Ikonion Journal of Mathematics
https://dergipark.org.tr/tr/pub/ikjm
Research Article
Open Access
https://doi.org/10.54286/ikjm. 972238

AVD Proper Edge Coloring of Some Cycle Related Graphs

J. Naveen ${ }^{1}{ }^{\text {© }}$

Keywords:
Edge coloring,
AVD proper edge-
coloring,
Cycle,
Anti-prism

Abstract

The adjacent vertex-distinguishing proper edge-coloring is the minimum number of colors required for a proper edge-coloring of G, in which no two adjacent vertices are incident to edges colored with the same set of colors. The minimum number of colors required for an adjacent vertex-distinguishing proper edge-coloring of G is called the adjacent vertexdistinguishing proper edge-chromatic index. In this paper, we compute adjacent vertexdistinguishing proper edge-chromatic index of Anti-prism, sunflower graph, double sunflower graph, triangular winged prism, rectangular winged prism and Polygonal snake graph.

Subject Classification (2020): 05C15, 05C38.

1. Introduction

The terminology and notations we refer to Bondy and Murthy [4]. Let G be a finite, simple, undirected and connected graph. Let $\Delta(G)$ denote the maximum degree of G. A proper edge-coloring σ is a mapping from $E(G)$ to the set of colors such that any two adjacent edges receive distinct colors. For any vertex v of G, let $S_{\sigma}(v)$ denote the set of the colors of all edges incident to v. A proper edge-coloring σ is said to an adjacent vertex-distinguishing (AVD) if $S_{\sigma}(u) \neq S_{\sigma}(v)$, for every adjacent vertices u and v. The minimum number of colors required for an adjacent vertex-distinguishing proper edge-coloring of G, denoted by $\chi_{a s}^{\prime}(G)$, is called the adjacent vertex-distinguishing proper edge-chromatic index (AVD proper edge-chromatic index) of G. Thus, $\chi_{a s}^{\prime}(G) \geq \chi^{\prime}(G)$.

Conjecture 1.1. [11] For any connected graph $G(|V(G)| \geq 6)$, there is $\chi_{a s}^{\prime}(G) \leq \Delta(G)+2$. If H is a subgraph of G, it is interesting that $\chi_{a s}^{\prime}(H) \leq \chi_{a s}^{\prime}(G)$ is not always true.

Let $K_{m, n}$ be the complete bipartite graph, then $\chi_{a s}^{\prime}\left(K_{2,3}\right)=3$ and $K_{2,3}-e$ for any edge, then $\chi_{a s}^{\prime}\left(K_{2,3}-e\right)=4$. Deletion of an edge of a graph may also decrease the coloring number of the graph. Let $n \geq 3$, then $\chi_{a s}^{\prime}\left(K_{1, n}\right)=n$ and $\chi_{a s}^{\prime}\left(K_{1, n}-e\right)=n-1$.

[^0]In [11] Zhang et al. proved: if G has n components $G_{i}, 1 \leq i \leq n$, with at least three vertices in each, then $\chi_{a s}^{\prime}(G)=\max _{1 \leq i \leq n}\left\{\chi_{a s}^{\prime}\left(G_{i}\right)\right\}$. So we consider only connected graphs. For a tree T with $|V(T)| \geq 3$, if any two vertices of maximum degree are non-adjacent, then $\chi_{a s}^{\prime}(T)=\Delta(T)$. If T has two vertices of maximum degree which are adjacent, then $\chi_{a s}^{\prime}(T)=\Delta(T)+1$. For cycle C_{n} we have $\chi_{a s}^{\prime}\left(C_{n}\right)=3$, for $n \equiv 0(\bmod 3)$, otherwise $\chi_{a s}^{\prime}\left(C_{n}\right)=4$ for $n \not \equiv 0(\bmod 3)$ and $n \neq 5, \chi_{a s}^{\prime}\left(C_{n}\right)=5$, for $n=5$. For the complete bipartite graph $K_{m, n}$ for $1 \leq m \leq n$, we have $\chi_{a s}^{\prime}\left(K_{m . n}\right)=n$ if $m<n$, and $\chi_{a s}^{\prime}\left(K_{m . n}\right)=n+2$ if $m=n \geq 2$. For the complete graph $K_{n}(n \geq 3)$, we have $\chi_{a s}^{\prime}\left(K_{n}\right)=n$ for $n \equiv 1(\bmod 2) ; \chi_{a s}^{\prime}\left(K_{n}\right)=$ $n+1$ for $n \equiv 0(\bmod 2)$. If G is a graph which has two adjacent maximum degree vertices, then $\chi_{a s}^{\prime}(G) \geq$ $\Delta(G)+1$. If G is a graph such that the degree of any two adjacent vertices is different, then $\chi_{a s}^{\prime}(G)=$ $\Delta(G)$. In [9] Shiu proved: for $n \geq 3$, we have $\chi_{a s}^{\prime}\left(F_{n}\right)=n$, if $n=3,4$ and $\chi_{a s}^{\prime}\left(F_{n-1}\right)=n-1$, for $n \geq 5$. For $n \geq 3$, we have $\chi_{a s}^{\prime}\left(W_{n}\right)=5$, if $n=3$, and $\chi_{a s}^{\prime}\left(W_{n}\right)=n$, for $n \geq 4$. In [7] Hatami prove that if G is a graph with no isolated edges and maximum degree $\Delta(G)>10^{20}$, then $\chi_{a s}^{\prime} \leq \Delta+300$. In [2] Balister et al. proved: if G is a k-chromatic graph with no isolated edges, then $\chi_{a s}^{\prime}(G) \leq \Delta(G)+O(\log k)$. In [1] Axenovich et al. obtained upper bound for adjacent vertex-distinguishing edge-colorings of graphs. In [3] Baril et al. obtained exact values for adjacent vertex-distinguishing edge-coloring of meshes. In [5] Bu et al. finding adjacent vertex-distinguishing edge-colorings of planar graphs with girth at least six. In [6] Chen et al. obtained adjacent vertex-distinguishing proper edge-coloring of planar bipartite graphs with $\Delta=9,10$ or 11 .

In this paper, we compute adjacent vertex-distinguishing edge-chromatic index of Anti- prism, sunflower graph, double sunflower graph, triangular winged prism, rectangular winged prism and Polygonal snake graph.

Observation 1.1. If a connected graph G contains two adjacent vertices of degree $\Delta(G)$, then $\chi_{t}^{\prime}(G) \geq$ $\Delta(G)+1$.

Observation 1.2. If G is a graph such that the degree of any two adjacent vertices is different, then $\chi_{a s}^{\prime}(G)=\Delta(G)$.

2. AVD Proper Edge-chromatic Index of Anti-prism Graph, Sunflower Graph, Double Sunflower Graph, Triangular Winged Prism and Rectangular Winged Prism

In this section, The AVD proper edge-chromatic index of Anti-prism graph, Sunflower graph, Double Sunflower graph, Triangular winged prism and Rectangular winged prism graph will be discussed. We have the following results.

2.1. AVD Proper Edge-chromatic Index of Anti-prism Graph

If $C_{n} \square K_{2}, n \geq 3$, is called prism graph, where \square is Cartesian product, and it is denoted by D_{n}
By an Anti-prism graph of order n denoted by A_{n}, we mean a graph obtained from a prism graph D_{n} by adding some crossing edges $x_{i} y_{(i+1)(\bmod n)}, i=1,2, \ldots, n$. [10]

Theorem 2.1. $\chi_{a s}^{\prime}\left(A_{n}\right)=5$, for $n \geq 3$.

