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Abstract − The adjacent vertex-distinguishing proper edge-coloring is the minimum number of 

colors required for a proper edge-coloring of 𝐺, in which no two adjacent vertices are incident to 

edges colored with the same set of colors. The minimum number of colors required for an 

adjacent vertex-distinguishing proper edge-coloring of 𝐺 is called the adjacent vertex-

distinguishing proper edge-chromatic index. In this paper, we compute adjacent vertex-

distinguishing proper edge-chromatic index of Anti-prism, sunflower graph, double sunflower 

graph, triangular winged prism, rectangular winged prism and Polygonal snake graph. 

Subject Classification (2020): 05C15, 05C38. 

1. Introduction 

The terminology and notations we refer to Bondy and Murthy [4]. Let 𝐺 be a finite, simple, undirected 

and connected graph. Let 𝛥(𝐺) denote the maximum degree of 𝐺. A proper edge-coloring 𝜎 is a mapping 

from 𝐸(𝐺) to the set of colors such that any two adjacent edges receive distinct colors. For any vertex 

𝑣 of 𝐺, let 𝑆𝜎(𝑣) denote the set of the colors of all edges incident to 𝑣. A proper edge-coloring 𝜎 is said to 

an adjacent vertex-distinguishing (AVD) if 𝑆𝜎(𝑢) ≠ 𝑆𝜎(𝑣), for every adjacent vertices 𝑢 and 𝑣. The 

minimum number of colors required for an adjacent vertex-distinguishing proper edge-coloring of 𝐺, 

denoted by 𝜒𝑎𝑠
′ (𝐺), is called the adjacent vertex-distinguishing proper edge-chromatic index (AVD 

proper edge-chromatic index) of 𝐺. Thus, 𝜒𝑎𝑠
′ (𝐺) ≥ 𝜒′(𝐺).  

 

Conjecture 1.1. [11]  For any connected graph 𝐺 (|𝑉(𝐺)| ≥ 6), there is 𝜒𝑎𝑠
′ (𝐺) ≤ 𝛥(𝐺) + 2. If 𝐻 is a 

subgraph of 𝐺, it is interesting that 𝜒𝑎𝑠
′ (𝐻) ≤ 𝜒𝑎𝑠

′ (𝐺) is not always true.  

 

Let 𝐾𝑚,𝑛 be the complete bipartite graph, then 𝜒𝑎𝑠
′ (𝐾2,3) = 3 and 𝐾2,3 − 𝑒 for any edge, then 

𝜒𝑎𝑠
′ (𝐾2,3 − 𝑒) = 4. Deletion of an edge of a graph may also decrease the coloring number of the graph. 

Let 𝑛 ≥ 3, then 𝜒𝑎𝑠
′ (𝐾1,𝑛) = 𝑛 and 𝜒𝑎𝑠

′ (𝐾1,𝑛 − 𝑒) = 𝑛 − 1. 
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In [11] Zhang et al. proved: if 𝐺 has 𝑛 components 𝐺𝑖, 1 ≤ 𝑖 ≤ 𝑛, with at least three vertices in each, then 

𝜒𝑎𝑠
′ (𝐺) = 𝑚𝑎𝑥1≤𝑖≤𝑛{𝜒𝑎𝑠

′ (𝐺𝑖)}. So we consider only connected graphs. For a tree 𝑇 with |𝑉(𝑇)| ≥ 3, if any 

two vertices of maximum degree are non-adjacent, then 𝜒𝑎𝑠
′ (𝑇) = 𝛥(𝑇). If 𝑇 has two vertices of 

maximum degree which are adjacent, then 𝜒𝑎𝑠
′ (𝑇) = 𝛥(𝑇) + 1.  For cycle 𝐶𝑛 we have 𝜒𝑎𝑠

′ (𝐶𝑛) = 3, for 

𝑛 ≡ 0 (𝑚𝑜𝑑3), otherwise 𝜒𝑎𝑠
′ (𝐶𝑛) = 4 for 𝑛 ≢ 0 (𝑚𝑜𝑑3) and 𝑛 ≠ 5, 𝜒𝑎𝑠

′ (𝐶𝑛) = 5, for 𝑛 = 5. For the 

complete bipartite graph 𝐾𝑚,𝑛 for 1 ≤ 𝑚 ≤ 𝑛, we have 𝜒𝑎𝑠
′ (𝐾𝑚.𝑛) = 𝑛 if 𝑚 < 𝑛, and 𝜒𝑎𝑠

′ (𝐾𝑚.𝑛) = 𝑛 + 2 

if 𝑚 = 𝑛 ≥ 2. For the complete graph 𝐾𝑛 (𝑛 ≥ 3), we have 𝜒𝑎𝑠
′ (𝐾𝑛) = 𝑛 for 𝑛 ≡ 1 (𝑚𝑜𝑑 2);  𝜒𝑎𝑠

′ (𝐾𝑛) =

𝑛 + 1 for 𝑛 ≡ 0 (𝑚𝑜𝑑 2). If 𝐺 is a graph which has two adjacent maximum degree vertices, then 𝜒𝑎𝑠
′ (𝐺) ≥

𝛥(𝐺) + 1. If 𝐺 is a graph such that the degree of any two adjacent vertices is different, then 𝜒𝑎𝑠
′ (𝐺) =

𝛥(𝐺). In [9] Shiu proved: for 𝑛 ≥ 3, we have 𝜒𝑎𝑠
′ (𝐹𝑛) = 𝑛,  if 𝑛 = 3,4 and 𝜒𝑎𝑠

′ (𝐹𝑛−1) = 𝑛 − 1, for 𝑛 ≥ 5. 

