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Abstract. In this paper, some characterizations of partial isometries, normal

elements and strongly EP elements are given by the construction of EP ele-

ments. At the same time, the partial isometry elements are characterized by

the existence of solutions of equations in rings in a given set, and also by the

general form of solutions of given equations.
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1. Introduction

Let R be an associative ring with 1. An element a ∈ R is said to be group

invertible if there exists a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called the group inverse of a, which is uniquely determined by

the above equations [1].

An involution ∗ : a 7−→ a∗ in a ring R is an anti-isomorphism of degree 2, that is

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R satisfying a∗a = aa∗ is called normal [4].

An element a+ in R is called the Moore-Penrose inverse (MP-inverse) of a, if

aa+a = a, a+aa+ = a+, (aa+)∗ = aa+, (a+a)∗ = a+a.

If such a+ exists, then it is unique [3]. Denote by R# and R+ the set of all group

invertible elements of R and the set of all MP-invertible elements of R.

An element a is said to be EP if a ∈ R#∩R+ and satisfies a# = a+. We denote

by REP the set of all EP elements of R.
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An element a is called a partial isometry if a ∈ R+ and aa∗a = a. And a is said

to be strongly EP if a ∈ REP is a partial isometry. We denote the set of all partial

isometry elements and strongly EP elements of R by RPI and RSEP , respectively.

There are many studies on EP element, PI element and strongly EP element,

see for example [2,4,5,6,7,8,9,10].

In [11], EP elements are characterized by constructing the existence of solutions

of appropriate equations in a given set, which is a new method to study generalized

inverse in rings.

In this paper, some characterizations of partial isometries, normal elements and

strongly EP elements are given by the construction of EP elements. At the same

time, the partial isometry elements are characterized by the existence of solutions

of equations in rings in a given set, and also by the general form of solutions of

given equations.

2. Main Results

Lemma 2.1. Let a ∈ R# ∩R+ and x ∈ R.
(1) If a+a+x = 0, then a+x = 0;

(2) If xa+a+ = 0, then xa+ = 0.

Proof. (1) Since a+a+x = 0, a∗a+x = (a∗aa+)a+x = a∗a(a+a+x) = 0. Noting

that a+ = (a+a)
∗
a+ = (a+aa#a)

∗
a+ = (a#)

∗
a∗a+aa+ = (a#)

∗
a∗a+, we have

a+x = (a#)
∗
a∗a+x = 0.

Similarly, we can show (2). �

It is well known that for a ∈ R+, a ∈ RPI if and only if a+ = a∗. Hence we have

the following Lemma.

Lemma 2.2. Let a ∈ R# ∩R+. Then a ∈ RPI if and only if the equation

x(a+ − a∗) = 0

has at least one solution in χa={a, a#, a+, a∗, (a#)
∗
, (a+)

∗}.

Proof. “ ⇒ ” If a ∈ RPI , then a+ = a∗. This infers every element of χa is a

solution of the equation (1).

“ ⇐ ” (1) If x = a is a solution, then a(a+ − a∗) = 0, that is aa+ = aa∗. Hence

a ∈ RPI by [5, Theorem 2.1].

(2) If x = a# is a solution, then a#(a+ − a∗) = 0. Pre-multiplying the equality

by a2, we have a(a+ − a∗) = 0. Hence a ∈ RPI by (1).

(3) If x = a+ is a solution, then a+(a+−a∗) = 0, this gives a+a+(aa+−aa∗) = 0.

By Lemma 2.1, we have a+(aa+ − aa∗) = 0, this is a+ = a∗. Hence a ∈ RPI .
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(4) If x = a∗ is a solution, then a∗(a+ − a∗) = 0. Pre-multiplying the equality

by a+(a+)
∗
, yielding a+(a+ − a∗) = 0. Hence a ∈ RPI by (3).

(5) If x = (a#)
∗

is a solution, then (a#)
∗
(a+ − a∗) = 0. Pre-multiplying the

equality by (a∗)
2
, we have a∗(a+ − a∗) = 0. Hence a ∈ RPI by (4).