Proof. Let $C_{n}=x_{1} x_{2} \ldots x_{n} x_{1}$, For $n \geq 4$ and $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ be newly added vertices corresponding to the vertices $x_{1}, x_{2}, \ldots, x_{n}$ to form A_{n}. In A_{n}, for $i \in\{1,2, \ldots, n\}$, let $e_{i}=x_{i} x_{i+1}, e_{i}^{\prime}=x_{i}^{\prime} x_{i+1}^{\prime}, f_{i}=x_{i} x_{i}^{\prime}, g_{i}=$ $x_{i} x_{i+1}^{\prime}$, where $x_{n+1}=x_{1}, x_{n+1}^{\prime}=x_{1}^{\prime}$.

Define $\quad \sigma: E\left(A_{3}\right) \rightarrow\{1,2,3,4,5\} \quad$ as follows: $\quad \sigma\left(e_{1}\right)=1, \sigma\left(e_{2}\right)=4, \sigma\left(e_{3}\right)=5, \sigma\left(e_{1}^{\prime}\right)=4, \sigma\left(e_{2}^{\prime}\right)=$ 5, $\sigma\left(e_{3}^{\prime}\right)=1, \sigma\left(f_{1}\right)=\sigma\left(f_{2}\right)=\sigma\left(f_{3}\right)=3, \sigma\left(g_{1}\right)=\sigma\left(g_{2}\right)=\sigma\left(g_{3}\right)=2$. Therefore σ is proper-edge coloring. The induced vertex-color sets are: $S_{\sigma}\left(x_{1}\right)=\{1,2,3,5\}, S_{\sigma}\left(x_{2}\right)=\{1,2,3,4\}, S_{\sigma}\left(x_{3}\right)=$ $\{2,3,4,5\}, S_{\sigma}\left(x_{1}^{\prime}\right)=\{1,2,3,4\}, S_{\sigma}\left(x_{2}^{\prime}\right)=\{2,3,4,5\}, S_{\sigma}\left(x_{3}^{\prime}\right)=\{1,2,3,5\}$. Hence σ is an AVD proper edgecoloring A_{3}. By observation 1.1, $\chi_{a s}^{\prime}\left(A_{3}\right) \geq 5$ and so $\chi_{a s}^{\prime}\left(A_{3}\right)=5$. Define $\sigma: E\left(A_{4}\right) \rightarrow\{1,2,3,4,5\}$ as follows: $\sigma\left(e_{1}\right)=\sigma\left(e_{1}^{\prime}\right)=1, \sigma\left(e_{2}\right)=\sigma\left(e_{2}^{\prime}\right)=4, \sigma\left(e_{3}\right)=\sigma\left(e_{3}^{\prime}\right)=5, \sigma\left(e_{4}\right)=\sigma\left(e_{4}^{\prime}\right)=3, \sigma\left(f_{1}\right)=\sigma\left(f_{2}\right)=$ $\sigma\left(f_{3}\right)=\sigma\left(f_{4}\right)=2, \sigma\left(g_{1}\right)=5, \sigma\left(g_{2}\right)=3, \sigma\left(g_{3}\right)=1, \sigma\left(g_{4}\right)=4$. Therefore σ is proper-edge coloring. The induced vertex-color sets are: $S_{\sigma}\left(x_{1}\right)=\{1,2,3,5\}, S_{\sigma}\left(x_{2}\right)=\{1,2,3,4\}, S_{\sigma}\left(x_{3}\right)=\{1,2,4,5\}, S_{\sigma}\left(x_{4}\right)=$ $\{2,3,4,5\}, S_{\sigma}\left(x_{1}^{\prime}\right)=\{1,2,3,4\}, S_{\sigma}\left(x_{2}^{\prime}\right)=\{1,2,4,5\}, S_{\sigma}\left(x_{3}^{\prime}\right)=\{2,3,4,5\}, S_{\sigma}\left(x_{4}^{\prime}\right)=\{1,2,3,5\}$. Hence σ is an AVD proper edge-coloring A_{5}. By observation 1.1, $\chi_{a s}^{\prime}\left(A_{4}\right) \geq 5$ and so $\chi_{a s}^{\prime}\left(A_{4}\right)=5$. Define $\sigma: E\left(A_{5}\right) \rightarrow$ $\{1,2,3,4,5\}$ as follows: $\left(e_{1}\right)=\sigma\left(e_{1}^{\prime}\right)=2, \sigma\left(e_{2}\right)=5, \sigma\left(e_{2}^{\prime}\right)=3, \sigma\left(e_{3}\right)=2, \sigma\left(e_{3}^{\prime}\right)=5, \sigma\left(e_{4}\right)=3, \sigma\left(e_{4}^{\prime}\right)=$ $2, \sigma\left(e_{5}\right)=\sigma\left(e_{5}^{\prime}\right)=5, \sigma\left(f_{1}\right)=3, \sigma\left(f_{2}\right)=4=\sigma\left(f_{3}\right), \sigma\left(f_{4}\right)=1=\sigma\left(f_{5}\right), \sigma\left(g_{1}\right)=1=\sigma\left(g_{2}\right), \sigma\left(g_{3}\right)=$ 3, $\sigma\left(g_{4}\right)=4=\sigma\left(g_{5}\right)$. Therefore σ is proper-edge coloring. The induced vertex-color sets are: $S_{\sigma}\left(x_{1}\right)=$ $\{1,2,3,5\}, S_{\sigma}\left(x_{2}\right)=\{1,2,4,5\}, S_{\sigma}\left(x_{3}\right)=\{2,3,4,5\}, S_{\sigma}\left(x_{4}\right)=\{1,2,3,4\}, S_{\sigma}\left(x_{5}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{1}^{\prime}\right)=$ $\{2,3,4,5\}, S_{\sigma}\left(x_{2}^{\prime}\right)=\{1,2,3,4\}, S_{\sigma}\left(x_{3}^{\prime}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{4}^{\prime}\right)=\{1,2,3,5\}, S_{\sigma}\left(x_{5}^{\prime}\right)=\{1,2,4,5\}$. Hence σ is an AVD proper edge-coloring A_{5}. By observation 1.1, $\chi_{a s}^{\prime}\left(A_{5}\right) \geq 5$ and so $\chi_{a s}^{\prime}\left(A_{5}\right)=5$.

For $n \geq 6$, since $\Delta\left(A_{n}\right)=4$, by observation 1.1. $\chi_{a s}^{\prime}\left(A_{n}\right) \geq 5$. To show $\chi_{a s}^{\prime}\left(A_{n}\right) \leq 5$. we consider five cases and in each case, we first define $\sigma: E\left(A_{n}\right) \rightarrow\{1,2,3,4,5\}$ as follows:

For $n \equiv 0(\bmod 3)$

For $i \in\{1,2, \ldots, n\}$,
$\sigma\left(e_{i}\right)=\left\{\begin{array}{l}5 \text { if } i \equiv 1(\bmod 3) \\ 2 \text { if } i \equiv 2(\bmod 3) \\ 3 \\ \text { if } i \equiv 0(\bmod 3)\end{array}\right.$
$\sigma\left(e_{i}^{\prime}\right)= \begin{cases}2 & \text { if } i \equiv 1(\bmod 3) \\ 3 & \text { if } i \equiv 2(\bmod 3) \\ 5 & \text { if } i \equiv 0(\bmod 3)\end{cases}$

$$
\sigma\left(f_{i}\right)=4, \sigma\left(g_{i}\right)=1
$$

Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{1,2, \ldots, n\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,3,4,5\} & \text { if } i \equiv 1(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,2,3,4\} & \text { if } i \equiv 0(\bmod 3)\end{cases}$

$$
S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,2,4,5\} & \text { if } i \equiv 1(\bmod 3) \\ \{1,2,3,4\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,3,4,5\} & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

Therefore σ is an AVD proper edge-coloring of A_{n}. Hence, $\chi_{a s}^{\prime}\left(A_{n}\right)=5$.