For 𝑛 ≥ 3, we have 𝜒𝑎𝑠
′ (𝑊𝑛) = 5, if 𝑛 = 3, and 𝜒𝑎𝑠

′ (𝑊𝑛) = 𝑛, for 𝑛 ≥ 4. In [7] Hatami prove that if 𝐺 is a 

graph with no isolated edges and maximum degree ∆(𝐺) > 1020, then 𝜒𝑎𝑠
′ ≤ ∆ + 300.  In [2] Balister et 

al. proved: if 𝐺 is a 𝑘-chromatic graph with no isolated edges, then 𝜒𝑎𝑠
′ (𝐺) ≤ ∆(𝐺) + 𝑂(log 𝑘). In [1] 

Axenovich et al. obtained upper bound for adjacent vertex-distinguishing edge-colorings of graphs. In 

[3] Baril et al. obtained exact values for adjacent vertex-distinguishing edge-coloring of meshes. In [5] 

Bu et al. finding adjacent vertex-distinguishing edge-colorings of planar graphs with girth at least six. In 

[6] Chen et al. obtained adjacent vertex-distinguishing proper edge-coloring of planar bipartite graphs 

with ∆= 9,10 𝑜𝑟 11.  

 

In this paper, we compute adjacent vertex-distinguishing edge-chromatic index of Anti- prism, 

sunflower graph, double sunflower graph, triangular winged prism, rectangular winged prism and 

Polygonal snake graph. 

 

Observation 1.1.  If a connected graph 𝐺 contains two adjacent vertices of degree ∆(𝐺),  then  𝜒𝑡
′(𝐺) ≥

∆(𝐺) + 1. 

 

Observation 1.2. If 𝐺 is a graph such that the degree of any two adjacent vertices is different, then 

𝜒𝑎𝑠
′ (𝐺) = 𝛥(𝐺). 

 

2. AVD Proper Edge-chromatic Index of Anti-prism Graph, Sunflower Graph, Double 

Sunflower Graph, Triangular Winged Prism and Rectangular Winged Prism 

In this section, The AVD proper edge-chromatic index of Anti-prism graph, Sunflower graph, Double 

Sunflower graph, Triangular winged prism and Rectangular winged prism graph will be discussed. We 

have the following results. 

 

2.1.  AVD Proper Edge-chromatic Index of Anti-prism Graph  

If  𝐶𝑛 ◻𝐾2, 𝑛 ≥ 3, is called prism graph, where ◻ is Cartesian product, and it is denoted by 𝐷𝑛 

By an Anti-prism graph of order 𝑛 denoted by 𝐴𝑛, we mean a graph obtained from a prism graph 𝐷𝑛 by 

adding some crossing edges 𝑥𝑖𝑦(𝑖+1)(𝑚𝑜𝑑 𝑛), 𝑖 = 1,2, … , 𝑛. [10] 

Theorem 2.1. 𝜒𝑎𝑠
′ (𝐴𝑛) = 5, 𝑓𝑜𝑟 𝑛 ≥ 3.   
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Proof.  Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1, For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛 to form 𝐴𝑛. In 𝐴𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑒𝑖
′ = 𝑥𝑖

′𝑥𝑖+1
′ , 𝑓𝑖 = 𝑥𝑖𝑥𝑖

′, 𝑔𝑖 =

𝑥𝑖𝑥𝑖+1
′ , where 𝑥𝑛+1 = 𝑥1, 𝑥𝑛+1

′ = 𝑥1
′ . 

Define 𝜎 ∶ 𝐸(𝐴3) → {1,2,3,4,5} as follows: 𝜎(𝑒1) = 1, 𝜎(𝑒2) = 4, 𝜎(𝑒3) = 5, 𝜎(𝑒1
′) = 4, 𝜎(𝑒2

′) =

5, 𝜎(𝑒3
′) = 1, 𝜎(𝑓1) = 𝜎(𝑓2) = 𝜎(𝑓3) = 3, 𝜎(𝑔1) =  𝜎(𝑔2) = 𝜎(𝑔3) = 2. Therefore 𝜎 is proper-edge 

coloring. The induced vertex-color sets are: 𝑆𝜎(𝑥1) = {1,2,3,5}, 𝑆𝜎(𝑥2) = {1,2,3,4}, 𝑆𝜎(𝑥3) =

{2,3,4,5},𝑆𝜎(𝑥1
′) = {1,2,3,4}, 𝑆𝜎(𝑥2

′ ) = {2,3,4,5}, 𝑆𝜎(𝑥3
′ ) = {1,2,3,5}. Hence 𝜎 is an AVD proper edge- 

coloring 𝐴3. By observation 1.1, 𝜒𝑎𝑠
′ (𝐴3) ≥ 5 and so 𝜒𝑎𝑠

′ (𝐴3) = 5. Define 𝜎 ∶ 𝐸(𝐴4) → {1,2,3,4,5} as 

follows: 𝜎(𝑒1) = 𝜎(𝑒1
′) = 1, 𝜎(𝑒2) = 𝜎(𝑒2

′) = 4, 𝜎(𝑒3) = 𝜎(𝑒3
′) = 5, 𝜎(𝑒4) = 𝜎(𝑒4

′) = 3, 𝜎(𝑓1) = 𝜎(𝑓2) =

𝜎(𝑓3) = 𝜎(𝑓4) = 2, 𝜎(𝑔1) = 5, 𝜎(𝑔2) = 3, 𝜎(𝑔3) = 1, 𝜎(𝑔4) = 4. Therefore 𝜎 is proper-edge coloring. 