(6) If x = (a+)
∗

is a solution, then (a+)
∗
(a+ − a∗) = 0. Pre-multiplying the

equality by aa∗, one gets a(a+ − a∗) = 0. Hence a ∈ RPI by (1). �

Similarly, we have the following Lemma.

Lemma 2.3. Let a ∈ R# ∩R+. Then a ∈ RPI if and only if the equation

(a+ − a∗)x = 0

has at least one solution in χa.

Theorem 2.4. Let a ∈ R# ∩R+. Then a ∈ RPI if and only if the equation

x(a+ − a∗)y = 0

has at least one solution in χ2
a = {(x, y)|x, y ∈ χa}.

Proof. “⇒ ” It is an immediate result of Lemma 2.2.

“⇐ ” (1) If y = a, we have the following equation

x(a+ − a∗)a = 0.

Post-multiplying the equation (4) by a+, one gets x(a+ − a∗) = 0. Hence a ∈ RPI

by Lemma 2.2.

(2) If y = a#, then we have the following equation

x(a+ − a∗)a# = 0.

Post-multiplying the equation (5) by a2, one has x(a+ − a∗)a = 0. Hence a ∈ RPI

by (1).

(3) If y = a+, then we obtain the following equation

x(a+ − a∗)a+ = 0.

So

x(a+a− a∗a)a+a+ = 0.

By Lemma 2.1 x(a+ − a∗) = 0. Hence a ∈ RPI by Lemma 2.2.

(4) If y = a∗, then we have the following equation

x(a+ − a∗)a∗ = 0.

Post-multiplying the equation (7) by (a+)
∗
a+, one gets x(a+ − a∗)a+ = 0. Hence

a ∈ RPI by (3).
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(5) If y = (a#)
∗
, then we have the following equation

x(a+ − a∗)(a#)
∗

= 0.

Post-multiplying the equation (8) by (a∗)
2
, we have x(a+ − a∗)a∗ = 0. Hence

a ∈ RPI by (4).

(6) If y = (a+)
∗
, then we have the following equation

x(a+ − a∗)(a+)
∗

= 0.

Post-multiplying the equation (9) by a∗a, we have x(a+−a∗)a = 0. Hence a ∈ RPI

by (1). �

Remark 2.5. Equation (1) can be generalized to

xa+ − ya∗ = 0. (1)

It is easy to prove that the general solution of the equation (10) is given by

{
x = −pa+ u− ua+a

y = −p(a+)
∗

+ v − va+a
,where p, u, v ∈ R. (2)

Lemma 2.6. Let a ∈ R# ∩R+. Then a ∈ RPI if and only if a+ = a+(a+)
∗
a+.

Proof. “⇒ ” Assume that a ∈ RPI , then (a+)
∗

= a. Hence a+ = a+(a+)
∗
a+.

“⇐ ” Suppose that a+ = a+(a+)
∗
a+, then a = aa+a = aa+(a+)

∗
a+a = (a+)

∗
.

Thus a ∈ RPI . �

Proposition 2.7. Let a ∈ R# ∩ R+. Then a ∈ RPI if and only if the general

solution of the equation (10) is given by

x = −p(a+)
∗

+ u− ua+a

y = −p(a+)
∗

+ v − va+a
,where p, u, v ∈ R. (3)

Proof. “⇒ ” This is an immediate corollary of the formula (11).

“⇐ ” If the general solution of the equation (10) is given by the formula (12), then

(−p(a+)
∗

+ u− ua+a)a+ − (−p(a+)
∗

+ v − va+a)a∗ = 0, that is p(a+)
∗
a+ = paa+

for any p ∈ R. Especially, choose p = a+, one yields a+(a+)
∗
a+ = a+aa+ = a+.