For $n \equiv 1(\bmod 6)$

$\sigma\left(e_{1}\right)=1=\sigma\left(e_{1}^{\prime}\right)$

For $i \in\{2,3, \ldots, n-1\}, \sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)= \begin{cases}4 & \text { if } i \text { is even } \\ 2 \text { if } i \text { is odd }\end{cases}$
$\sigma\left(e_{n}\right)=3=\sigma\left(e_{n}^{\prime}\right)$
$\sigma\left(f_{1}\right)=4, \sigma\left(f_{2}\right)=2$,
For $i \in\{3,4, \ldots, n-1\}, \sigma\left(f_{i}\right)= \begin{cases}5 & \text { if } i \equiv 0(\bmod 3) \\ 3 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3)\end{cases}$
$\sigma\left(f_{n}\right)=5$,
$\sigma\left(g_{1}\right)=5$,
For $i \in\{2,3, \ldots, n-2\}, \sigma\left(g_{i}\right)= \begin{cases}3 & \text { if } i \equiv 2(\bmod 3) \\ 1 & \text { if } i \equiv 0(\bmod 3) \\ 5 & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$\sigma\left(g_{n-1}\right)=1, \sigma\left(g_{n}\right)=2$.
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
$S_{\sigma}\left(x_{1}\right)=\{1,3,4,5\}$
For $i \in\{2,3, \ldots, n\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
For $i \in\{1,2, \ldots, n-1\}, S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \equiv 1(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 2(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 0(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{n}^{\prime}\right)=\{1,3,4,5\}$
Therefore σ is an AVD proper edge-coloring of A_{n}. Hence, $\chi_{a s}^{\prime}\left(A_{n}\right)=5$.
For $n \equiv 2(\bmod 6)$
$\sigma\left(e_{1}\right)=1=\sigma\left(e_{1}^{\prime}\right)$
For $i \in\{2,3, \ldots, n-2\}, \sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}4 \text { if } i \text { is even } \\ 2 \text { if } i \text { is odd }\end{array}\right.$
$\sigma\left(e_{n}\right)=3=\sigma\left(e_{n}^{\prime}\right), \sigma\left(e_{n-1}\right)=5=\sigma\left(e_{n-1}^{\prime}\right)$
$\sigma\left(f_{1}\right)=\sigma\left(f_{2}\right)=2$
For $i \in\{3,4, \ldots, n-1\}, \sigma\left(f_{i}\right)= \begin{cases}5 & \text { if } i \equiv 0(\bmod 3) \\ 3 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3)\end{cases}$
$\sigma\left(f_{n}\right)=1$,
$\sigma\left(g_{1}\right)=5$,
For $i \in\{2,3, \ldots, n-2\}, \sigma\left(g_{i}\right)= \begin{cases}3 & \text { if } i \equiv 2(\bmod 3) \\ 1 & \text { if } i \equiv 0(\bmod 3) \\ 5 & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$\sigma\left(g_{n-1}\right)=2, \sigma\left(g_{n}\right)=4$.
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
$S_{\sigma}\left(x_{1}\right)=\{1,2,3,5\}$
For $i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{n}\right)=\{1,3,4,5\}$
For $i \in\{1,2, \ldots, n-2\}, S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \equiv 1(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 2(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 0(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{n-1}^{\prime}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{n}^{\prime}\right)=\{1,2,3,5\}$
Therefore σ is an AVD proper edge-coloring of A_{n}. Hence, $\chi_{a s}^{\prime}\left(A_{n}\right)=5$.
For $n \equiv 4(\bmod 6)$
$\sigma\left(e_{1}\right)=1=\sigma\left(e_{1}^{\prime}\right)$
For $i \in\{2,3, \ldots, n-4\}, \sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)= \begin{cases}4 & \text { if } i \text { is even } \\ 5 & \text { if } i \text { is odd }\end{cases}$
$\sigma\left(e_{n}\right)=3=\sigma\left(e_{n}^{\prime}\right), \sigma\left(e_{n-1}\right)=5=\sigma\left(e_{n-1}^{\prime}\right)$,
$\sigma\left(e_{n-2}\right)=1=\sigma\left(e_{n-2}^{\prime}\right), \sigma\left(e_{n-3}\right)=2=\sigma\left(e_{n-3}^{\prime}\right)$
$\sigma\left(f_{1}\right)=\sigma\left(f_{2}\right)=2$
For $i \in\{3,4, \ldots, n-3\}, \sigma\left(f_{i}\right)= \begin{cases}2 & \text { if } i \equiv 0(\bmod 3) \\ 3 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3)\end{cases}$
$\sigma\left(f_{n}\right)=1, \sigma\left(f_{n-1}\right)=4=\sigma\left(f_{n-2}\right)$
$\sigma\left(g_{1}\right)=5$,
For $i \in\{2,3, \ldots, n-4\}, \sigma\left(g_{i}\right)= \begin{cases}3 & \text { if } i \equiv 2(\bmod 3) \\ 1 & \text { if } i \equiv 0(\bmod 3) \\ 2 & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$\sigma\left(g_{n-3}\right)=5, \sigma\left(g_{n-2}\right)=3, \sigma\left(g_{n-1}\right)=2, \sigma\left(g_{n}\right)=4$.
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
$S_{\sigma}\left(x_{1}\right)=\{1,2,3,5\}, S_{\sigma}\left(x_{2}\right)=\{1,2,3,4\}$
For $i \in\{3,4, \ldots, n-3\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 1(\bmod 3) \\ \{1,3,4,5\} & \text { if } i \equiv 2(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{n}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{n-1}\right)=\{1,2,4,5\}, S_{\sigma}\left(x_{n-2}\right)=\{1,2,3,4\}$
$S_{\sigma}\left(x_{1}^{\prime}\right)=\{1,2,3,4\}$
For $i \in\{2,3, \ldots, n-4\}, S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,2,4,5\} & \text { if } i \equiv 2(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,3,4,5\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{n-3}^{\prime}\right)=\{1,2,3,4\}, S_{\sigma}\left(x_{n-2}^{\prime}\right)=\{1,2,4,5\}, S_{\sigma}\left(x_{n-1}^{\prime}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{n}^{\prime}\right)=\{1,2,3,5\}$
Therefore σ is an AVD proper edge-coloring of A_{n}. Hence, $\chi_{a s}^{\prime}\left(A_{n}\right)=5$.
For $n \equiv 5(\bmod 6)$
$\sigma\left(e_{1}\right)=1=\sigma\left(e_{1}^{\prime}\right)$
For $i \in\{2,3, \ldots, n-4\}, \sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)= \begin{cases}4 & \text { if } i \text { is even } \\ 5 & \text { if } i \text { is odd }\end{cases}$
$\sigma\left(e_{n}\right)=2=\sigma\left(e_{n}^{\prime}\right), \sigma\left(e_{n-1}\right)=3=\sigma\left(e_{n-1}^{\prime}\right)$,
$\sigma\left(e_{n-2}\right)=5=\sigma\left(e_{n-2}^{\prime}\right), \sigma\left(e_{n-3}\right)=3=\sigma\left(e_{n-3}^{\prime}\right)$
$\sigma\left(f_{1}\right)=3, \sigma\left(f_{2}\right)=2$
For $i \in\{3,4, \ldots, n-3\}, \sigma\left(f_{i}\right)= \begin{cases}1 & \text { if } i \equiv 0(\bmod 3) \\ 3 & \text { if } i \equiv 1(\bmod 3) \\ 2 & \text { if } i \equiv 2(\bmod 3)\end{cases}$
$\sigma\left(f_{n}\right)=5, \sigma\left(f_{n-1}\right)=4, \sigma\left(f_{n-2}\right)=1$
$\sigma\left(g_{1}\right)=5$,
For $i \in\{2,3, \ldots, n-4\}, \sigma\left(g_{i}\right)= \begin{cases}3 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3) \\ 1 & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$\sigma\left(g_{n-3}\right)=4, \sigma\left(g_{n-2}\right)=2, \sigma\left(g_{n-1}\right)=1, \sigma\left(g_{n}\right)=4$.
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
$S_{\sigma}\left(x_{1}\right)=\{1,2,3,5\}, S_{\sigma}\left(x_{2}\right)=\{1,2,3,4\}$
For $i \in\{3,4, \ldots, n-2\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,3,4,5\} & \text { if } i \equiv 1(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 2(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{n}\right)=\{2,3,4,5\}, S_{\sigma}\left(x_{n-1}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{n-2}\right)=\{1,2,3,5\}$
$S_{\sigma}\left(x_{1}^{\prime}\right)=\{1,2,3,4\}$
For $i \in\{2,3, \ldots, n-4\}, S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,2,4,5\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,3,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{2,3,4,5\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{n-3}^{\prime}\right)=\{1,2,3,5\}, S_{\sigma}\left(x_{n-2}^{\prime}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{n-1}^{\prime}\right)=\{2,3,4,5\}, S_{\sigma}\left(x_{n}^{\prime}\right)=\{1,2,3,5\}$
Therefore σ is an AVD proper edge-coloring of A_{n}. Hence, $\chi_{a s}^{\prime}\left(A_{n}\right)=5$.