The induced vertex-color sets are: 𝑆𝜎(𝑥1) = {1,2,3,5}, 𝑆𝜎(𝑥2) = {1,2,3,4}, 𝑆𝜎(𝑥3) = {1,2,4,5}, 𝑆𝜎(𝑥4) =

{2,3,4,5}, 𝑆𝜎(𝑥1
′) = {1,2,3,4}, 𝑆𝜎(𝑥2

′ ) = {1,2,4,5}, 𝑆𝜎(𝑥3
′ ) = {2,3,4,5}, 𝑆𝜎(𝑥4

′ ) = {1,2,3,5}. Hence 𝜎 is an 

AVD proper edge-coloring 𝐴5. By observation 1.1, 𝜒𝑎𝑠
′ (𝐴4) ≥ 5 and so 𝜒𝑎𝑠

′ (𝐴4) = 5. Define 𝜎: 𝐸(𝐴5) →

{1,2,3,4,5} as follows: (𝑒1) = 𝜎(𝑒1
′) = 2, 𝜎(𝑒2) = 5, 𝜎(𝑒2

′) = 3, 𝜎(𝑒3) = 2, 𝜎(𝑒3
′) = 5, 𝜎(𝑒4) = 3, 𝜎(𝑒4

′) =

2, 𝜎(𝑒5) = 𝜎(𝑒5
′) = 5, 𝜎(𝑓1) = 3, 𝜎(𝑓2) = 4 = 𝜎(𝑓3), 𝜎(𝑓4) = 1 = 𝜎(𝑓5), 𝜎(𝑔1) = 1 =  𝜎(𝑔2), 𝜎(𝑔3) =

3, 𝜎(𝑔4) = 4 =  𝜎(𝑔5). Therefore 𝜎 is proper-edge coloring. The induced vertex-color sets are: 𝑆𝜎(𝑥1) =

{1,2,3,5}, 𝑆𝜎(𝑥2) = {1,2,4,5}, 𝑆𝜎(𝑥3) = {2,3,4,5}, 𝑆𝜎(𝑥4) = {1,2,3,4}, 𝑆𝜎(𝑥5) = {1,3,4,5}, 𝑆𝜎(𝑥1
′) =

{2,3,4,5}, 𝑆𝜎(𝑥2
′ ) = {1,2,3,4}, 𝑆𝜎(𝑥3

′ ) = {1,3,4,5}, 𝑆𝜎(𝑥4
′ ) = {1,2,3,5}, 𝑆𝜎(𝑥5

′ ) = {1,2,4,5}. Hence 𝜎 is an 

AVD proper edge-coloring 𝐴5. By observation 1.1, 𝜒𝑎𝑠
′ (𝐴5) ≥ 5 and so 𝜒𝑎𝑠

′ (𝐴5) = 5. 

For 𝑛 ≥ 6, since ∆(𝐴𝑛) = 4, by observation 1.1. 𝜒𝑎𝑠
′ (𝐴𝑛) ≥ 5. To show 𝜒𝑎𝑠

′ (𝐴𝑛) ≤ 5. we consider five 

cases and in each case, we first define 𝜎 ∶ 𝐸(𝐴𝑛) → {1,2,3,4,5} as follows: 

For  𝒏 ≡ 𝟎 (𝐦𝐨𝐝 𝟑) 

For 𝑖 ∈ {1,2,… , 𝑛},  

𝜎(𝑒𝑖) = {

5   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

𝜎(𝑒𝑖
′) = {

2   if 𝑖 ≡ 1 (mod 3)
3   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

 𝜎(𝑓𝑖) = 4,  𝜎(𝑔𝑖)  = 1 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

For 𝑖 ∈ { 1,2,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {

{1,3,4,5}   if 𝑖 ≡ 1 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{1,2,3,4}   if 𝑖 ≡ 0 (mod 3)

  

      𝑆𝜎(𝑥𝑖
′) = {

{1,2,4,5}   if 𝑖 ≡ 1 (mod 3)
{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)

{1,3,4,5}   if 𝑖 ≡ 0 (mod 3)
  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟏 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  
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For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
2   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 3 = 𝜎(𝑒𝑛
′ )  

𝜎(𝑓1) = 4, 𝜎(𝑓2) = 2,  

For 𝑖 ∈ {3,4,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = {

5   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
1   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 5,  

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 2},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)
5   if 𝑖 ≡ 1 (mod 3)

 

𝜎(𝑔𝑛−1) = 1, 𝜎(𝑔𝑛) = 2. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,3,4,5}  

For 𝑖 ∈ {2,3,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)

{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)
  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4}   if 𝑖 ≡ 1 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 0 (mod 3)

  

𝑆𝜎(𝑥𝑛
′ ) = {1,3,4,5}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟐 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  

For 𝑖 ∈ {2,3,… , 𝑛 − 2}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
2   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 3 = 𝜎(𝑒𝑛
′ ),  𝜎(𝑒𝑛−1) = 5 = 𝜎(𝑒𝑛−1

′ )  

 𝜎(𝑓1) = 𝜎(𝑓2) = 2  

For 𝑖 ∈ {3,4,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = {

5   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
1   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 1,  

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 2},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)
5   if 𝑖 ≡ 1 (mod 3)
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𝜎(𝑔𝑛−1) = 2, 𝜎(𝑔𝑛) = 4. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,2,3,5}  

For 𝑖 ∈ { 2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥𝑛) = {1,3,4,5}  

For 𝑖 ∈ { 1,2,… , 𝑛 − 2}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4}   if 𝑖 ≡ 1 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 0 (mod 3)

  

𝑆𝜎(𝑥𝑛−1
′ ) = {1,3,4,5}, 𝑆𝜎(𝑥𝑛

′ ) = {1,2,3,5}   

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛. Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟒 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  

For 𝑖 ∈ {2,3,… , 𝑛 − 4}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
5   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 3 = 𝜎(𝑒𝑛
′ ),  𝜎(𝑒𝑛−1) = 5 = 𝜎(𝑒𝑛−1

′ ), 

 𝜎(𝑒𝑛−2) = 1 = 𝜎(𝑒𝑛−2
′ ),  𝜎(𝑒𝑛−3) = 2 = 𝜎(𝑒𝑛−3

′ )  