Hence a ∈ RPI by Lemma 2.6. �

Similarly, we have the following Proposition.
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Proposition 2.8. Let a ∈ R# ∩ R+. Then a ∈ RPI if and only if the general

solution of the equation (10) is given by

{
x = −pa+ u− ua+a

y = −pa+ v − va+a
,where p, u, v ∈ R. (4)

Lemma 2.9. Let a ∈ R# ∩R+. Then (a+)
∗
a+a∗aa∗ ∈ REP with

((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a#)

∗
aa∗.

Proof. Since

((a+)
∗
a+a∗aa∗)((a+)

∗
a+(a#)

∗
aa∗) = (a+)

∗
a+a∗(aa∗(a+)

∗
)a+(a#)

∗
aa∗

= (a+)
∗
a+(a∗aa+)(a#)

∗
aa∗

= (a+)
∗
a+a∗(a#)

∗
aa∗

= (a+)
∗
a+aa∗

= (a+)
∗
a∗

= (aa+)
∗

= aa+,

((a+)
∗
a+(a#)

∗
aa∗)((a+)

∗
a+a∗aa∗) = (a+)

∗
a+(a#)

∗
(aa∗(a+)

∗
)a+a∗aa∗

= (a+)
∗
a+((a#)

∗
aa+)a∗aa∗

= (a+)
∗
(a+(a#)

∗
a∗)aa∗

= (a+)
∗
a+aa∗

= aa+.

Hence (a+)
∗
a+a∗aa∗ ∈ REP with ((a+)

∗
a+a∗aa∗)

+
= (a+)

∗
a+(a#)

∗
aa∗. �

Proposition 2.10. Let a ∈ R# ∩R+. Then

(1) a ∈ RPI if and only if ((a+)
∗
a+a∗aa∗)

+
= aa+(a#)

∗
aa∗;

(2) a ∈ RPI if and only if ((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a#)

∗
;

(3) a is normal if and only if ((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
;

(4) a ∈ RSEP if and only if ((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a+)

∗
.

Proof. (1) “⇒ ” Since a ∈ RPI , (a+)
∗

= a. Hence, by Lemma 2.9, we have

((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a#)

∗
aa∗ = aa+(a#)

∗
aa∗.

“ ⇐ ” Assume that ((a+)
∗
a+a∗aa∗)

+
= aa+(a#)

∗
aa∗, then (a+)

∗
a+(a#)

∗
aa∗ =

aa+(a#)
∗
aa∗ by Lemma 2.9. Post-multiplying the equality by (a+)

∗
a+, one yields
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(a+)
∗
a+(a#)

∗
= aa+(a#)

∗
. Pre-multiplying the equality by a∗, one has a+(a#)

∗
=

a∗(a#)
∗
, this gives a+ = a+(a#)

∗
a∗ = a∗(a#)

∗
a∗ = a∗. Thus a ∈ RPI .

(2) “ ⇒ ” Since a ∈ RPI , a∗ = a+. This infers (a#)
∗
aa∗ = (a#)

∗
aa+ = (a#)

∗
.

Hence ((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a#)

∗
by Lemma 2.9.

“ ⇐ ” Assume that ((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a#)

∗
, then (a+)

∗
a+(a#)

∗
aa∗ =

(a+)
∗
a+(a#)

∗
by Lemma 2.9. Pre-multiplying by a∗, we have a+(a#)

∗
aa∗ =

a+(a#)
∗
. Again pre-multiplying by (a#)

∗
a∗a, one obtains (a#)

∗
aa∗ = (a#)

∗
, this

gives a# = aa∗a#. Hence a ∈ RPI .

(3) “⇒ ” Since a is normal, aa∗ = a∗a and a ∈ REP . Hence, by Lemma 2.9, we

obtain

((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a#)

∗
aa∗

= (a+)
∗
a+(a+)

∗
a∗a

= (a+)
∗
a+a

= (a+)
∗
.

“ ⇐ ” Assume that ((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
= (a∗)

+
, then (a+)

∗
a+a∗aa∗ = a∗.

Post-multiplying the equality by (a+)
∗
a+, one gets (a+)

∗
a+a∗ = a+, this gives

aa+a+ = aa+(a+)
∗
a+a∗ = (a+)

∗
a+a∗ = a+. Hence a ∈ REP . Now a∗a# =

a∗a+ = a∗(a+)
∗
a+a∗ = a+a∗ = a#a∗. Thus a is normal.