2.2. AVD Proper Edge-chromatic Index of Sunflower Graph

By an sun flower graph of order n denoted by $S F_{n}$, we mean a graph that is isomorphic to a graph obtained from Anti-prism graph A_{n} by deleting edges $y_{i} y_{(i+1)(\bmod n)}, i=1,2, \ldots, n$.

Theorem 2.2. $\chi_{a s}^{\prime}\left(S F_{n}\right)=5$, for $n \geq 4$.
Proof. Let $C_{n}=x_{1} x_{2} \ldots x_{n} x_{1}$ For $n \geq 4$ and $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ be newly added vertices corresponding to the vertices $x_{1}, x_{2}, \ldots, x_{n}$ to form $S F_{n}$. In $S F_{n}$, for $i \in\{1,2, \ldots, n\}$, let $e_{i}=x_{i} x_{i+1}, f_{i}=x_{i} x_{i}^{\prime}$, and $g_{i}=x_{i}^{\prime} x_{i+1}$, where $x_{n+1}=x_{1}$.

Define $\sigma: E\left(S F_{3}\right) \rightarrow\{1,2,3,4,5\}$ as follows: $\left(e_{1}\right)=1, \sigma\left(e_{2}\right)=2, \sigma\left(e_{3}\right)=5, \sigma\left(f_{1}\right)=\sigma\left(f_{2}\right)=\sigma\left(f_{3}\right)=3$, $\sigma\left(g_{1}\right)=\sigma\left(g_{2}\right)=\sigma\left(g_{3}\right)=4$. The induced vertex-color sets are: $S_{\sigma}\left(x_{1}\right)=\{1,3,4,5\}, S_{\sigma}\left(x_{2}\right)=$ $\{1,2,3,4\}, S_{\sigma}\left(x_{3}\right)=\{2,3,4,5\}, S_{\sigma}\left(x_{1}^{\prime}\right)=S_{\sigma}\left(x_{2}^{\prime}\right)=S_{\sigma}\left(x_{3}^{\prime}\right)=\{3,4\}$. Therefore σ is an AVD proper edgecoloring $S F_{n}$. Hence, $\chi_{a s}^{\prime}\left(S F_{3}\right)=5$.

For $n \geq 4$, since $\Delta\left(S F_{n}\right)=4$, by observation 1.1. $\chi_{a s}^{\prime}\left(S F_{n}\right) \geq 5$. To show $\chi_{a s}^{\prime}\left(S F_{n}\right) \leq 5$. we consider two cases first define $\sigma: E\left(S F_{n}\right) \rightarrow\{1,2,3,4,5\}$ as follows:

Case 1. If n is even

For $i \in\{1,2, \ldots, n\}$

$$
\begin{aligned}
\sigma\left(e_{i}\right)= & \begin{cases}1 & \text { if } i \text { is odd } \\
2 & \text { if } i \text { is even }\end{cases} \\
& \sigma\left(f_{i}\right)= \begin{cases}5 & \text { if } i \text { is odd } \\
4 & \text { if } i \text { is even }\end{cases}
\end{aligned}
$$

$\sigma\left(g_{i}\right)=3$,
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
$S_{\sigma}\left(x_{1}\right)=\{1,3\}$
For $i \in\{1,2,3, \ldots, n\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3,5\} & \text { if } i \text { is odd } \\ \{1,2,3,4\} & \text { if } i \text { is even }\end{cases}$
$S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{3,5\} & \text { if } i \text { is odd } \\ \{3,4\} & \text { if } i \text { is even }\end{cases}$
Therefore σ is an AVD proper edge-coloring of $S F_{n}$. Hence, $\chi_{a s}^{\prime}\left(S F_{n}\right)=5$

Case 2. If \boldsymbol{n} is odd

For $i \in\{1,2, \ldots, n-1\}, \sigma\left(e_{i}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\ 2 & \text { if } i \text { is even }\end{cases}$
$\sigma\left(e_{n}\right)=5$
$\sigma\left(f_{1}\right)=4$,
For $i \in\{2,3, \ldots, n-1\}, \sigma\left(f_{i}\right)=\left\{\begin{array}{l}4 \\ \text { if } i \text { is even } \\ 5 \\ \text { if } i \text { is odd }\end{array}\right.$
$\sigma\left(f_{n}\right)=4$,
For $i \in\{1,2, \ldots, n\}, \sigma\left(g_{i}\right)=3$

Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
$S_{\sigma}\left(x_{1}\right)=\{1,3,4,5\}$
For $i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \text { is even } \\ \{1,2,3,5\} & \text { if } i \text { is odd }\end{cases}$
$S_{\sigma}\left(x_{n}\right)=\{2,3,4,5\}$
$S_{\sigma}\left(x_{1}^{\prime}\right)=\{3,4\}$
For $i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{3,4\} & \text { if } i \text { is even } \\ \{3,5\} & \text { if } i \text { is odd }\end{cases}$
$S_{\sigma}\left(x_{n}^{\prime}\right)=\{3,4\}$
Therefore σ is an AVD proper edge-coloring of $S F_{n}$. Hence, $\chi_{a s}^{\prime}\left(S F_{n}\right)=5$.