 𝜎(𝑓1) = 𝜎(𝑓2) = 2  

For 𝑖 ∈ {3,4,… , 𝑛 − 3}, 𝜎(𝑓𝑖) = {

2   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
1   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 1, 𝜎(𝑓𝑛−1) = 4 = 𝜎(𝑓𝑛−2)  

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 4},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)
2   if 𝑖 ≡ 1 (mod 3)

 

𝜎(𝑔𝑛−3) = 5, 𝜎(𝑔𝑛−2) = 3, 𝜎(𝑔𝑛−1) = 2, 𝜎(𝑔𝑛) = 4. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,2,3,5},  𝑆𝜎(𝑥2) = {1,2,3,4}  

For 𝑖 ∈ { 3,4,… , 𝑛 − 3}, 𝑆𝜎(𝑥𝑖) = {

{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)

{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)
{1,3,4,5}   if 𝑖 ≡ 2 (mod 3)

  

𝑆𝜎(𝑥𝑛) = {1,3,4,5},  𝑆𝜎(𝑥𝑛−1) = {1,2,4,5},  𝑆𝜎(𝑥𝑛−2) = {1,2,3,4}   
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𝑆𝜎(𝑥1
′) = {1,2,3,4}  

For 𝑖 ∈ { 2,3,… , 𝑛 − 4}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 0 (mod 3)

{1,3,4,5}   if 𝑖 ≡ 1 (mod 3)
  

𝑆𝜎(𝑥𝑛−3
′ ) = {1,2,3,4}, 𝑆𝜎(𝑥𝑛−2

′ ) = {1,2,4,5}, 𝑆𝜎(𝑥𝑛−1
′ ) = {1,3,4,5}, 𝑆𝜎(𝑥𝑛

′ ) = {1,2,3,5}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛. Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟓 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  

For 𝑖 ∈ {2,3,… , 𝑛 − 4}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
5   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 2 = 𝜎(𝑒𝑛
′ ),  𝜎(𝑒𝑛−1) = 3 = 𝜎(𝑒𝑛−1

′ ), 

 𝜎(𝑒𝑛−2) = 5 = 𝜎(𝑒𝑛−2
′ ),  𝜎(𝑒𝑛−3) = 3 = 𝜎(𝑒𝑛−3

′ )  

 𝜎(𝑓1) = 3, 𝜎(𝑓2) = 2  

For 𝑖 ∈ {3,4,… , 𝑛 − 3}, 𝜎(𝑓𝑖) = {

1   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 5, 𝜎(𝑓𝑛−1) = 4, 𝜎(𝑓𝑛−2) = 1 

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 4},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
2   if 𝑖 ≡ 0 (mod 3)
1   if 𝑖 ≡ 1 (mod 3)

 

𝜎(𝑔𝑛−3) = 4, 𝜎(𝑔𝑛−2) = 2, 𝜎(𝑔𝑛−1) = 1, 𝜎(𝑔𝑛) = 4. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,2,3,5},  𝑆𝜎(𝑥2) = {1,2,3,4}  

For 𝑖 ∈ { 3,4,… , 𝑛 − 2}, 𝑆𝜎(𝑥𝑖) = {

{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{1,3,4,5}   if 𝑖 ≡ 1 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 2 (mod 3)

  

𝑆𝜎(𝑥𝑛) = {2,3,4,5},  𝑆𝜎(𝑥𝑛−1) = {1,3,4,5},  𝑆𝜎(𝑥𝑛−2) = {1,2,3,5}   

𝑆𝜎(𝑥1
′) = {1,2,3,4}  

For 𝑖 ∈ { 2,3,… , 𝑛 − 4}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{1,3,4,5}   if 𝑖 ≡ 0 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥𝑛−3
′ ) = {1,2,3,5}, 𝑆𝜎(𝑥𝑛−2

′ ) = {1,3,4,5}, 𝑆𝜎(𝑥𝑛−1
′ ) = {2,3,4,5}, 𝑆𝜎(𝑥𝑛

′ ) = {1,2,3,5}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛. Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 
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2.2.  AVD Proper Edge-chromatic Index of Sunflower Graph 

By an sun flower graph of order 𝑛 denoted by 𝑆𝐹𝑛,  we mean a graph that is isomorphic to a graph 

obtained from Anti-prism graph 𝐴𝑛 by deleting edges 𝑦𝑖𝑦(𝑖+1)(𝑚𝑜𝑑 𝑛), 𝑖 = 1,2,… , 𝑛. 

Theorem 2.2.  𝜒𝑎𝑠
′ (𝑆𝐹𝑛) = 5, 𝑓𝑜𝑟 𝑛 ≥ 4. 

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1 For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛 to form 𝑆𝐹𝑛. In 𝑆𝐹𝑛, for 𝑖 ∈ { 1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑓𝑖 = 𝑥𝑖𝑥𝑖
′, and 𝑔𝑖 = 𝑥𝑖

′𝑥𝑖+1, 

where 𝑥𝑛+1 = 𝑥1. 

Define 𝜎 ∶ 𝐸(𝑆𝐹3) → {1,2,3,4,5} as follows: (𝑒1) = 1, 𝜎(𝑒2) = 2, 𝜎(𝑒3) = 5, 𝜎(𝑓1) = 𝜎(𝑓2) = 𝜎(𝑓3) = 3, 

𝜎(𝑔1) =  𝜎(𝑔2) = 𝜎(𝑔3) = 4. The induced vertex-color sets are: 𝑆𝜎(𝑥1) = {1,3,4,5}, 𝑆𝜎(𝑥2) =

{1,2,3,4}, 𝑆𝜎(𝑥3) = {2,3,4,5}, 𝑆𝜎(𝑥1
′) = 𝑆𝜎(𝑥2

′ ) = 𝑆𝜎(𝑥3
′ ) = {3,4}. Therefore 𝜎 is an AVD proper edge-

coloring 𝑆𝐹𝑛.  Hence, 𝜒𝑎𝑠
′ (𝑆𝐹3) = 5. 

