(\left(p_{i} M\right)\left(m_{i} R\right)=0\right)$. If K is a vertex of $A G(M)$, then [21, Corollary 9.36] implies that $(K: M) \subseteq Z(M)=\cup_{i=1}^{n} p_{i}$. It follows from the Prime Avoidance Theorem that $(K: M) \subseteq p_{i}$, for some $i, 1 \leq i \leq n$. Thus $K\left(R m_{i}\right)=0$, as desired.

The remaining result of this paper provides the domination number of the annihilating-submodule graph of a finite direct product of modules.

Theorem 3.10. For a module M, which is a product of two (nonzero) modules, one of the following holds.
(a) If $M \cong F \times D$, where F is a simple module and D is a prime module, then $\gamma(A G(M))=1$.
(b) If $M \cong D_{1} \times D_{2}$, where D_{1} and D_{2} are prime modules which are not simple, then $\gamma(A G(M))=2$.
(c) If $M \cong M_{1} \times D$, where M_{1} is a module which is not prime and D is a prime module, then $\gamma(A G(M))=\gamma\left(A G\left(M_{1}\right)\right)+1$.
(d) If $M \cong M_{1} \times M_{2}$, where M_{1} and M_{2} are two modules which are not prime, then $\gamma(A G(M))=\gamma\left(A G\left(M_{1}\right)\right)+\gamma\left(A G\left(M_{2}\right)\right)$.

Proof. Parts (a) and (b) are trivial.
(c) Without loss of generality, one can assume that $\gamma\left(A G\left(M_{1}\right)\right)<\infty$. Suppose that $\gamma\left(A G\left(M_{1}\right)\right)=n$ and $\left\{K_{1}, \ldots, K_{n}\right\}$ is a minimal dominating set of $A G\left(M_{1}\right)$. It is not hard to see that $\left\{K_{1} \times 0, \ldots, K_{n} \times 0,0 \times D\right\}$ is the smallest dominating set of $A G(M)$.
(d) We may assume that $\gamma\left(A G\left(M_{1}\right)\right)=m$ and $\gamma\left(A G\left(M_{2}\right)\right)=n$, for some positive integers m and n. Let $\left\{K_{1}, \ldots, K_{m}\right\}$ and $\left\{L_{1}, \ldots, L_{n}\right\}$ be two minimal dominating sets in $A G\left(M_{1}\right)$ and $A G\left(M_{2}\right)$, respectively. It is easy to see that $\left\{K_{1} \times 0, \ldots, K_{m} \times\right.$ $\left.0,0 \times L_{1} \ldots 0 \times L_{n}\right\}$ is the smallest dominating set in $A G(M)$.

Acknowledgement. The authors would like to thank the referee for his/her very helpful comments and valuable suggestions.

References

[1] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math., 312(17) (2012), 2620-2626.
[2] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math., 43(5) (2013), 1415-1425.
[3] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloq., 21(2) (2014), 249-256.
[4] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974.
[5] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434-447.
[6] H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci., 25(3) (2007), 447-455.
[7] H. Ansari-Toroghy and S. Habibi, The Zariski topology-graph of modules over commutative rings, Comm. Algebra, 42(8) (2014), 3283-3296.
[8] H. Ansari-Toroghy and S. Habibi, The annihilating-submodule graph of modules over commutative rings II, Arab. J. Math., 5(4) (2016), 187-194.
[9] H. Ansari-Toroghy and S. Habibi, The annihilating-submodule graph of modules over commutative rings, Math. Rep. (Bucur.), 20(70)(3) (2018), 245-262.
[10] H. Ansari-Toroghy and S. Habibi, The Zariski topology-graph of modules over commutative rings II, Arab. J. Math., 10(1) (2021), 41-50.
[11] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[12] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer-Verlag, New York, 2000.
[13] I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
[14] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10(4) (2011), 727-739.
[15] R. Diestel, Graph Theory, Third edition, Graduate Texts in Mathematics, 173, Springer-Verlag, Berlin, 2005.
[16] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs Advanced Topics: Volume 2: Advanced Topics (1st ed.), Routledge, 1998.
[17] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
[18] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul., 33(1) (1984), 61-69.
[19] D. A. Mojdeh and A. M. Rahimi, Dominating sets of some graphs associated to commutative rings, Comm. Algebra, 40(9) (2012), 3389-3396.
[20] R. Nikandish, H. R. Maimani and S. Kiani, Domination number in the annihilating-ideal graphs of commutative rings, Publ. Inst. Math. (Beograd) (N.S.), 97(111) (2015), 225-231.
[21] R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts, 19, Cambridge University Press, Cambridge, 1990.
[22] T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput., 88 (2014) 277-288.

Habibollah Ansari-Toroghy

Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Guilan
P. O. Box 41335-19141, Rasht, Iran
e-mail: ansari@guilan.ac.ir

Shokoufeh Habibi (Corresponding Author)
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P. O. Box: 19395-5746, Tehran, Iran

Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Guilan
P. O. Box 41335-19141, Rasht, Iran
e-mail: habibishk@gmail.com

[^0]: This research was in part supported by a grant from IPM (No. 96130028).