2.3. AVD Proper Edge-chromatic Index of Double Sunflower Graph

By a double sunflower graph of order n denoted by $D S F_{n}$, is a graph obtained from the graph $S F_{n}$ by inserting a new vertex z_{i} on each edges $x_{i} x_{i+1}$ and adding edges $y_{i} z_{i}$ for each i.

Theorem 2.3. $\chi_{a s}^{\prime}\left(D S F_{n}\right)=4$, for $n \geq 4$,
Proof. Let $C_{n}=x_{1} x_{2} \ldots x_{n} x_{1}$ For $n \geq 4$ and $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ be newly added vertices corresponding to the vertices $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ be newly added vertices corresponding to the sub division of each edge of the cycle C_{n} to form $D S F_{n}$. In $D S F_{n}$, for $i \in\{1,2, \ldots, n\}$, let $e_{i}=x_{i} y_{i}, e_{i}^{\prime}=y_{i} x_{i+1} f_{i}=x_{i} x_{i}^{\prime}, g_{i}=$ $x_{i}^{\prime} x_{i+1}$ and $h_{i}=x_{i}^{\prime} y_{i}$ where $x_{n+1}=x_{1}$.
For $n \geq 4$, since $\Delta\left(D S F_{n}\right)=4$, by observation 1.2. $\chi_{a s}^{\prime}\left(D S F_{n}\right) \geq 4$. To show $\chi_{a s}^{\prime}\left(D S F_{n}\right) \leq 4$.
We consider two cases first define $\sigma: E\left(D S F_{n}\right) \rightarrow\{1,2,3,4\}$ as follows:

Case 1. If \boldsymbol{n} is even

For $i \in\{1,2, \ldots, n\}$

$$
\sigma\left(e_{i}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\ 3 & \text { if } i \text { is even }\end{cases}
$$

$\sigma\left(e_{i}^{\prime}\right)= \begin{cases}2 & \text { if } i \text { is odd } \\ 4 & \text { if } i \text { is even }\end{cases}$

$$
\sigma\left(f_{i}\right)= \begin{cases}2 & \text { if } i \text { is odd } \\ 1 & \text { if } i \text { is even }\end{cases}
$$

$\sigma\left(g_{i}\right)= \begin{cases}4 & \text { if } i \text { is odd } \\ 3 & \text { if } i \text { is even }\end{cases}$
$\sigma\left(h_{i}\right)= \begin{cases}3 & \text { if } i \text { is odd } \\ 2 & \text { if } i \text { is even }\end{cases}$
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{1,2,3, \ldots, n\}, S_{\sigma}\left(x_{i}\right)=\{1,2,3,4\}$

$$
\begin{aligned}
& S_{\sigma}\left(y_{i}\right)= \begin{cases}\{1,2,3\} & \text { if } i \text { is odd } \\
\{2,3,4\} & \text { if } i \text { is even }\end{cases} \\
& S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{2,3,4\} & \text { if } i \text { is odd } \\
\{1,2,3\} & \text { if } i \text { is even }\end{cases}
\end{aligned}
$$

Therefore σ is an AVD proper edge-coloring of $D S F_{n}$. Hence, $\chi_{a s}^{\prime}\left(D S F_{n}\right)=4$.

Case 2. If \boldsymbol{n} is odd

$\sigma\left(e_{1}\right)=1, \sigma\left(e_{1}^{\prime}\right)=3$
For $i \in\{2,3, \ldots, n\}, \sigma\left(e_{i}\right)= \begin{cases}1 & \text { if } i \text { is even } \\ 2 & \text { if } i \text { is odd }\end{cases}$
$\sigma\left(e_{i}^{\prime}\right)=4$,
For $i \in\{1,2, \ldots, n\}, \sigma\left(f_{i}\right)= \begin{cases}3 & \text { if } i \neq 2 \\ 2 & \text { if } i=2\end{cases}$
$\sigma\left(g_{1}\right)=4$,
For $i \in\{2,3, \ldots, n\}, \sigma\left(g_{i}\right)= \begin{cases}1 & \text { if } i \text { is even } \\ 2 & \text { if } i \text { is odd }\end{cases}$
$\sigma\left(h_{1}\right)=2, \sigma\left(h_{2}\right)=3$,
For $i \in\{3,4, \ldots, n\}, \sigma\left(h_{i}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\ 2 & \text { if } i \text { is even }\end{cases}$
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{1,2, \ldots, n\}, S_{\sigma}\left(x_{i}\right)=\{1,2,3,4\}$
$S_{\sigma}\left(y_{1}\right)=\{1,2,3\}, S_{\sigma}\left(y_{2}\right)=\{1,3,4\}$
For $i \in\{3,4, \ldots, n\}, S_{\sigma}\left(y_{i}\right)=\{1,2,4\}$
$S_{\sigma}\left(x_{1}^{\prime}\right)=\{2,3,4\}$
For $i \in\{2,3, \ldots, n\}, S_{\sigma}\left(x_{i}^{\prime}\right)=\{1,2,3\}$.
Therefore σ is an AVD proper edge-coloring of $D S F_{n}$. Hence, $\chi_{a s}^{\prime}\left(D S F_{n}\right)=4$.

2.4. AVD Proper Edge-chromatic Index of Triangular Winged Prism

By a triangular winged prism of order n denoted by $T W P_{n}$, is a graph obtained from the prism graph D_{n}, by adding some outsider middle vertices z_{i} on edge $y_{i} y_{i+1}$ and adding z_{i} to both vertices y_{i} and y_{i+1}.

Theorem 2.4. $\chi_{a s}^{\prime}\left(T W P_{n}\right)=6$, for $n \geq 4$.
Proof. Let $C_{n}=x_{1} x_{2} \ldots x_{n} x_{1}$ For $n \geq 4, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ and $y_{1}, y_{2}, \ldots, y_{n}$ be newly added vertices corresponding to the vertices $x_{1}, x_{2}, \ldots, x_{n}$ to form $T W P_{n}$. In $T W P_{n}$, for $i \in\{1,2, \ldots, n\}$, let $e_{i}=x_{i} x_{i+1}, e_{i}^{\prime}=$ $x_{i}^{\prime} x_{i+1}^{\prime}, f_{i}=x_{i} x_{i}^{\prime}, g_{i}=x_{i}^{\prime} y_{i}$ and $h_{i}=x_{i+1}^{\prime} y_{i}$, where $x_{n+1}=x_{1}, x_{n+1}^{\prime}=x_{1}^{\prime}$.