For  𝑛 ≥ 4,  since ∆(𝑆𝐹𝑛) = 4, by observation 1.1. 𝜒𝑎𝑠
′ (𝑆𝐹𝑛) ≥ 5. To show 𝜒𝑎𝑠

′ (𝑆𝐹𝑛) ≤ 5. we consider two 

cases first define 𝜎 ∶ 𝐸(𝑆𝐹𝑛) → {1,2,3,4,5} as follows: 

Case 1. If  𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = {
1   if 𝑖 is odd  
2   if 𝑖 is even

  

  𝜎(𝑓𝑖) = {
5   if 𝑖 is odd  
4   if 𝑖 is even

   

𝜎(𝑔𝑖) = 3,   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

𝑆𝜎(𝑥1) = {1,3}  

For 𝑖 ∈ {1,2,3,… , 𝑛},  𝑆𝜎(𝑥𝑖) = {
{1,2,3,5}   if 𝑖 is odd  
{1,2,3,4}   if 𝑖 is even

  

𝑆𝜎(𝑥𝑖
′) = {

{3,5}   if 𝑖 is odd  
{3,4}   if 𝑖 is even

  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑆𝐹𝑛) = 5 

Case 2. If 𝒏 is odd 

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑒𝑖) = {
1   if 𝑖 is odd  
2   if 𝑖 is even

  

𝜎(𝑒𝑛) = 5  

𝜎(𝑓1) = 4,  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝜎(𝑓𝑖) = {
4   if 𝑖 is even  
5   if 𝑖 is odd   

   

𝜎(𝑓𝑛) = 4,  

For 𝑖 ∈ {1,2,… , 𝑛}, 𝜎(𝑔𝑖) = 3   
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Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

𝑆𝜎(𝑥1) = {1,3,4,5}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝑆𝜎(𝑥𝑖) = {
{1,2,3,4}   if 𝑖 is even 
{1,2,3,5}   if 𝑖 is odd   

  

𝑆𝜎(𝑥𝑛) = {2,3,4,5}  

𝑆𝜎(𝑥1
′) = {3,4}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{3,4}   if 𝑖 is even  
{3,5}   if 𝑖 is odd    

     

𝑆𝜎(𝑥𝑛
′ ) = {3,4}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑆𝐹𝑛) = 5. 

2.3.  AVD Proper Edge-chromatic Index of Double Sunflower Graph  

By a double sunflower graph of order 𝑛 denoted by 𝐷𝑆𝐹𝑛, is a graph obtained from the graph 𝑆𝐹𝑛 by 

inserting a new vertex 𝑧𝑖  on each edges 𝑥𝑖𝑥𝑖+1 and adding edges 𝑦𝑖𝑧𝑖  for each 𝑖. 

Theorem 2.3.  𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) = 4, 𝑓𝑜𝑟 𝑛 ≥ 4,   

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1 For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦1, 𝑦2, … , 𝑦𝑛 be newly added vertices corresponding to the sub division of each 

edge of the cycle 𝐶𝑛 to form 𝐷𝑆𝐹𝑛. In 𝐷𝑆𝐹𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑦𝑖 , 𝑒𝑖
′ = 𝑦𝑖𝑥𝑖+1 𝑓𝑖 = 𝑥𝑖𝑥𝑖

′, 𝑔𝑖 =

𝑥𝑖
′𝑥𝑖+1 and ℎ𝑖 = 𝑥𝑖

′𝑦𝑖 where 𝑥𝑛+1 = 𝑥1. 

For  𝑛 ≥ 4, since ∆(𝐷𝑆𝐹𝑛) = 4, by observation 1.2. 𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) ≥ 4. To show 𝜒𝑎𝑠

′ (𝐷𝑆𝐹𝑛) ≤ 4. 

We consider two cases first define 𝜎 ∶ 𝐸(𝐷𝑆𝐹𝑛) → {1,2,3,4} as follows: 

Case 1. If 𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = {
1   if 𝑖 is odd  
3   if 𝑖 is even

  

𝜎(𝑒𝑖
′) = {

2   if 𝑖 is odd  
4   if 𝑖 is even

  

  𝜎(𝑓𝑖) = {
2   if 𝑖 is odd  
1   if 𝑖 is even

   

𝜎(𝑔𝑖) = {
4   if 𝑖 is odd  
3   if 𝑖 is even

   

𝜎(ℎ𝑖) = {
3   if 𝑖 is odd  
2   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,3,… , 𝑛},  𝑆𝜎(𝑥𝑖) = {1,2,3,4}  
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         𝑆𝜎(𝑦𝑖) = {
{1,2,3}   if 𝑖 is odd  
{2,3,4}   if 𝑖 is even

  

         𝑆𝜎(𝑥𝑖
′) = {

{2,3,4}   if 𝑖 is odd  
{1,2,3}   if 𝑖 is even

  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐷𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) = 4. 

Case 2. If 𝒏 is odd 

𝜎(𝑒1) = 1, 𝜎(𝑒1
′) = 3 

For 𝑖 ∈ {2,3,… , 𝑛}, 𝜎(𝑒𝑖) = {
1   if 𝑖 is even  
2   if 𝑖 is odd    

  

𝜎(𝑒𝑖
′) = 4,   

For 𝑖 ∈ {1,2,… , 𝑛},  𝜎(𝑓𝑖) = {
3   if  𝑖 ≠ 2
2   if  𝑖 = 2

   

𝜎(𝑔1) = 4,  

For 𝑖 ∈ {2,3,… , 𝑛},  𝜎(𝑔𝑖) = {
1   if 𝑖 is even 
2   if 𝑖 is odd   

   

𝜎(ℎ1) = 2, 𝜎(ℎ2) = 3,  

For 𝑖 ∈ {3,4,… , 𝑛},  𝜎(ℎ𝑖) = {
1   if 𝑖 is odd  
2   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,… , 𝑛},  𝑆𝜎(𝑥𝑖) = {1,2,3,4}  

𝑆𝜎(𝑦1) = {1,2,3}, 𝑆𝜎(𝑦2) = {1,3,4}  

For 𝑖 ∈ {3,4,… , 𝑛}, 𝑆𝜎(𝑦𝑖) = {1,2,4}   

𝑆𝜎(𝑥1
′) = {2,3,4}  

For 𝑖 ∈ {2,3,… , 𝑛},  𝑆𝜎(𝑥𝑖
′) = {1,2,3}.   