(4) “⇒ ” It is an immediate result of Lemma 2.9, because a+ = a# and a ∈ RPI .

“ ⇐ ” Assume that ((a+)
∗
a+a∗aa∗)

+
= (a+)

∗
a+(a+)

∗
, then by Lemma 2.9, one

has (a+)
∗
a+(a#)

∗
aa∗ = (a+)

∗
a+(a+)

∗
. Post-multiplying the equality by 1 − aa+,

one yields (a+)
∗
a+(a+)

∗
(1− aa+) = 0. Pre-multiplying the equality by a∗aa∗, one

has a+a(1− aa+) = 0, this gives a(1− aa+) = 0. Hence a ∈ REP . It follows that

((a+)
∗
a+(a#)

∗
aa∗)

+
= (a+)

∗
a+(a+)

∗
= (a+)

∗
a+(a#)

∗
. Hence a ∈ RPI by (2).

Therefore a ∈ RSEP . �

Lemma 2.11. Let a ∈ R# ∩R+. Then aa+a∗aa∗ ∈ REP with

(aa+a∗aa∗)
+

= (a+)
∗
a+(a#)

∗
.

Proof.

(aa+a∗aa∗)((a+)
∗
a+(a#)

∗
) = aa+a∗aa+(a#)

∗

= aa+a∗(a#)
∗

= aa+,
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((a+)
∗
a+(a#)

∗
)(aa+a∗aa∗) = (a+)

∗
a+(a#)

∗
a∗aa∗

= (a+)
∗
a+aa∗

= aa+.

Hence aa+a∗aa∗ ∈ REP with (aa+a∗aa∗)
+

= (a+)
∗
a+(a#)

∗
. �

Proposition 2.12. Let a ∈ R# ∩R+. Then

(1) a ∈ RPI if and only if ((a+)
∗
a+(a#)

∗
)
+

= aa+a∗;

(2) a ∈ REP if and only if ((a+)
∗
a+(a#)

∗
)
+

= a∗aa∗;

(3) a ∈ RSEP if and only if ((a+)
∗
a+(a#)

∗
)
+

= a∗.

Proof. (1) “⇒ ” Since a ∈ RPI , a∗ = a+. Hence, by Lemma 2.11, we get

((a+)
∗
a+(a#)

∗
)
+

= aa+a∗aa∗ = aa+a∗aa+ = aa+a∗.

“⇐ ” Assume that ((a+)
∗
a+(a#)

∗
)
+

= aa+a∗, then aa+a∗aa∗ = aa+a∗ by Lemma

2.11. Pre-multiplying the equality by (a#)
∗
a∗, one yields a∗aa∗ = a∗, this gives

a = aa∗a. Hence a ∈ RPI .

(2) “⇒ ” Since a ∈ REP , aa+ = a+a. Hence

((a+)
∗
a+(a#)

∗
)
+

= aa+a∗aa∗ = a+aa∗aa∗ = a∗aa∗.

“⇐ ” Assume that ((a+)
∗
a+(a#)

∗
)
+

= a∗aa∗. Then aa+a∗aa∗ = a∗aa∗ by Lemma

2.11. Post-multiplying the equality by (a+)
∗
a+(a+)

∗
, one gets aa+a+a = a+a.

Hence a ∈ REP .

(3) “ ⇒ ” Since a ∈ RSEP , a ∈ REP and a∗ = a+. By (2) ((a+)
∗
a+(a#)

∗
)
+

=

a∗aa∗ = a∗aa+ = a∗.

“ ⇐ ” Assume that ((a+)
∗
a+(a#)

∗
)
+

= a∗, then aa+a∗aa∗ = a∗ by Lemma 2.11.

Post-multiplying the equality by (a+)
∗
a+, one obtains aa+a∗ = a+. Hence a ∈

RSEP by [1, Theorem 2.3]. �
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