For $n \geq 4$, since $\Delta\left(T W P_{n}\right)=5$, by observation 1.1. $\chi_{a s}^{\prime}\left(T W P_{n}\right) \geq 6$. To show $\chi_{a s}^{\prime}\left(T W P_{n}\right) \leq 6$. we consider two cases first define $\sigma: E\left(T W P_{n}\right) \rightarrow\{1,2,3,4,5,6\}$ as follows:

Case 1. If \boldsymbol{n} is even

$$
\begin{aligned}
& \text { For } i \in\{1,2, \ldots, n\} \\
& \qquad \begin{array}{c}
\sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\
3 & \text { if } i \text { is even }\end{cases} \\
\sigma\left(f_{i}\right)= \begin{cases}4 & \text { if } i \text { is odd } \\
2 & \text { if } i \text { is even }\end{cases} \\
\sigma\left(g_{i}\right)=5 \\
\sigma\left(h_{i}\right)= \begin{cases}4 & \text { if } i \text { is odd } \\
6 & \text { if } i \text { is even }\end{cases}
\end{array} .
\end{aligned}
$$

Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{1,2,3, \ldots, n\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,3,4\} & \text { if } i \text { is odd } \\ \{1,2,3\} & \text { if } i \text { is even }\end{cases}$

$$
S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,3,4,5,6\} & \text { if } i \text { is odd } \\ \{1,2,3,4,5\} & \text { if } i \text { is even }\end{cases}
$$

For $i \in\{1,2, \ldots, n\}, S_{\sigma}\left(y_{i}\right)=\left\{\begin{array}{l}\{4,5\} \text { if } i \text { is odd } \\ \{5,6\} \text { if } i \text { is even }\end{array}\right.$
Therefore σ is an AVD proper edge-coloring of $T W P_{n}$. Hence, $\chi_{a s}^{\prime}\left(T W P_{n}\right)=6$.

Case 2. If \boldsymbol{n} is odd

$$
\begin{aligned}
& \text { For } i \in\{1,2,3, \ldots, n-1\} \\
& \qquad \begin{array}{c}
\sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\
3 & \text { if } i \text { is even }\end{cases} \\
\sigma\left(e_{n}\right)=\sigma\left(e_{n}^{\prime}\right)=2
\end{array}
\end{aligned}
$$

For $i \in\{1,2, \ldots, n-1\}, \sigma\left(f_{i}\right)=\left\{\begin{array}{l}4 \text { if } i \text { is odd } \\ 2 \text { if } i \text { is even }\end{array}\right.$
$\sigma\left(f_{n}\right)=4$,
For $i \in\{1,2, \ldots, n\}, \sigma\left(g_{i}\right)=5$,
For $i \in\{1,2, \ldots, n-1\}, \sigma\left(h_{i}\right)= \begin{cases}4 & \text { if } i \text { is odd } \\ 6 & \text { if } i \text { is even }\end{cases}$
$\sigma\left(h_{n}\right)=6$.
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:

$$
\begin{aligned}
& S_{\sigma}\left(x_{1}\right)=\{1,2,4\} \\
& \text { For } i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3\} & \text { if } i \text { is even } \\
\{1,3,4\} & \text { if } i \text { is odd }\end{cases} \\
& S_{\sigma}\left(x_{n}\right)=\{2,3,4\} \\
& S_{\sigma}\left(x_{1}^{\prime}\right)=\{1,2,4,5,6\}
\end{aligned}
$$

$$
\text { For } i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,2,3,4,5\} & \text { if } i \text { is even } \\ \{1,3,4,5,6\} & \text { if } i \text { is odd }\end{cases}
$$

$$
S_{\sigma}\left(x_{n}^{\prime}\right)=\{2,3,4,5,6\}
$$

$$
\text { For } i \in\{1,2, \ldots, n-1\}, S_{\sigma}\left(y_{i}\right)= \begin{cases}\{4,5\} & \text { if } i \text { is odd } \\ \{5,6\} & \text { if } i \text { is even }\end{cases}
$$

$$
S_{\sigma}\left(y_{n}\right)=\{5,6\} .
$$

Therefore σ is an AVD proper edge-coloring of $T W P_{n}$. Hence, $\chi_{a s}^{\prime}\left(T W P_{n}\right)=6$.

2.5. AVD Proper Edge-chromatic Index of Rectangular Winged Prism Graph

By a rectangular winged prism graph of order n denoted by $R W P_{n}$, is a graph obtained from the prism graph D_{n}, by adding an edge $a_{i} b_{i}$ corresponding to the edge $y_{i} y_{i+1}$ and adding an edge a_{i} to y_{i} and b_{i} to y_{i+1}.

Theorem 2.5. $\chi_{a s}^{\prime}\left(R W P_{n}\right)=6$, for $n \geq 4$.
Proof. Let $C_{n}=x_{1} x_{2} \ldots x_{n} x_{1}$, For $n \geq 4$ and $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ be newly added vertices corresponding to the vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let $y_{1}, y_{2}, \ldots, y_{n}$ and $z_{1}, z_{2}, \ldots, z_{n}$ be newly added vertices corresponding to the vertices $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ to form $R W P_{n}$. In $R W P_{n}$, for $i \in\{1,2, \ldots, n\}$, let $e_{i}=x_{i} x_{i+1}, e_{i}^{\prime}=x_{i}^{\prime} x_{i+1}^{\prime}, e_{i}^{\prime \prime}=y_{i} z_{i}$, $f_{i}=x_{i} x_{i}^{\prime}, g_{i}=x_{i}^{\prime} y_{i}$ and $h_{i}=x_{i+1}^{\prime} z_{i}$, where $x_{n+1}=x_{1}, x_{n+1}^{\prime}=x_{1}^{\prime}$.

For $n \geq 4$, since $\Delta\left(R W P_{n}\right)=5$, by observation 1.1. $\chi_{a s}^{\prime}\left(R W P_{n}\right) \geq 6$. To show $\chi_{a s}^{\prime}\left(R W P_{n}\right) \leq 6$. we consider two cases first define $\sigma: E\left(R W P_{n}\right) \rightarrow\{1,2,3,4,5,6\}$ as follows:

Case 1. If \boldsymbol{n} is even

For $i \in\{1,2, \ldots, n\}$

$$
\begin{gathered}
\sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)=\sigma\left(e_{i}^{\prime \prime}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\
3 & \text { if } i \text { is even }\end{cases} \\
\sigma\left(f_{i}\right)= \begin{cases}4 & \text { if } i \text { is odd } \\
2 & \text { if } i \text { is even }\end{cases}
\end{gathered}
$$

$\sigma\left(g_{i}\right)=5$
$\sigma\left(h_{i}\right)= \begin{cases}4 & \text { if } i \text { is odd } \\ 6 & \text { if } i \text { is even }\end{cases}$
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{1,2,3, \ldots, n\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,3,4\} & \text { if } i \text { is odd } \\ \{1,2,3\} & \text { if } i \text { is even }\end{cases}$

$$
S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,3,4,5,6\} & \text { if } i \text { is odd } \\ \{1,2,3,4,5\} & \text { if } i \text { is even }\end{cases}
$$

For $i \in\{1,2, \ldots, n\}, S_{\sigma}\left(y_{i}\right)= \begin{cases}\{1,5\} & \text { if } i \text { is odd } \\ \{3,5\} & \text { if } i \text { is even }\end{cases}$
For $i \in\{1,2, \ldots, n\}, S_{\sigma}\left(z_{i}\right)= \begin{cases}\{1,4\} & \text { if } i \text { is odd } \\ \{3,6\} & \text { if } i \text { is even }\end{cases}$
Therefore σ is an AVD proper edge-coloring of $R W P_{n}$. Hence, $\chi_{a s}^{\prime}\left(R W P_{n}\right)=6$.