Therefore 𝜎 is an AVD proper edge-coloring of 𝐷𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) = 4. 

2.4.  AVD Proper Edge-chromatic Index of Triangular Winged Prism  

By a triangular winged prism of order 𝑛 denoted by 𝑇𝑊𝑃𝑛,  is a graph obtained from the prism graph 𝐷𝑛, by 

adding some outsider middle vertices  𝑧𝑖 on edge 𝑦𝑖𝑦𝑖+1 and adding 𝑧𝑖 to both vertices 𝑦𝑖 and 𝑦𝑖+1. 

Theorem 2.4.  𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) = 6, 𝑓𝑜𝑟 𝑛 ≥ 4. 

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1 For 𝑛 ≥ 4, 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  and 𝑦1, 𝑦2, … , 𝑦𝑛 be newly added vertices 

corresponding to the vertices 𝑥1, 𝑥2, … , 𝑥𝑛 to form 𝑇𝑊𝑃𝑛. In 𝑇𝑊𝑃𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑒𝑖
′ =

𝑥𝑖
′𝑥𝑖+1
′ , 𝑓𝑖 = 𝑥𝑖𝑥𝑖

′, 𝑔𝑖 = 𝑥𝑖
′𝑦𝑖 and ℎ𝑖 = 𝑥𝑖+1

′ 𝑦𝑖, where 𝑥𝑛+1 = 𝑥1, 𝑥𝑛+1
′ = 𝑥1

′ . 

For  𝑛 ≥ 4, since ∆(𝑇𝑊𝑃𝑛) = 5, by observation 1.1. 𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) ≥ 6. To show 𝜒𝑎𝑠

′ (𝑇𝑊𝑃𝑛) ≤ 6. we consider 

two cases first define 𝜎 ∶ 𝐸(𝑇𝑊𝑃𝑛) → {1,2,3,4,5,6} as follows: 
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Case 1. If 𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

1   if 𝑖 is odd  
3   if 𝑖 is even

  

     𝜎(𝑓𝑖) = {
4   if 𝑖 is odd  
2   if 𝑖 is even

   

𝜎(𝑔𝑖) = 5   

𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We compare 

the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,3,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {
{1,3,4}   if 𝑖 is odd  
{1,2,3}   if 𝑖 is even

  

        𝑆𝜎(𝑥𝑖
′) = {

{1,3,4,5,6}   if 𝑖 is odd  
{1,2,3,4,5}   if 𝑖 is even

   

For 𝑖 ∈ {1,2,… , 𝑛}, 𝑆𝜎(𝑦𝑖) = {
{4,5}   if 𝑖 is odd  
{5,6}   if 𝑖 is even

   

Therefore 𝜎 is an AVD proper edge-coloring of  𝑇𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) = 6. 

Case 2. If 𝒏 is odd 

For 𝑖 ∈ {1,2,3,… , 𝑛 − 1} 

 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

1   if 𝑖 is odd  
3   if 𝑖 is even

  

𝜎(𝑒𝑛) = 𝜎(𝑒𝑛
′ ) = 2,  

For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(𝑓𝑖) = {
4   if  𝑖 is odd  
2   if  𝑖 is even

   

𝜎(𝑓𝑛) = 4,  

For 𝑖 ∈ {1,2,… , 𝑛},  𝜎(𝑔𝑖) = 5,   

For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

𝜎(ℎ𝑛) = 6.  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We compare 

the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  
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𝑆𝜎(𝑥1) = {1,2,4}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝑆𝜎(𝑥𝑖) = {
{1,2,3}   if 𝑖 is even  
{1,3,4}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛) = {2,3,4}  

𝑆𝜎(𝑥1
′) = {1,2,4,5,6}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4,5}   if 𝑖 is even  
{1,3,4,5,6}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛
′ ) = {2,3,4,5,6}  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = {
{4,5}   if 𝑖 is odd  
{5,6}   if 𝑖 is even

   

𝑆𝜎(𝑦𝑛) = {5,6}.  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑇𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) = 6. 

2.5.  AVD Proper Edge-chromatic Index of Rectangular Winged Prism Graph  

By a rectangular winged prism graph of order 𝑛 denoted by 𝑅𝑊𝑃𝑛, is a graph obtained from the prism 

graph 𝐷𝑛, by adding an edge 𝑎𝑖𝑏𝑖 corresponding to the edge 𝑦𝑖𝑦𝑖+1 and adding an edge 𝑎𝑖  to 𝑦𝑖  and 𝑏𝑖 to 

𝑦𝑖+1. 

Theorem 2.5.  𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) = 6, 𝑓𝑜𝑟 𝑛 ≥ 4. 

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1, For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛. Let 𝑦1, 𝑦2, … , 𝑦𝑛 and 𝑧1, 𝑧2, … , 𝑧𝑛 be newly added vertices corresponding to the 

vertices 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  to form 𝑅𝑊𝑃𝑛. In 𝑅𝑊𝑃𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑒𝑖

′ = 𝑥𝑖
′𝑥𝑖+1
′ , 𝑒𝑖

′′ = 𝑦𝑖𝑧𝑖 , 

𝑓𝑖 = 𝑥𝑖𝑥𝑖
′, 𝑔𝑖 = 𝑥𝑖

′𝑦𝑖  and ℎ𝑖 = 𝑥𝑖+1
′ 𝑧𝑖, where 𝑥𝑛+1 = 𝑥1, 𝑥𝑛+1

′ = 𝑥1
′ . 

For  𝑛 ≥ 4, since ∆(𝑅𝑊𝑃𝑛) = 5, by observation 1.1. 𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) ≥ 6. To show 𝜒𝑎𝑠

′ (𝑅𝑊𝑃𝑛) ≤ 6. we 

consider two cases first define 𝜎 ∶ 𝐸(𝑅𝑊𝑃𝑛) → {1,2,3,4,5,6} as follows: 

Case 1. If 𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = 𝜎(𝑒𝑖

′′) = {
1   if 𝑖 is odd  
3   if 𝑖 is even

  

  𝜎(𝑓𝑖) = {
4   if 𝑖 is odd  
2   if 𝑖 is even

   

𝜎(𝑔𝑖) = 5   

𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,3,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {
{1,3,4}   if 𝑖 is odd  
{1,2,3}   if 𝑖 is even

  



38 

 

J. Naveen  / IKJM/ 3(2)  (2021) 27-42 

        𝑆𝜎(𝑥𝑖
′) = {

{1,3,4,5,6}   if 𝑖 is odd  
{1,2,3,4,5}   if 𝑖 is even

  

For 𝑖 ∈ {1,2,… , 𝑛}, 𝑆𝜎(𝑦𝑖) = {
{1,5}   if 𝑖 is odd  
{3,5}   if 𝑖 is even

   

For 𝑖 ∈ {1,2,… , 𝑛}, 𝑆𝜎(𝑧𝑖) = {
{1,4}   if 𝑖 is odd  
{3,6}   if 𝑖 is even

 

Therefore 𝜎 is an AVD proper edge-coloring of 𝑅𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) = 6. 

Case 2. If 𝒏 is odd 

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = 𝜎(𝑒𝑖

′′) = {
1   if 𝑖 is odd  
3   if 𝑖 𝑖s even

  

𝜎(𝑒𝑛) = 𝜎(𝑒𝑛
′ ) = 𝜎(𝑒𝑛

′′) = 2,  

 For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(𝑓𝑖) = {
4   if  𝑖 is odd  
2   if  𝑖 is even

   

𝜎(𝑓𝑛) = 4,  

For 𝑖 ∈ {1,2,… , 𝑛},  𝜎(𝑔𝑖) = 5,   

For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

𝜎(ℎ𝑛) = 6.  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

𝑆𝜎(𝑥1) = {1,2,4}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝑆𝜎(𝑥𝑖) = {
{1,2,3}   if 𝑖 is even  
{1,3,4}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛) = {2,3,4}  

𝑆𝜎(𝑥1
′) = {1,2,4,5,6}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4,5}   if 𝑖 is even  
{1,3,4,5,6}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛
′ ) = {2,3,4,5,6}  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = {
{1,5}   if 𝑖 is odd  
{3,5}   if 𝑖 is even

   

𝑆𝜎(𝑦𝑛) = {2,5}  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑧𝑖) = {
{1,4}   if 𝑖 is odd  
{3,6}   if 𝑖 is even

 

𝑆𝜎(𝑧𝑛) = {2,6}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑅𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) = 6. 
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3. AVD Proper Edge-chromatic Index of Polygonal Snake Graph 

In this section, we investigate AVD proper edge-coloring of Polygonal snake graph only. A graph is 

obtained from a path 𝑃𝑚 with vertex set 𝑥1, 𝑥2, … , 𝑥𝑚 by joining all consecutive vertices by path 𝑃𝑛 with 

vertex set 𝑦1, 𝑦2, … , 𝑦𝑛 in such a way that merging 𝑦1 with 𝑥𝑖 and 𝑦𝑛 with 𝑥𝑖+1, 𝑖 ∈ {1,2,… , 𝑛 − 1} and so 

on. Then 𝑃𝑚(𝑆𝑛),  ∀ 𝑚, 𝑛 is called as polygonal snake graph. [8] 

Theorem 3.1. 𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5, 𝑓𝑜𝑟 𝑚 ≥ 3, 𝑛 ≥ 5.   

Proof.  Let 𝑃𝑚: 𝑥1𝑥2…𝑥𝑚, For 𝑛 ≥ 5, 𝑃𝑛: 𝑦1𝑦2…𝑦𝑛 be attached to an edge 𝑥𝑖𝑥𝑖+1, 𝑖 ∈ {1,3,… ,𝑚 − 1}, 𝑚 is 

even, where 𝑥𝑖 = 𝑦1,  𝑥𝑖+1 = 𝑦𝑛 and 𝑃𝑛
′: 𝑦1

′𝑦2
′ …𝑦𝑛

′  be attached to an edge 𝑥𝑖𝑥𝑖+1, 𝑖 ∈ {2,4,… ,𝑚 − 1}, 𝑚 is 

odd, where 𝑥𝑖 = 𝑦1
′ , 𝑥𝑖+1 = 𝑦𝑛

′  to form 𝑃𝑚(𝑆𝑛). In 𝑃𝑚(𝑆𝑛),  for 𝑖 ∈ {1,2,… ,𝑚 − 1}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1. For 𝑖 ∈

{1,2,… , 𝑛 − 1}, 𝑓𝑖 = 𝑦𝑖𝑦𝑖+1, 𝑓𝑖
′ = 𝑦𝑖

′𝑦𝑖+1
′ .  

For 𝑚 ≥ 3, 𝑛 ≥ 5, since ∆(𝑃𝑚(𝑆𝑛)) = 4, by observation 1.1. 𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) ≥ 5. To show 𝜒𝑎𝑠

′ (𝑃𝑚(𝑆𝑛)) ≤ 5. 

we consider five cases and in each case, we first define 𝜎 ∶ 𝐸(𝑃𝑚(𝑆𝑛)) → {1,2,3,4,5} as follows: 

Case 1: For  𝒏 ≡ 𝟓 (𝐦𝐨𝐝 𝟔) 

For 𝑖 ∈ {1,2,… ,𝑚 − 1}, 𝜎(𝑒𝑖) = {

3   if 𝑖 ≡ 1 (mod 3)
4   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = {

1   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

                                                   𝜎(𝑓𝑖
′) = {

2   if 𝑖 ≡ 1 (mod 3)
3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree.  