Case 2. If \boldsymbol{n} is odd

For $i \in\{1,2, \ldots, n-1\}, \sigma\left(e_{i}\right)=\sigma\left(e_{i}^{\prime}\right)=\sigma\left(e_{i}^{\prime \prime}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\ 3 & \text { if } i \text { is even }\end{cases}$
$\sigma\left(e_{n}\right)=\sigma\left(e_{n}^{\prime}\right)=\sigma\left(e_{n}^{\prime \prime}\right)=2$,
For $i \in\{1,2, \ldots, n-1\}, \sigma\left(f_{i}\right)=\left\{\begin{array}{l}4 \text { if } i \text { is odd } \\ 2 \text { if } i \text { is even }\end{array}\right.$
$\sigma\left(f_{n}\right)=4$,
For $i \in\{1,2, \ldots, n\}, \sigma\left(g_{i}\right)=5$,
For $i \in\{1,2, \ldots, n-1\}, \sigma\left(h_{i}\right)=\left\{\begin{array}{l}4 \text { if } i \text { is odd } \\ 6\end{array}\right.$ if i is even
$\sigma\left(h_{n}\right)=6$.
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.
The induced vertex-color sets are:
$S_{\sigma}\left(x_{1}\right)=\{1,2,4\}$
For $i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3\} & \text { if } i \text { is even } \\ \{1,3,4\} & \text { if } i \text { is odd }\end{cases}$
$S_{\sigma}\left(x_{n}\right)=\{2,3,4\}$
$S_{\sigma}\left(x_{1}^{\prime}\right)=\{1,2,4,5,6\}$
For $i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(x_{i}^{\prime}\right)= \begin{cases}\{1,2,3,4,5\} & \text { if } i \text { is even } \\ \{1,3,4,5,6\} & \text { if } i \text { is odd }\end{cases}$
$S_{\sigma}\left(x_{n}^{\prime}\right)=\{2,3,4,5,6\}$
For $i \in\{1,2, \ldots, n-1\}, S_{\sigma}\left(y_{i}\right)= \begin{cases}\{1,5\} & \text { if } i \text { is odd } \\ \{3,5\} & \text { if } i \text { is even }\end{cases}$
$S_{\sigma}\left(y_{n}\right)=\{2,5\}$
For $i \in\{1,2, \ldots, n-1\}, S_{\sigma}\left(z_{i}\right)= \begin{cases}\{1,4\} & \text { if } i \text { is odd } \\ \{3,6\} & \text { if } i \text { is even }\end{cases}$
$S_{\sigma}\left(z_{n}\right)=\{2,6\}$
Therefore σ is an AVD proper edge-coloring of $R W P_{n}$. Hence, $\chi_{a s}^{\prime}\left(R W P_{n}\right)=6$.

3. AVD Proper Edge-chromatic Index of Polygonal Snake Graph

In this section, we investigate AVD proper edge-coloring of Polygonal snake graph only. A graph is obtained from a path P_{m} with vertex set $x_{1}, x_{2}, \ldots, x_{m}$ by joining all consecutive vertices by path P_{n} with vertex set $y_{1}, y_{2}, \ldots, y_{n}$ in such a way that merging y_{1} with x_{i} and y_{n} with $x_{i+1}, i \in\{1,2, \ldots, n-1\}$ and so on. Then $P_{m}\left(S_{n}\right), \forall m, n$ is called as polygonal snake graph. [8]
Theorem 3.1. $\chi_{a s}^{\prime}\left(P_{m}\left(S_{n}\right)\right)=5$, for $m \geq 3, n \geq 5$.
Proof. Let $P_{m}: x_{1} x_{2} \ldots x_{m}$, For $n \geq 5, P_{n}: y_{1} y_{2} \ldots y_{n}$ be attached to an edge $x_{i} x_{i+1}, i \in\{1,3, \ldots, m-1\}, m$ is even, where $x_{i}=y_{1}, x_{i+1}=y_{n}$ and $P_{n}^{\prime}: y_{1}^{\prime} y_{2}^{\prime} \ldots y_{n}^{\prime}$ be attached to an edge $x_{i} x_{i+1}, i \in\{2,4, \ldots, m-1\}, m$ is odd, where $x_{i}=y_{1}^{\prime}, x_{i+1}=y_{n}^{\prime}$ to form $P_{m}\left(S_{n}\right)$. In $P_{m}\left(S_{n}\right)$, for $i \in\{1,2, \ldots, m-1\}$, let $e_{i}=x_{i} x_{i+1}$. For $i \in$ $\{1,2, \ldots, n-1\}, f_{i}=y_{i} y_{i+1}, f_{i}^{\prime}=y_{i}^{\prime} y_{i+1}^{\prime}$.

For $m \geq 3, n \geq 5$, since $\Delta\left(P_{m}\left(S_{n}\right)\right)=4$, by observation 1.1. $\chi_{a s}^{\prime}\left(P_{m}\left(S_{n}\right)\right) \geq 5$. To show $\chi_{a s}^{\prime}\left(P_{m}\left(S_{n}\right)\right) \leq 5$. we consider five cases and in each case, we first define $\sigma: E\left(P_{m}\left(S_{n}\right)\right) \rightarrow\{1,2,3,4,5\}$ as follows:

Case 1: For $n \equiv 5(\bmod 6)$

For $i \in\{1,2, \ldots, m-1\}, \sigma\left(e_{i}\right)= \begin{cases}3 & \text { if } i \equiv 1(\bmod 3) \\ 4 & \text { if } i \equiv 2(\bmod 3) \\ 5 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
For $i \in\{1,2, \ldots, n-1\}, \sigma\left(f_{i}\right)= \begin{cases}1 & \text { if } i \equiv 1(\bmod 3) \\ 2 & \text { if } i \equiv 2(\bmod 3) \\ 3 & \text { if } i \equiv 0(\bmod 3)\end{cases}$

$$
\sigma\left(f_{i}^{\prime}\right)= \begin{cases}2 & \text { if } i \equiv 1(\bmod 3) \\ 3 & \text { if } i \equiv 2(\bmod 3) \\ 1 & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(y_{i}\right)= \begin{cases}\{1,2\} & \text { if } i \equiv 2(\bmod 3) \\ \{2,3\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,3\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(y_{i}^{\prime}\right)= \begin{cases}\{2,3\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,3\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,2\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{1}\right)=\{1,3\}$,
For $i \in\{2,3, \ldots, m-1\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,2,3,5\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{m}\right)=\left\{\begin{array}{l}\{2,4\} \text { if } m \equiv 3(\bmod 6) \\ \{1,5\} \text { if } m \equiv 4(\bmod 6) \\ \{2,3\} \text { if } m \equiv 5(\bmod 6) \\ \{1,4\} \text { if } m \equiv 0(\bmod 6) \\ \{2,5\} \text { if } m \equiv 1(\bmod 6) \\ \{1,3\} \text { if } m \equiv 2(\bmod 6)\end{array}\right.$

Therefore σ is an AVD proper edge-coloring of $P_{m}\left(S_{n}\right)$. Hence, $\chi_{a s}^{\prime}\left(P_{m}\left(S_{n}\right)\right)=5$.

Case 2: For $n \equiv 0(\bmod 6)$

For $i \in\{1,2, \ldots, m-1\}, \sigma\left(e_{i}\right)= \begin{cases}3 & \text { if } i \equiv 1(\bmod 3) \\ 4 & \text { if } i \equiv 2(\bmod 3) \\ 5 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
For $i \in\{1,2, \ldots, n-1\}, \sigma\left(f_{i}\right)=\sigma\left(f_{i}^{\prime}\right)= \begin{cases}1 & \text { if } i \equiv 1(\bmod 3) \\ 2 & \text { if } i \equiv 2(\bmod 3) \\ 3 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{2,3, \ldots, n-1\}, S_{\sigma}\left(y_{i}\right)=S_{\sigma}\left(y_{i}^{\prime}\right)= \begin{cases}\{1,2\} & \text { if } i \equiv 2(\bmod 3) \\ \{2,3\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,3\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{1}\right)=\{1,3\}$,
For $i \in\{2,3, \ldots, m-1\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,2,3,5\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{m}\right)= \begin{cases}\{2,4\} & \text { if } m \equiv 0(\bmod 3) \\ \{2,5\} & \text { if } m \equiv 1(\bmod 3) \\ \{2,3\} & \text { if } m \equiv 2(\bmod 3)\end{cases}$
Therefore σ is an AVD proper edge-coloring of $P_{m}\left(S_{n}\right)$. Hence, $\chi_{a s}^{\prime}\left(P_{m}\left(S_{n}\right)\right)=5$.
Case 3: For $n \equiv 1(\bmod 6)$
For $i \in\{1,2, \ldots, m-1\}, \sigma\left(e_{i}\right)= \begin{cases}3 & \text { if } i \equiv 1(\bmod 3) \\ 4 & \text { if } i \equiv 2(\bmod 3) \\ 5 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
For $i \in\{1,2, \ldots, n-4\}, \sigma\left(f_{i}\right)=\sigma\left(f_{i}^{\prime}\right)= \begin{cases}1 & \text { if } i \equiv 1(\bmod 3) \\ 2 & \text { if } i \equiv 2(\bmod 3) \\ 3 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
$\sigma\left(f_{n-3}\right)=\sigma\left(f_{n-3}^{\prime}\right)=4, \sigma\left(f_{n-2}\right)=\sigma\left(f_{n-2}^{\prime}\right)=1, \sigma\left(f_{n-1}\right)=\sigma\left(f_{n-1}^{\prime}\right)=2$.
Therefore σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

The induced vertex-color sets are:
For $i \in\{2,3, \ldots, n-4\}, S_{\sigma}\left(y_{i}\right)=S_{\sigma}\left(y_{i}^{\prime}\right)= \begin{cases}\{1,2\} & \text { if } i \equiv 2(\bmod 3) \\ \{2,3\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,3\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(y_{n-3}\right)=S_{\sigma}\left(y_{n-3}^{\prime}\right)=\{3,4\}, S_{\sigma}\left(y_{n-2}\right)=S_{\sigma}\left(y_{n-2}^{\prime}\right)=\{1,4\}, S_{\sigma}\left(y_{n-1}\right)=S_{\sigma}\left(y_{n-1}^{\prime}\right)=\{1,2\}$
$S_{\sigma}\left(x_{1}\right)=\{1,3\}$,

For $i \in\{2,3, \ldots, m-1\}, S_{\sigma}\left(x_{i}\right)= \begin{cases}\{1,2,3,4\} & \text { if } i \equiv 2(\bmod 3) \\ \{1,2,4,5\} & \text { if } i \equiv 0(\bmod 3) \\ \{1,2,3,5\} & \text { if } i \equiv 1(\bmod 3)\end{cases}$
$S_{\sigma}\left(x_{m}\right)= \begin{cases}\{2,4\} & \text { if } m \equiv 0(\bmod 3) \\ \{2,5\} & \text { if } m \equiv 1(\bmod 3) \\ \{2,3\} & \text { if } m \equiv 2(\bmod 3)\end{cases}$
Therefore σ is an AVD proper edge-coloring of $P_{m}\left(S_{n}\right)$. Hence, $\chi_{a s}^{\prime}\left(P_{m}\left(S_{n}\right)\right)=5$.
Case 4: For $\boldsymbol{n} \equiv 2(\bmod 6)$
Proof is similar to case $1 . n \equiv 5(\bmod 6)$
Case 5: For $\boldsymbol{n} \equiv \mathbf{3}(\bmod 6)$
Proof is similar to case $2 . n \equiv 0(\bmod 6)$
Case 6: For $n \equiv 4(\bmod 6)$
Proof is similar to case $3 . n \equiv 1(\bmod 6)$

4. Conclusion

In this paper, I investigate the AVD proper edge-chromatic index of Anti-prism, sunflower graph, double sunflower graph, triangular winged prism and rectangular winged prism. And I also investigate AVD Proper edge-chromatic index of Polygonal snake graph. The investigation of analogous results for different graphs and different operation of above families of graphs are still open.

Author Contributions

All authors contributed equally to this work. They all read and approved the final version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgement

The author expresses his sincere thanks to the referee for his/ her careful reading and suggestions that helped to improve this paper.

References

[1] Axenovich, M., Harant, J., Przybyło, J., Soták, R., Voigt, M., \& Weidelich, J. (2016). A note on adjacent vertex distinguishing colorings of graphs. Discrete Applied Mathematics, 205, 1-7.
[2] Balister, P. N., Gyori, E., Lehel, J., \& Schelp, R. H. (2007). Adjacent vertex distinguishing edgecolorings. SIAM Journal on Discrete Mathematics, 21(1), 237-250.
[3] Baril, J. L., Kheddouci, H., \& Togni, O. (2006). Adjacent vertex distinguishing edge-colorings of meshes and hypercubes. Australasian Journal of Combinatorics, 35, 89-102.
[4] Bondy, J. A., \& Murty, U. S. R. (1976). Graph theory with applications (Vol. 290). London: Macmillan.
[5] Bu, Y., Lih, K. W., \& Wang, W. (2011). Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six. Discussiones Mathematicae Graph Theory, 31(3), 429-439.
[6] Chen, X. E., \& Li, Z. (2015). Adjacent-vertex-distinguishing proper edge colorings of planar bipartite graphs with $\Delta=9,10$, or 11. Information Processing Letters, 115(2), 263-268.
[7] Hatami, H. (2005). $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number. Journal of Combinatorial Theory, Series B, 95(2), 246-256.
[8] Meenakshisundaram L, \& Nagarajan, A. (2017). Prime Labeling of Cycle Related Special Class of Graphs. International Journal of Applied Graph Theory, 1(1), 49-57.
[9] Shiu, W. C., Chan, W. H., Zhang, Z. F., \& Bian, L. (2011). On the adjacent vertex-distinguishing acyclic edge coloring of some graphs. Applied Mathematics-A Journal of Chinese Universities, 26(4), 439452.
[10] Susanti, Y., Ernanto, I., \& Surodjo, B. (2019, December). On some new edge odd graceful graphs. In AIP Conference Proceedings (Vol. 2192, No. 1, p. 040016). AIP Publishing LLC.
[11] Zhang, Z., Liu, L., \& Wang, J. (2002). Adjacent strong edge coloring of graphs. Applied mathematics letters, 15(5), 623-626.

[^0]: ${ }^{1}$ naveenj.maths@gmail.com (Corresponding Author)
 ${ }^{1}$ Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu, India.
 Article History: Received: 16.07.2021 — Accepted: 01.12.2021 — Published: 09.12.2021