The induced vertex-color sets are: 

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = {

{1,2}   if 𝑖 ≡ 2 (mod 3)
{2,3}   if 𝑖 ≡ 0 (mod 3)

{1,3}   if 𝑖 ≡ 1 (mod 3)
  

𝑆𝜎(𝑦𝑖
′) = {

{2,3}   if 𝑖 ≡ 2 (mod 3)
{1,3}   if 𝑖 ≡ 0 (mod 3)
{1,2}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥1) = {1,3},  

For 𝑖 ∈ {2,3,… ,𝑚 − 1}, 𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{1,2,3,5}   if 𝑖 ≡ 1 (mod 3)

  

 𝑆𝜎(𝑥𝑚) =

{
  
 

  
 
{2,4}  if  𝑚 ≡ 3 (mod 6)

{1,5}  if  𝑚 ≡ 4 (mod 6)
{2,3}  if  𝑚 ≡ 5 (mod 6)
{1,4}  if  𝑚 ≡ 0 (mod 6)
{2,5}  if  𝑚 ≡ 1 (mod 6)
{1,3}  if  𝑚 ≡ 2 (mod 6)
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Therefore 𝜎 is an AVD proper edge-coloring of 𝑃𝑚(𝑆𝑛).  Hence,  𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5. 

Case 2: For  𝒏 ≡ 𝟎 (𝐦𝐨𝐝 𝟔) 

For 𝑖 ∈ {1,2,… ,𝑚 − 1}, 𝜎(𝑒𝑖) = {

3   if 𝑖 ≡ 1 (mod 3)
4   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = 𝜎(𝑓𝑖
′) = {

1   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree.  

The induced vertex-color sets are: 

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = 𝑆𝜎(𝑦𝑖
′) = {

{1,2}   if 𝑖 ≡ 2 (mod 3)

{2,3}   if 𝑖 ≡ 0 (mod 3)
{1,3}   if 𝑖 ≡ 1 (mod 3)

   

𝑆𝜎(𝑥1) = {1,3},  

For 𝑖 ∈ {2,3,… ,𝑚 − 1},  𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)

{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{1,2,3,5}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥𝑚) = {

{2,4}   if 𝑚 ≡ 0 (mod 3)
{2,5}   if 𝑚 ≡ 1 (mod 3)

{2,3}   if 𝑚 ≡ 2 (mod 3)
  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑃𝑚(𝑆𝑛).  Hence,  𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5. 

Case 3: For  𝒏 ≡ 𝟏 (𝐦𝐨𝐝 𝟔) 

For 𝑖 ∈ {1,2,… ,𝑚 − 1}, 𝜎(𝑒𝑖) = {

3   if 𝑖 ≡ 1 (mod 3)
4   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

For 𝑖 ∈ {1,2,… , 𝑛 − 4}, 𝜎(𝑓𝑖) = 𝜎(𝑓𝑖
′) = {

1   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

𝜎(𝑓𝑛−3) = 𝜎(𝑓𝑛−3
′ ) = 4, 𝜎(𝑓𝑛−2) = 𝜎(𝑓𝑛−2

′ ) = 1, 𝜎(𝑓𝑛−1) = 𝜎(𝑓𝑛−1
′ ) = 2.  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree.  

The induced vertex-color sets are: 

For 𝑖 ∈ {2,3,… , 𝑛 − 4}, 𝑆𝜎(𝑦𝑖) = 𝑆𝜎(𝑦𝑖
′) = {

{1,2}   if 𝑖 ≡ 2 (mod 3)
{2,3}   if 𝑖 ≡ 0 (mod 3)
{1,3}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑦𝑛−3) = 𝑆𝜎(𝑦𝑛−3
′ ) = {3,4}, 𝑆𝜎(𝑦𝑛−2) = 𝑆𝜎(𝑦𝑛−2

′ ) = {1,4}, 𝑆𝜎(𝑦𝑛−1) = 𝑆𝜎(𝑦𝑛−1
′ ) = {1,2}  

𝑆𝜎(𝑥1) = {1,3},  
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For 𝑖 ∈ {2,3,… ,𝑚 − 1},  𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)

{1,2,3,5}   if 𝑖 ≡ 1 (mod 3)
  

𝑆𝜎(𝑥𝑚) = {

{2,4}   if 𝑚 ≡ 0 (mod 3)
{2,5}   if 𝑚 ≡ 1 (mod 3)
{2,3}   if 𝑚 ≡ 2 (mod 3)

  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑃𝑚(𝑆𝑛).  Hence,  𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5. 

Case 4: For  𝒏 ≡ 𝟐 (𝐦𝐨𝐝 𝟔)  

Proof is similar to case 1. 𝑛 ≡ 5 (mod 6) 

Case 5: For  𝒏 ≡ 𝟑 (𝐦𝐨𝐝 𝟔) 

Proof is similar to case 2. 𝑛 ≡ 0 (mod 6) 

Case 6: For  𝒏 ≡ 𝟒 (𝐦𝐨𝐝 𝟔) 

Proof is similar to case 3. 𝑛 ≡ 1 (mod 6) 

4. Conclusion  

In this paper, I investigate the AVD proper edge-chromatic index of Anti-prism, sunflower graph, double 

sunflower graph, triangular winged prism and rectangular winged prism. And I also investigate AVD 

Proper edge-chromatic index of Polygonal snake graph. The investigation of analogous results for 

different graphs and different operation of above families of graphs are still open. 
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